首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
ObjectiveTo evaluate the postoperative analgesic effects of a constant rate infusion (CRI) of either fentanyl (FENT), lidocaine (LIDO), ketamine (KET), dexmedetomidine (DEX), or the combination lidocaine-ketamine-dexmedetomidine (LKD) in dogs.Study designRandomized, prospective, blinded, clinical study.AnimalsFifty-four dogs.MethodsAnesthesia was induced with propofol and maintained with isoflurane. Treatments were intravenous (IV) administration of a bolus at start of anesthesia, followed by an IV CRI until the end of anesthesia, then a CRI at a decreased dose for a further 4 hours: CONTROL/BUT (butorphanol 0.4 mg kg−1, infusion rate of saline 0.9% 2 mLkg−1 hour−1); FENT (5 μg kg−1, 10 μg kg−1hour−1, then 2.5 μg kg−1 hour−1); KET (1 mgkg−1, 40 μg kg−1 minute−1, then 10 μg kg−1minute−1); LIDO (2 mg kg−1, 100 μg kg−1 minute−1, then 25 μg kg−1 minute−1); DEX (1 μgkg−1, 3 μg kg−1 hour−1, then 1 μg kg−1 hour−1); or a combination of LKD at the aforementioned doses. Postoperative analgesia was evaluated using the Glasgow composite pain scale, University of Melbourne pain scale, and numerical rating scale. Rescue analgesia was morphine and carprofen. Data were analyzed using Friedman or Kruskal–Wallis test with appropriate post-hoc testing (p < 0.05).ResultsAnimals requiring rescue analgesia included CONTROL/BUT (n = 8), KET (n = 3), DEX (n = 2), and LIDO (n = 2); significantly higher in CONTROL/BUT than other groups. No dogs in LKD and FENT groups received rescue analgesia. CONTROL/BUT pain scores were significantly higher at 1 hour than FENT, DEX and LKD, but not than KET or LIDO. Fentanyl and LKD sedation scores were higher than CONTROL/BUT at 1 hour.Conclusions and clinical relevanceLKD and FENT resulted in adequate postoperative analgesia. LIDO, CONTROL/BUT, KET and DEX may not be effective for treatment of postoperative pain in dogs undergoing ovariohysterectomy.  相似文献   

2.
ObjectiveTo investigate the intraperitoneal (IP) administration of ropivacaine or ropivacaine–dexmedetomidine for postoperative analgesia in cats undergoing ovariohysterectomy.Study designProspective, randomized, blinded, positively controlled clinical study.AnimalsA total of 45 client-owned cats were enrolled.MethodsThe cats were administered intramuscular (IM) meperidine (6 mg kg−1) and acepromazine (0.05 mg kg−1). Anesthesia was induced with propofol and maintained with isoflurane. Meloxicam (0.2 mg kg−1) was administered subcutaneously in all cats after intubation. After the abdominal incision, the cats were administered one of three treatments (15 cats in each treatment): IP instillation of 0.9% saline solution (group Control), 0.25% ropivacaine (1 mg kg−1, group ROP) or ropivacaine and dexmedetomidine (4 μg kg−1, group ROP–DEX). During anesthesia, heart rate (HR), electrocardiography, noninvasive systolic arterial pressure (SAP) and respiratory variables were monitored. Sedation and pain were assessed preoperatively and at various time points up to 24 hours after extubation using sedation scoring, an interactive visual analog scale, the UNESP-Botucatu multidimensional composite pain scale (MCPS) and mechanical nociceptive thresholds (MNT; von Frey anesthesiometer). Rescue analgesia (morphine, 0.1 mg kg−1) IM was administered if the MCPS ≥6. Data were analyzed using the chi-square test, Tukey test, Kruskal–Wallis test and Friedman test (p < 0.05).ResultsHR was significantly lower in ROP–DEX compared with Control (p = 0.002). The pain scores, MNT, sedation scores and the postoperative rescue analgesia did not differ statistically among groups.Conclusions and clinical relevanceAs part of a multimodal pain therapy, IP ropivacaine–dexmedetomidine was associated with decreased HR intraoperatively; however, SAP remained within normal limits. Using the stated anesthetic protocol, neither IP ropivacaine nor ropivacaine–dexmedetomidine significantly improved analgesia compared with IP saline in cats undergoing ovariohysterectomy.  相似文献   

3.
ObjectiveThe aim of the present study was to compare intranasal (INS) and intramuscular (IM) routes of administration of a ketamine-midazolam combination in cats.Study designRandomized block design.AnimalsTwelve healthy mixed breed cats (six males and six females).MethodsThe drug combination was ketamine (14 mg kg−1) and midazolam (0.5 mg kg−1). In the IM group, drugs were injected into quadratus femoris muscle; in the INS. group, the combination dropped equally into the two nostrils. Pulse and respiratory rates, peripheral haemoglobin oxygen saturation (SpO2) and rectal temperature were monitored before and at intervals after drug administration. Time to onset and duration of sedation and, during recovery to head up, sternal recumbency and recovery were recorded.ResultsThere were no significant differences between the groups in any time measured except for recovery to sternal recumbency, where time was lower in the INS than in the IM (p = 0.034). Respiratory rate was greater in the INS than in the IM group (p = 0.029), but there was no difference between groups in other physiological parameters. In both groups SpO2 was low before and fell further during sedation.ConclusionsThe results substantiated that INS ketamine-midazolam can produce effective sedation in cats.Clinical relevanceIntranasal (INS) administration of ketamine-midazolam is atraumatic, and its use may avoid the pain of injection of ketamine combinations when this drug is used to induce sedation in cats.  相似文献   

4.
ObjectiveTo compare the sedative and clinical effects of intravenous (IV) administration of dexmedetomidine and xylazine in dromedary calves.Study designExperimental, crossover, randomized, blinded study.AnimalsA total of seven healthy male dromedary calves aged 14 ± 2 weeks and weighing 95 ± 5.5 kg.MethodsCalves were assigned three IV treatments: treatment XYL, xylazine (0.2 mg kg−1); treatment DEX, dexmedetomidine (5 μg kg−1); and control treatment, normal saline (0.01 mL kg−1). Sedation scores, heart rate (HR), respiratory rate (fR), rectal temperature (RT) and ruminal motility were recorded before (baseline) and after drug administration. Sedation signs were scored using a 4-point scale. One-way anova and Mann–Whitney U tests were used for data analysis.ResultsCalves in treatments XYL and DEX were sedated at 5–60 minutes. Sedation had waned in XYL calves, but not DEX calves, at 60 minutes (p = 0.037). Sedation was not present in calves of any treatment at 90 minutes. HR decreased from baseline in XYL and DEX at 5–90 minutes after drug administration and was lower in DEX than XYL at 5 minutes (p = 0.017). HR was lower in DEX (p = 0.001) and XYL (p = 0.013) than in control treatment at 90 minutes. fR decreased from baseline in XYL and DEX at 5–60 minutes after drug administration and was lower in DEX than XYL at 5 minutes (p = 0.013). RT was unchanged in any treatment over 120 minutes. Ruminal motility was decreased in XYL at 5, 90 and 120 minutes and absent at 10–60 minutes. Motility was decreased in DEX at 5, 10 and 120 minutes and was absent at 15–90 minutes.Conclusion and clinical relevanceThe duration of sedation from dexmedetomidine (5 μg kg–1) and xylazine (0.2 mg kg–1) was similar in dromedary calves.  相似文献   

5.
ObjectiveTo evaluate the isoflurane‐sparing effects of an intravenous (IV) constant rate infusion (CRI) of fentanyl, lidocaine, ketamine, dexmedetomidine, or lidocaine‐ketamine‐dexmedetomidine (LKD) in dogs undergoing ovariohysterectomy.Study designRandomized, prospective, blinded, clinical study.AnimalsFifty four dogs.MethodsAnesthesia was induced with propofol and maintained with isoflurane with one of the following IV treatments: butorphanol/saline (butorphanol 0.4 mg kg?1, saline 0.9% CRI, CONTROL/BUT); fentanyl (5 μg kg?1, 10 μg kg?1 hour?1, FENT); ketamine (1 mg kg?1, 40 μg kg?1 minute?1, KET), lidocaine (2 mg kg?1, 100 μg kg?1 minute?1, LIDO); dexmedetomidine (1 μg kg?1, 3 μg kg?1 hour?1, DEX); or a LKD combination. Positive pressure ventilation maintained eucapnia. An anesthetist unaware of treatment and end‐tidal isoflurane concentration (Fe′Iso) adjusted vaporizer settings to maintain surgical anesthetic depth. Cardiopulmonary variables and Fe′Iso concentrations were monitored. Data were analyzed using anova (p < 0.05).ResultsAt most time points, heart rate (HR) was lower in FENT than in other groups, except for DEX and LKD. Mean arterial blood pressure (MAP) was lower in FENT and CONTROL/BUT than in DEX. Overall mean ± SD Fe′Iso and % reduced isoflurane requirements were 1.01 ± 0.31/41.6% (range, 0.75 ± 0.31/56.6% to 1.12 ± 0.80/35.3%, FENT), 1.37 ± 0.19/20.8% (1.23 ± 0.14/28.9% to 1.51 ± 0.22/12.7%, KET), 1.34 ± 0.19/22.5% (1.24 ± 0.19/28.3% to 1.44 ± 0.21/16.8%, LIDO), 1.30 ± 0.28/24.8% (1.16 ± 0.18/32.9% to 1.43 ± 0.32/17.3%, DEX), 0.95 ± 0.19/54.9% (0.7 ± 0.16/59.5% to 1.12 ± 0.16/35.3%, LKD) and 1.73 ± 0.18/0.0% (1.64 ± 0.21 to 1.82 ± 0.14, CONTROL/BUT) during surgery. FENT and LKD significantly reduced Fe′Iso.Conclusions and clinical relevanceAt the doses administered, FENT and LKD had greater isoflurane‐sparing effect than LIDO, KET or CONTROL/BUT, but not at all times. Low HR during FENT may limit improvement in MAP expected with reduced Fe′Iso.  相似文献   

6.
ObjectivesAssess effects of benzodiazepine administration on the propofol dose required to induce anaesthesia in healthy cats, investigate differences between midazolam and diazepam, and determine an optimal benzodiazepine dose for co-induction.Study designProspective, randomised, blinded, placebo-controlled clinical trial.AnimalsNinety client-owned cats (ASA I and II) with a median (interquartile range) body mass of 4.0 (3.4–4.9) kg.MethodsAll cats received 0.01 mg kg−1 acepromazine and 0.2 mg kg−1 methadone intravenously (IV). Fifteen minutes later, sedation was scored on a scale of 1–5, with 5 indicating greatest sedation. Propofol, 2 mg kg−1, administered IV, was followed by either midazolam or diazepam at 0.2, 0.3, 0.4 or 0.5 mg kg−1 or saline 0.1 mL kg−1. Further propofol was administered until endotracheal intubation was possible. Patient signalment, sedation score, propofol dosage and adverse reactions were recorded.ResultsMidazolam and diazepam (all doses) significantly reduced the propofol dose required compared with saline (p < 0.001). There was no difference between midazolam and diazepam in propofol dose reduction (p = 0.488). All individual doses of midazolam reduced propofol requirement compared with saline (0.2 mg kg−1, p = 0.028; 0.3 mg kg−1, p = 0.006; 0.4 mg kg−1, p < 0.001; 0.5 mg kg−1, p = 0.009). Diazepam 0.2 mg kg−1 did not reduce the propofol dose compared with saline (p = 0.087), but the remaining doses did (0.3 mg kg−1, p = 0.001; 0.4 mg kg−1, p = 0.032; 0.5 mg kg−1, p = 0.041). Cats with sedation scores of 3 required less propofol than cats with scores of 2 (p = 0.008). There was no difference between groups in adverse events.Conclusions and clinical relevanceMidazolam (0.2–0.5 mg kg−1) and diazepam (0.3–0.5 mg kg−1) administered IV after 2 mg kg−1 propofol significantly reduced the propofol dose required for tracheal intubation.  相似文献   

7.
8.
ObjectiveTo evaluate the anesthetic effects of two drug combinations with local anesthesia, with or without postoperative antagonists, for orchiectomy in cats.Study designProspective, randomized blinded clinical study.AnimalsA total of 64 healthy cats.MethodsCats were assigned to four equal groups: ketamine (5 mg kg–1) and dexmedetomidine (10 μg kg–1) were administered intramuscularly (IM), followed postoperatively with intravenous (IV) saline (5 mL; group KDS) or atipamezole (50 μg kg–1; group KDA); and ketamine (14 mg kg–1) with midazolam (0.5 mg kg–1) and acepromazine (0.1 mg kg–1) IM, with postoperative IV saline (5 mL; group KMAS) or flumazenil (0.1 mg kg–1; group KMAF). Lidocaine (2 mg kg–1) was divided between subcutaneous and intratesticular injection. Physiologic variables were recorded at time points during anesthesia. Ketamine rescue dose was recorded. The degree of sedation and the quality of recovery were evaluated postoperatively.ResultsTime to loss of pedal reflex was longer in groups KMAS and KMAF than in groups KDS and KDA (p = 0.010). Total rescue dose of ketamine was higher in KMAS and KMAF than in KDS and KDA (p = 0.003). Heart rate (HR) during anesthesia was higher in KMAS and KMAF than in KDS and KDA (p = 0.001). Times to head up (p = 0.0005) and to sternal recumbency (p = 0.0003) were shorter in KDA than in KDS, KMAS and KMAF. Lower sedation scores were assigned sooner to KDA than KDS, KMAS and KMAF (p < 0.001). Recovery quality scores were good in all groups.Conclusions and clinical relevanceBoth anesthetic protocols allowed the performance of orchiectomy. Groups KMAS and KMAF required higher rescue doses of ketamine before injecting lidocaine. HR and oscillometric systolic pressure were minimally changed in groups KD and tachycardia was recorded in groups KMA. Only atipamezole shortened the anesthetic recovery.  相似文献   

9.
ObjectiveTo evaluate the effects of three doses of L-659’066 (MK-467) on the bispectral index (BIS) and clinical sedation in dexmedetomidine-sedated Beagles.Study designRandomized, experimental cross over study.AnimalsEight purpose-bred healthy laboratory Beagles.MethodsDexmedetomidine (10 μg kg?1 IV [DEX]) was administered alone or in combination with three doses of L-659’066 (250 μg kg?1 [DL250]; 500 μg kg?1 [DL500] and 750 μg kg?1 [DL750] IV) in the same syringe in a randomized crossover manner. The bispectral index (BIS), electromyography (EMG) and sedation score were recorded at baseline and 5, 10, 20, 30, 45 and 60 minutes after treatment.ResultsWhen compared to DEX, BIS and EMG were significantly higher and the sedation score significantly lower with DL500 and DL750. With DEX, BIS was significantly decreased at times 20, 30 and 60 minutes whereas the sedation scores were significantly increased at all time points after drug administration in all groups. Bioequivalence for clinical sedation was detected between DEX and all doses of L-659’066, reaching European Medicines Agency (EMA) standards.Conclusions and clinical relevanceAlthough L-659’066 interfered with dexmedetomidine induced sedation, the degree of the reduction was not clinically relevant. Despite performing better when dexmedetomidine was used alone, BIS did not reflect the clinical sedative status when the antagonist was added.  相似文献   

10.
ObjectiveTo evaluate the anaesthetic and cardiorespiratory effects of four anaesthetic protocols in red foxes (Vulpes vulpes).Study designProspective, blinded and randomized complete block design.AnimalsTen adult captive red foxes.MethodsFoxes were anaesthetized by intramuscular (IM) injection using four protocols in random order: medetomidine 40 μg kg?1, midazolam 0.3 mg kg?1 and butorphanol 0.1 mg kg?1 (MMiB), medetomidine 40 μg kg?1 and ketamine 4 mg kg?1 (MK40/4), medetomidine 60 μg kg?1 and ketamine 4 mg kg?1 (MK60/4), medetomidine 40 μg kg?1 and tiletamine/zolazepam 2 mg kg?1 (MTZ). Time to lateral recumbency, induction time and time to recovery following IM administration of atipamezole 0.2 mg kg?1 were recorded. Heart rate (HR), respiratory rate (fR) and rhythm, blood pressure, rectal temperature, end-tidal CO2 tension (Pe′Co2), functional oxygen saturation and presence/absence of interdigital, palpebral and ear reflexes were recorded every 10 minutes, and following administration of atipamezole. Data were analysed using two-way repeated-measures anova with Bonferroni post tests; p < 0.05 was considered significant.ResultsAll protocols produced profound sedation with good muscle relaxation. Only the MMiB protocol diverged significantly from the others. Induction of anaesthesia and recovery time following atipamezole were significantly longer, and fR and initial HR significantly lower with MMiB than with the other protocols. With all protocols, mean arterial blood pressure (MAP) was initially relatively high (140–156 mmHg), and decreased significantly over time. With all protocols, the administration of atipamezole resulted in a rapid, significant decrease in MAP and an increase in HR.Conclusions and clinical relevanceAll four protocols provided anaesthetic conditions suitable for minor procedures and allowed endotracheal intubation. The cyclohexanone protocols provided quicker and more reliable inductions and recoveries than the MMiB protocol.  相似文献   

11.
ObjectiveTo determine the effect of ondansetron on the incidence of vomiting in cats pre-medicated with dexmedetomidine and buprenorphine.Study designRandomized, blinded, controlled trial.AnimalsEighty-nine female domestic shorthair cats, aged 3–60 months (median, 12 months) and weighing 1.2–5.1 kg.MethodsEach cat received dexmedetomidine (40 μg kg?1) plus buprenorphine (20 μg kg?1), intramuscularly as pre-anesthetic medication. Cats were assigned to three treatment groups: ondansetron (0.22 mg kg?1, intramuscular [IM]), either 30 minutes before the pre-anesthetic medication (ONDA group, n = 31) or with the pre-anesthetic medication (OPM group, n = 30) mixed with the pre-anesthetic medications in the same syringe, or not to receive the antiemetic (control group, n = 28). Emesis was recorded as an all-or-none response. The number of episodes of emesis and the time until onset of the first emetic episode were recorded for each cat. Clinical signs of nausea were recorded whenever they occurred, and a numerical rating scale was used to quantify these signs. Data were analyzed using Kruskal–Wallis and Chi-square test; a Bonferroni correction was made for six comparisons; thus, the two-sided p for significance was 0.05/6 = 0.008.ResultsThere was a significant reduction in the number of cats vomiting, in the episodes of vomiting/cat, the time elapsed between the premedication and the first vomiting and the severity of nausea in the OPM group compared to the ONDA and control groups.Conclusions and clinical relevanceIn cats, the administration of ondansetron (0.22 mg kg?1) ameliorates and reduced the severity of dexmedetomidine-induced nausea and vomiting only when it was administered in association with this drug.  相似文献   

12.
ObjectiveTo compare the cardiorespiratory, anesthetic-sparing effects and quality of anesthetic recovery after epidural and constant rate intravenous (IV) infusion of dexmedetomidine (DEX) in cats given a low dose of epidural lidocaine under propofol-isoflurane anesthesia and submitted to elective ovariohysterectomy.Study designRandomized, blinded clinical trial.AnimalsTwenty-one adult female cats (mean body weight: 3.1 ± 0.4 kg).MethodsCats received DEX (4 μg kg?1, IM). Fifteen minutes later, anesthesia was induced with propofol and maintained with isoflurane. Cats were divided into three groups. In GI cats received epidural lidocaine (1 mg kg?1, n = 7), in GII cats were given epidural lidocaine (1 mg kg?1) + DEX (4 μg kg?1, n = 7), and in GIII cats were given epidural lidocaine (1 mg kg?1) + IV constant rate infusion (CRI) of DEX (0.25 μg kg?1 minute?1, n = 7). Variables evaluated included heart rate (HR), respiratory rate (fR), systemic arterial pressures, rectal temperature (RT), end-tidal CO2, end-tidal isoflurane concentration (e′ISO), arterial blood gases, and muscle tone. Anesthetic recovery was compared among groups by evaluation of times to recovery, HR, fR, RT, and degree of analgesia. A paired t-test was used to evaluate pre-medication variables and blood gases within groups. anova was used to compare parametric data, whereas Friedman test was used to compare muscle relaxation.ResultsEpidural and CRI of DEX reduced HR during anesthesia maintenance. Mean ± SD e′ISO ranged from 0.86 ± 0.28% to 1.91 ± 0.63% in GI, from 0.70 ± 0.12% to 0.97 ± 0.20% in GII, and from 0.69 ± 0.12% to 1.17 ± 0.25% in GIII. Cats in GII and GIII had longer recovery periods than in GI.Conclusions and clinical relevanceEpidural and CRI of DEX significantly decreased isoflurane consumption and resulted in recovery of better quality and longer duration, despite bradycardia, without changes in systemic blood pressure.  相似文献   

13.
ObjectiveTo compare the clinical usefulness of constant rate infusion (CRI) protocols of romifidine with or without butorphanol for sedation of horses.Study designProspective ‘blinded’ controlled trial using block randomization.AnimalsForty healthy Freiberger stallions.MethodsThe horses received either intravenous (IV) romifidine (loading dose: 80 μg kg?1; infusion: 30 μg kg?1 hour?1) (treatment R, n = 20) or romifidine combined with butorphanol (romifidine loading: 80 μg kg?1; infusion: 29 μg kg?1 hour?1, and butorphanol loading: 18 μg kg?1; infusion: 25 μg kg?1 hour?1) (treatment RB, n = 20). Twenty-one horses underwent dentistry and ophthalmic procedures, while 19 horses underwent only ophthalmologic procedure and buccal examination. During the procedure, physiologic parameters and occurrence of head/muzzle shaking or twitching and forward movement were recorded. Whenever sedation was insufficient, additional romifidine (20 μg kg?1) was administered IV. Recovery time was evaluated by assessing head height above ground. At the end of the procedure, overall quality of sedation for the procedure was scored by the dentist and anaesthetist using a visual analogue scale. Statistical analyses used two-way anova or linear mixed models as relevant.ResultsSedation quality scores as assessed by the anaesthetist were R: median 7.55, range: 4.9–9.0 cm, RB: 8.8, 4.7–10.0 cm, and by the dentist R: 6.6, 3.0–8.2 cm, RB: 7.9, 6.6–8.8 cm. Horses receiving RB showed clinically more effective sedation as demonstrated by fewer poor scores and a tendency to reduced additional drug requirements. More horses showed forward movement and head shaking in treatment RB than treatment R. Three horses (two RB, one R) had symptoms of colic following sedation.Conclusions and clinical relevanceThe described protocols provide effective sedation under clinical conditions but for dentistry procedures, the addition of butorphanol is advantageous.  相似文献   

14.
ObjectiveTo assess the sedative and immobilization effect of intranasal administration (INS) of midazolam (MID) without or with INS dexmedetomidine (DXM), and some physiological changes induced by the drugs. The ability of INS atipamezole to reverse the DXM component was also assessed.Study designProspective ‘blinded’ experimental study.AnimalsIn total, 15 pigeons.MethodsPigeons were sedated by INS MID alone at a dose of 5 mg kg−1 (group MID, n = 6) or in combination with INS DXM at a dose 80 μg kg−1 (group MID-DXM, n = 6). Measurements were made of heart rate (HR), respiratory rate (fR) and cloacal temperature (CT). The degree of sedation was assessed at 15 minutes prior to, immediately after, and at intervals until 100 minutes after drug administrations. Following MID-DXM, INS atipamezole (250 μg kg−1) was administered and the same indices measured 5 and 10 minutes later.ResultsMID had no effect on HR and fR, and although CT decreased, it remained within physiological range. MID-DXM caused significant falls in HR, fR and CT that persisted until the end of sedation. Atipamezole antagonized sedation and cardiorespiratory side effects of MID-DXM within 10 minutes of application. In addition, for MID compared to MID-DXM, the lowest sedation scores [10 (7–14) and 10.5 (5–14) versus 2 (1–4) and 2 (1–5)] were achieved in the 10th and 20th minute versus the 20th and 30th minute of the sedation, respectively.Conclusions and clinical relevanceMID alone, given INS had minimal side effects on vital functions but caused inadequate immobilization of pigeons for restraint in dorsal recumbency. MID-DXM caused an effective degree of immobilization from 20 to 30 minutes after administration, at which time birds tolerated postural changes without resistance. Atipamezole antagonized both side effects and sedation, but complete recovery had not occurred within 10 minutes after its application.  相似文献   

15.
ObjectiveTo evaluate the anesthetic and cardiorespiratory effects of two doses of intramuscular (IM) xylazine/ketamine in alpacas, and to determine if tolazoline would reduce the anesthetic recovery time.Study designProspective randomized crossover study.AnimalsSix castrated male alpacas.MethodsEach alpaca received a low dose (LD) (0.8 mg kg−1 xylazine and 8 mg kg−1 ketamine IM) and high dose (HD) (1.2 mg kg−1 xylazine and 12 mg kg−1 ketamine IM) with a minimum of one week between trials. Time to sedation, duration of lateral recumbency and analgesia, pulse rate, respiratory rate, hemoglobin oxygen saturation, arterial blood pressure, blood-gases, and the electrocardiogram were monitored and recorded during anesthesia. With each treatment three alpacas were randomly selected to receive tolazoline (2 mg kg−1 IM) after 30 minutes of lateral recumbency.ResultsOnset of sedation, lateral recumbency and analgesia was rapid with both treatments. The HD was able to provide ≥30 minutes of anesthesia in five of six alpacas. The LD provided ≥30 minutes of anesthesia in three of six alpacas. Respiratory depression and hypoxemia occurred with the HD treatment during the first 10 minutes of lateral recumbency: two animals were severely hypoxemic and received nasal oxygen for 5 minutes. Heart rate decreased, but there were no significant changes in arterial blood pressure. Tolazoline significantly shortened the duration of recumbency with the HD.ConclusionsThe HD provided more consistent clinical effects in alpacas than the LD. Intramuscular tolazoline shortened the duration of lateral recumbency in alpacas anesthetized with the HD combination.Clinical relevanceBoth doses of the combination were effective in providing restraint in alpacas and the duration of restraint was dose dependent. Supplemental oxygen should be available if using the HD and IM administration of tolazoline will shorten the recovery time.  相似文献   

16.
ObjectiveTo determine constant rate infusion (CRI) protocols for romifidine (R) and romifidine combined with butorphanol (RB) resulting in constant sedation and romifidine plasma concentrations.Study designBlinded randomized crossover study.AnimalsTen adult research horses.MethodsPart I: After determining normal height of head above ground (HHAG = 100%), loading doses of romifidine (80 μg kg?1) with butorphanol (RB: 18 μg kg?1) or saline (R) were given intravenously (IV). Immediately afterwards, a butorphanol (RB: 25 μg kg?1 hour?1) or saline (R) CRI was administered for 2 hours. The HHAG was used as marker of sedation depth. Sedation was maintained for 2 hours by additional romifidine (20 μg kg?1) whenever HHAG > 50%. The dose rate of romifidine (μg kg?1 hour?1) required to maintain sedation was calculated for both treatments. Part II: After loading doses, the romifidine CRIs derived from part I were administered in parallel to butorphanol (RB) or saline (R). Sedation and ataxia were evaluated periodically. Romifidine plasma concentrations were measured by HPLC-MS-MS at 0, 5, 10, 15, 30, 45, 60, 90, 105, and 120 minutes. Data were analyzed using paired t-test, Fisher's exact test, Wilcoxon signed rank test, and two-way anova for repeated measures (p < 0.05).ResultsThere was no significant difference in romifidine requirements (R: 30; RB: 29 μg kg?1 hour?1). CRI protocols leading to constant sedation were developed. Time to first additional romifidine bolus was significantly longer in RB (mean ± SD, R: 38.5 ± 13.6; RB: 50.5 ± 11.7 minutes). Constant plasma concentrations of romifidine were achieved during the second hour of CRI. Ataxia was greater when butorphanol was added.ConclusionRomifidine bolus, followed by CRI, provided constant sedation assessed by HHAG. Butorphanol was ineffective in reducing romifidine requirements in unstimulated horses, but prolonged the sedation caused by the initial romifidine bolus.Clinical relevanceBoth protocols need to be tested under clinical conditions.  相似文献   

17.
ObjectiveTo compare effects of four drug combinations on sedation, echocardiographic, haematologic and biochemical variables and recovery in cats.Study designExperimental randomized ‘blinded’ cross-over study.AnimalsSix healthy cats.Materials and MethodsTreatments were administered intramuscularly: midazolam 0.4 mg kg?1 and butorphanol 0.4 mg kg?1 (MB); midazolam 0.4 mg kg?1, butorphanol 0.4 mg kg?1 and ketamine 3 mg kg?1 (MBK); midazolam 0.4 mg kg?1, butorphanol 0.4 mg kg?1 and dexmedetomidine 5 μg kg?1 (MBD); ketamine 3 mg kg?1 and dexmedetomidine 5 μg kg?1(KD). Sedation was evaluated at time-points over 10 minutes post injection. Echocardiography, systolic arterial blood pressure (SAP) measurement and blood sampling were performed at baseline and from 10 minutes after treatment. Quality of recovery was scored. Data were analysed by anova for repeated measures. p < 0.05 was considered significant.ResultsThe lowest sedation score was obtained by MB, (median 10.5 [7; 20]), highest by KD (36.5 [32; 38]). Quality of recovery was best with KD (0.5 [0; 2]), and worst with MB (7.5 [4; 11]). Relative to baseline measurements, treatments decreased SAP by 17%, 25%, 13%, 5% in MB, MBK, MBD and KD, respectively. Heart rate decreased (p < 0.05) after MBD (44%) and KD (34%). All treatments decreased stroke volume by 24%, 21%, 24%, 36%, and cardiac output by 23%, 34%, 54%, 53% in MB, MBK, MBD and KD, respectively. Packed cell volume was decreased (p < 0.05) by 20%, 31%, 29% in MBK, MBD and KD, respectively. Plasma glucose was increased after MBD (31%) and KD (52%) and lactate concentration was decreased (p < 0.05) after MBK (58%), MBD (72%) and KD (65%).Conclusions and clinical relevanceThe MB combination did not produce sedation in healthy cats. Treatment MBK led to acceptable sedation and minimal cardiovascular changes. Both treatments with dexmedetomidine produced excellent sedation and recovery but induced more cardiovascular depression and haematologic changes.  相似文献   

18.
19.
ObjectiveTo compare the sedative effects of three doses of romifidine with one dose of medetomidine.Study designProspective blinded experimental cross-over.AnimalsFive adult Domestic Short Hair cats.MethodsCats were administered romifidine at 80, 120 and 160 μg kg?1 or medetomidine at 20 μg kg?1 (M20) intramuscularly (IM). Sedative effects were assessed for 3 hours by summing the scores given to posture, auditory response, resistance to positioning, muscular relaxation, and response to noxious stimuli, giving a total sedation score (TS). The area under the curve (AUC) of TS ≥7 (the score considered as clinically useful sedation) was calculated. Times to stages of sedation were determined. Some physiological parameters were measured. Data to compare treatments were analysed by anova or Kruskal–Wallis test as relevant.ResultsAll treatments gave a TS considered clinically useful. There were no significant differences between treatments for times to onset of sedation, maximum TS reached, or AUC. Differences between romifidine treatments for other sedation parameters were not significant but the time to maximum TS and to recovery was shortest in M20. Heart rate (HR) fell significantly with all treatments and, although with M20 it recovered at 65 minutes, it remained significantly depressed for 3 hours after all romifidine treatments. Most cats vomited, and/or hypersalivated after all treatments.ConclusionsDoses of 80, 120 and 160 μg kg?1 romifidine IM produce sedation in cats which is similar to that following medetomidine 20 μg kg?1. Recovery from sedation and of physiological parameters was quickest after M20.Clinical relevanceDoses of romifidine considerably lower than those investigated by previous authors give a clinically useful level of sedation, and their use might result in less side effects and a quicker recovery.  相似文献   

20.
ObjectiveTo assess anesthetic induction, recovery quality and cardiopulmonary variables after intramuscular (IM) injection of three drug combinations for immobilization of horses.Study designRandomized, blinded, three-way crossover prospective design.AnimalsA total of eight healthy adult horses weighing 470–575 kg.MethodsHorses were administered three treatments IM separated by ≥1 week. Combinations were tiletamine–zolazepam (1.2 mg kg−1), ketamine (1 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TKD); ketamine (3 mg kg−1) and detomidine (0.04 mg kg−1) (treatment KD); and tiletamine–zolazepam (2.4 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TD). Parametric data were analyzed using mixed model linear regression. Nonparametric data were compared using Skillings–Mack test. A p value <0.05 was considered statistically significant.ResultsAll horses in treatment TD became recumbent. In treatments KD and TKD, one horse remained standing. PaO2 15 minutes after recumbency was significantly lower in treatments TD (p < 0.0005) and TKD (p = 0.001) than in treatment KD. Times to first movement (25 ± 15 minutes) and sternal recumbency (55 ± 11 minutes) in treatment KD were faster than in treatments TD (57 ± 17 and 76 ± 19 minutes; p < 0.0005, p = 0.001) and TKD (45 ± 18 and 73 ± 31 minutes; p = 0.005, p = 0.021). There were no differences in induction quality, muscle relaxation score, number of attempts to stand or recovery quality.Conclusions and clinical relevanceIn domestic horses, IM injections of tiletamine–zolazepam–detomidine resulted in more reliable recumbency with a longer duration when compared with ketamine–detomidine and tiletamine–zolazepam–ketamine–detomidine. Recoveries were comparable among protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号