首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crop coefficients are a widely used and universally accepted method for estimating the crop evapotranspiration (ETc) component in irrigation scheduling programs. However, uncertainties of generalized basal crop coefficient (Kcb) curves can contribute to ETc estimates that are substantially different from actual ETc. Limited research with corn has shown improvements to irrigation scheduling due to better water-use estimation and more appropriate timing of irrigations when Kcb estimates derived from remotely sensed multispectral vegetation indices (VIs) were incorporated into irrigation-scheduling algorithms. The purpose of this article was to develop and evaluate a Kcb estimation model based on observations of the normalized difference vegetation index (NDVI) for a full-season cotton grown in the desert southwestern USA. The Kcb data used in developing the relationship with NDVI were derived from back-calculations of the FAO-56 dual crop coefficient procedures using field data obtained during two cotton experiments conducted during 1990 and 1991 at a site in central Arizona. The estimation model consisted of two regression relations: a linear function of Kcb versus NDVI (r2=0.97, n=68) used to estimate Kcb from early vegetative growth to effective full cover, and a multiple regression of Kcb as a function of NDVI and cumulative growing-degree-days (GDD) (r2=0.82, n=64) used to estimate Kcb after effective full cover was attained. The NDVI for cotton at effective full cover was ~0.80; this value was used to mark the point at which the model transferred from the linear to the multiple regression function. An initial evaluation of the performance of the model was made by incorporating Kcb estimates, based on NDVI measurements and the developed regression functions, within the FAO-56 dual procedures and comparing the estimated ETc with field observations from two cotton plots collected during an experiment in central Arizona in 1998. Preliminary results indicate that the ETc based on the NDVI-Kcb model provided close estimates of actual ETc.Communicated by R. Evans  相似文献   

2.
The main purpose of this paper was to evaluate whether or not the dual crop coefficient (DCC) method proposed in FAO-56 was suitable for calculating the actual daily evapotranspiration of the main crops (winter wheat and summer maize) in the North China Plain (NCP). The results were evaluated with the data measured by the large-scale weighing lysimeter at the Yucheng Comprehensive Experimental Station (YCES) of the Chinese Academy of Sciences (CAS) from 1998 to 2005 using the Nash-Sutcliffe efficiency (NSE), the root mean square error (RMSE) and the root mean square error to observations’ standard deviation ratio (RSR). The evaluation results showed that the DCC method performed effective in simulating the quantity of seasonal evapotranspiration for winter wheat but was inaccurate in calculating the peak values. The RMSE value of the winter wheat during the total growing season was less than 0.9 mm/d, the NSE and RSR values during the total growing stage were “Very Good”, but the results for summer maize were “Unsatisfactory”. The recommended basal crop coefficient values Kcbtab during the initial, mid-season and end stages for winter wheat and summer maize were modified and the variation scope of basal crop coefficient Kcb was analyzed. The Kc (compositive crop coefficient, Kc = ETc/ET0, ETc here is the observed values by lysimeter, ET0 is the reference evapotranspiration) values were estimated using observed weighing lysimeter data during the corresponding stages for winter wheat and summer maize were 0.80, 1.15, 1.25, 0.95; 0.90, 0.95, 1.25, 1.00, respectively. These can be a reference for irrigation planning.  相似文献   

3.
This study was performed to test three methods based on the FAO-56 “dual” crop coefficient approach to estimate actual evapotranspiration (AET) for winter wheat under different irrigation treatments in the semi-arid region of Tensift Al Haouz, Marrakech (center of Morocco). The three methods differ in the calculation of the basal crop coefficient (Kcb) and the fraction of soil surface covered by vegetation (fc). The first approach strictly follows the FAO-56 procedure, with Kcb given in the FAO-56 tables and fc calculated from Kcb (No-Calibration method). The second method uses local Kcb and fc values estimated from field measurements (Local-Calibration method) and the last approach uses a remotely-sensed vegetation index to estimate Kcb and fc (NDVI-Calibration method). The analysis was performed on three fields using actual (AET) measured by Eddy Correlation systems. It was shown that the Local-Calibration approach gave best results. Accurate estimates of Kcb and fc were necessary for FAO-56 “dual” crop coefficient application. The locally derived Kcb for winter wheat taken at initial, mid-season, and maturity crop growth were 0.15, 0.90 and 0.23, respectively. The Kcb value at the mid-season stage was found to be considerably less than that suggested by the FAO-56.  相似文献   

4.
An accurate estimation of crop evapotranspiration (ET c) is very useful for appropriate water management; hence, an accurate and user-friendly model is needed to support related irrigation decisions. In this view, a study was developed aimed at estimating the ET c of winter wheat–summer maize crop sequence in the North China through eddy covariance measurements, to calibrate and validate the SIMDualKc model, to estimate the basal crop coefficients (K cb) for both crops and to partition ET c into soil evaporation and crop transpiration. Two years of field experimentation of that crop sequence were used to calibrate and validate the SIMDualKc model and to derive K cb using eddy covariance measurements. Various indicators have shown the goodness of fit of the model, with estimated values very close to the observed ones and estimate errors close to 0.5 mm d?1. The initial, mid-season and end basal crop coefficients for wheat were 0.25, 1.15 and 0.30, respectively, and those for maize were 0.15, 1.15 and 0.45, thus close to those proposed in FAO56 guidelines. The soil evaporation represented near 80 % of ET c for the initial stages of winter wheat and summer maize and decreased to only 5–6 % during the mid-season period. Evaporation during the full crop season averaged 28 % for winter wheat and 40 % for summer maize. The importance of wetting frequency and crop ground coverage in controlling soil evaporation was evidenced.  相似文献   

5.
The monitoring of crop production and irrigation at a regional scale can be based on the use of ecosystem process models and remote sensing data. The former simulate the time courses of the main biophysical variables which affect crop photosynthesis and water consumption at a fine time step (hourly or daily); the latter allows to provide the spatial distribution of these variables over a region of interest at a time span from 10 days to a month. In this context, this study investigates the feasibility of using the normalised difference vegetation index (NDVI) derived from remote sensing data to provide indirect estimates of: (1) the leaf area index (LAI), which is a key-variable of many crop process models; and (2) crop coefficients, which represent the ratio of actual (AET) to reference (ET0) evapotranspiration.A first analysis is performed based on a dataset collected at field in an irrigated area of the Haouz plain (region of Marrakesh, Central Morocco) during the 2002–2003 agricultural season. The seasonal courses of NDVI, LAI, AET and ET0 have been compared, then crop coefficients have been calculated using a method that allows roughly to separate soil evaporation from plant transpiration. This allows to compute the crop basal coefficient (Kcb) restricted to the plant transpiration process. Finally, three relationships have been established. The relationships between LAI and NDVI as well as between LAI and Kcb were found both exponential, with associated errors of 30% and 15%, respectively. Because the NDVI saturates at high LAI values (>4), the use of remotely-sensed data results in poor accuracy of LAI estimates for well-developed canopies. However, this inaccuracy was not found critical for transpiration estimates since AET appears limited to ET0 for well-developed canopies. As a consequence, the relationship between NDVI and Kcb was found linear and of good accuracy (15%).Based on these relationships, maps of LAI and transpiration requirements have been derived from two Landsat7-ETM+ images acquired at the beginning and the middle of the agricultural season. These maps show the space and time variability in crop development and water requirements over a 3 km × 3 km irrigated area that surrounds the fields of study. They may give an indication on how the water should be distributed over the area of interest in order to improve the efficiency of irrigation. The availability, in the near future, of Earth Observation Systems designed to provide both high spatial resolution (10 m) and frequent revisit (day) would make it feasible to set up such approaches for the operational monitoring of crop phenology and irrigation at a regional scale.  相似文献   

6.
Consumptive water use and crop coefficients of irrigated sunflower   总被引:2,自引:1,他引:1  
In semi-arid environments, the use of irrigation is necessary for sunflower production to reach its maximum potential. The aim of this study was to quantify the consumptive water use and crop coefficients of irrigated sunflower (Helianthus annuus L.) without soil water limitations during two growing seasons. The experimental work was conducted in the lysimeter facilities located in Albacete (Central Spain). A weighing lysimeter with an overall resolution of 250 g was used to measure the daily sunflower evapotranspiration throughout the growing season under sprinkler irrigation. The lysimeter container was 2.3 m × 2.7 m × 1.7 m deep, with an approximate total weight of 14.5 Mg. Daily ET c values were calculated as the difference between lysimeter mass losses and lysimeter mass gains divided by the lysimeter area. In the lysimeter, sprinkler irrigation was applied to replace cumulative ET c, thus maintaining non-limiting soil water conditions. Seasonal lysimeter ET c was 619 mm in 2009 and 576 mm in 2011. The higher ET c value in 2009 was due to earlier planting and a longer growing season with the maximum cover coinciding with the maximum ET o period. For the two study years, maximum average K c values reached values of approximately 1.10 and 1.20, respectively, during mid-season stage and coincided with maximum ground cover values of 75 and 88 %, respectively. The dual crop coefficient approach was used to separate crop transpiration (K cb) from soil evaporation (K e). As the crop canopy expanded, K cb values increased while the K e values decreased. The seasonal evaporation component was estimated to be about 25 % of ET c. Linear relationships were found between the lysimeter K cb and the canopy ground cover (f c) for the each season, and a single relationship that related K cb to growing degree-days was established allowing extrapolation of our results to other environments.  相似文献   

7.
The methods for estimating temporal and spatial variation of crop evapotranspiration are useful tools for irrigation scheduling and regional water allocation. The purpose of this study was to develop a method for mapping spatial distribution of crop evapotranspiration and analyze the temporal and spatial variation of spring wheat evapotranspiration in the Shiyang river basin in Northwest China in the last 50 years. DEM-based methods were employed to estimate the spatial distribution of spring wheat evapotranspiration (ETc). Reference crop evapotranspiration (ET0) was calculated with the Penman–Monteith equation using meteorological data measured from eight stations in the basin. Crop coefficient (Kc) was determined from measured evapotranspiration in spring wheat season in the region. The results showed that ETc gradually increased in the upper reaches of the basin in the last 50 years, while the middle reaches showed a significant decreasing trend, and in other regions, no significant trend was found. These changes can be attributed to expansion of irrigation areas and climate change. The multiple regression analysis between ETc and altitude, latitude, and aspect were carried out for eight weather stations and the relationships were used to map ETc for the basin. The spatial variations of ETc were analyzed for three typical growing seasons based their precipitation. Results showed that long-term average ETc over cultivated land was increasing from 270 mm in southwest mountainous area to 591 mm in northeast oasis of the basin, and the relative error between the estimated ETc in spring wheat growing season by reference evapotranspiration (ET0) and crop coefficient (Kc), and the interpolated ETc was within 11.1%.  相似文献   

8.
Water consumption of table grapevines (Vitis vinifera cv. Superior Seedless) trained to a large open-canopy gable system was measured during six growing seasons (1999, 2001–2005) using 12 drainage lysimeters. The lysimeters (1.3 m3 each) were installed as part of a one-hectare vineyard in a semi-arid region in southern Israel. Water consumption of the lysimeter-grown vines (ETc) was used as the basis for the calculation of irrigation applications in the vineyard. Three irrigation treatments, 80% (high), 60% (medium) and 40% (low) of ETc of the lysimeter-grown vines, were applied in the vineyard. Reference evapotranspiration (ETo) was calculated from regional meteorological data according to the Penman–Monteith equation. Seasonal curves for the crop coefficient (K c) were calculated as K c = ETc/ETo. Maximum ETc values in different seasons ranged from 7.26 to 8.59 mm day−1 and seasonal ETc (from DOY 91 through DOY 304) ranged from 1,087 to 1,348 mm over the six growing seasons. Leaf area index (LAI) was measured monthly using the SunScan Canopy Analysis System. Maximum LAI ranged from 4.2 to 6.2 m2 m−2 for the 2002–2005 seasons. A second-order polynomial curve relating K c to LAI (R2 = 0.907, P < 0.0001) is proposed as the basis for efficient irrigation management. The effects of the irrigation treatments on canopy growth and yield are presented. The high ETc and K c values that were observed are explained by the wide canopy layout that characterize the large open-gable trellis system.  相似文献   

9.
Improved water management through precise crop water requirement determination is needed to improve the efficiency of water use in agricultural production. As a result, appropriate irrigation scheduling which can lead to water saving, improvements in the yield and income can be designed. In this study, three non-weighing lysimeters having dimensions of 2 m × 1 m × 2 m were used to determine water requirement (ETc) and crop coefficient (Kc) of onion (Bombay Red cultivar). Reference crop evapotranspiration (ETo) was determined using weather data recorded at the site. The measured ETc values were 51.3 mm, 140.5 mm, 144.8 mm, and 53.9 mm during the initial, development, mid-season and late season growth stages respectively. Crop coefficient (Kc) values, calculated as ratio of ETc to ETo, were 0.47, 0.99, and 0.46 during the initial and mid-season stages and end of late season. Furthermore, third-order polynomials were fitted well to predict the crop coefficient values as functions of growing degree-days (GDD).  相似文献   

10.
Yield response factor (K y) is an important basis for implementing efficient irrigation and optimal water allocation. Because K y varies in different sites, understanding its spatial distribution plays an important role in optimization irrigation in Haihe basin. After determining the K y and ET0 of winter wheat, an exponentially increasing function was found between the two parameters. Then, spherical and exponential semivariograms were chosen as proper theoretical models for ET0 and K y, respectively, with R 2 of more than 0.970. By comparing six interpolation methods as well as two procedures, i.e. ‘calculate first, interpolate later’ (CI) and ‘interpolate first, calculate later’ (IC), IC-RK (residual kriging) was considered as an optimal method in interpolating K y. Mapping of K y for winter wheat indicated an increasing trend from the western and northern mountainous region to the eastern plain region in the basin, with the K y of 0.783–1.668 for the dry growing season, 0.760–1.460 for the average growing season and 0.749–1.293 for the wet growing season. Moreover, the K y values were more than 1.0 over the most of this basin, indicating that yield loss was more important than evapotranspiration deficit, and there were greater effect of water stress on the yield of winter wheat.  相似文献   

11.
New cultivars of sorghum for biomass energy production are currently available. This crop has a positive energy balance being irrigation water the largest energy consumer during the growing cycle. Thence, it is important to know the biomass sorghum water requirements, in order to minimize irrigation losses, thus saving water and energy. The objective of this study was to quantify the water use and crop coefficients of irrigated biomass sorghum without soil water limitations during two growing seasons. A weighing lysimeter located in Albacete (Central Spain) was used to measure the daily biomass sorghum evapotranspiration (ETc) throughout the growing season under sprinkler irrigation. Seasonal lysimeter ETc was 721 mm in 2007 and 691 mm in 2010. The 4 % higher ETc value in 2007 was due to an 8 % higher evaporative demand in that year. Maximum average K c values of 1.17 in 2007 and 1.21 in 2010 were reached during the mid-season stage. The average K c values for the 2 years of study were K c-ini: 0.64 and K c-mid: 1.19. The seasonal evaporation component was estimated to be about 18 % of ETc. The average basal K c (K cb) values for the two study years were K cb-ini: 0.11 and K cb-mid: 1.17. The good linear relationship found between K cb values and the fraction of ground cover (f c) and the excellent agreement found between Normalized Difference Vegetation Index and different biophysical parameters, such as K cb and f c, will allow monitoring and estimating the spatially distributed water requirements of biomass sorghum at field and regional scales.  相似文献   

12.
Bahiagrass (Paspalum notatum) is a warm-season grass used primarily in pastures and along highways and other low maintenance public areas in Florida. It is also used in landscapes to some extent because of its drought tolerance. Bahiagrass can survive under a range of moisture conditions from no irrigation to very wet conditions. Its well-watered consumptive use has not been reported previously. In this study, bahiagrass crop coefficients (K c) for an irrigated pasture were determined for July 2003 through December 2006 in central Florida. The eddy correlation method was used to estimate crop evapotranspiration (ETc) rates. The standardized reference evapotranspiration (ETo) equation (ASCE-EWRI standardization of reference evapotranspiration task committee report, 2005) was applied to calculate ETo values using on site weather data. Daily K c values were estimated from the ratio of the measured ETc and the calculated ETo. The recommended K c values for bahiagrass are 0.35 for January–February, 0.55 for March, 0.80 for April, 0.90 for May, 0.75 for June, 0.70 for July–August, 0.75 for September, 0.70 for October, 0.60 for November, and 0.45 for December in central Florida. The highest K c value of 0.9 in May corresponded with maximum vapor pressure deficit conditions as well as cloud free conditions and the highest incoming solar radiation as compared to the rest of the year. During the summer (June to August), frequent precipitation events increased the cloud cover and reduced grass water use. The K c annual trend was similar to estimated K c values from another well-watered warm-season grass study in Florida.  相似文献   

13.
Intensification of olive cultivation by shifting a tree crop that was traditionally rain fed to irrigated conditions, calls for improved knowledge of tree water requirements as an input for precise irrigation scheduling. Because olive is an evergreen tree crop grown in areas of substantial rainfall, the estimation of crop evapotranspiration (ET) of orchards that vary widely in canopy cover, should be preferably partitioned into its evaporation and transpiration components. A simple, functional method to estimate olive ET using crop coefficients (K c=ET/ET0) based on a minimum of parameters is preferred for practical purposes. We developed functional relationships for calculating the crop coefficient, K c, for a given month of the year in any type of olive orchard, and thus its water requirements once the reference ET (ET0) is known. The method calculates the monthly K c as the sum of four components: tree transpiration (K p), direct evaporation of the water intercepted by the canopy (K pd), evaporation from the soil (K s1) and evaporation from the areas wetted by the emitters (K s2). The expression used to calculate K p requires knowledge of tree density and canopy volume. Other parameters needed for the calculation of the K c’s include the ET0, the fraction of the soil surface wetted by the emitters and irrigation interval. The functional equations for K p, K pd, K s1 and K s2 were fitted to mean monthly values obtained by averaging 20-year outputs of the daily time step model of Testi et al. (this issue), that was used to simulate 124 different orchard scenarios.  相似文献   

14.
Based on evaporation from a 20 cm diameter pan placed above the crop canopy, sprinkler irrigation scheduling of winter wheat was studied in the North China Plain (NCP) in the 2001–2004 winter wheat seasons. Results showed that pan evaporation (E pan,C) was closely related to actual evapotranspiration (ET) measured using weighing lysimeters. The combined pan–crop coefficient (K c,pan), the ratio of ET to E pan,C, was closely related to leaf area index (LAI ) and plant height. Data from the 2002–2003 season were used to establish the relationships between K c,pan and LAI (method A) or plant height (method B), and used to determine the crop coefficient (method C). ET computed by the three methods was compared with measured ET using lysimeters in the 2001–2002 and 2003–2004 seasons. Mean relative error of estimated daily ET by the three methods ranged from 20 to 30%, and the relative error in cumulative ET in the experimental periods ranged from 1 to 19%. Among the three methods, results from methods A and B were not significantly different from each other (P > 0.01), and were closer to the lysimeter data than results from method C (P < 0.001). Method B, being easier to measure, was recommended for ET estimation in NCP.  相似文献   

15.
A combined methodology of basal crop coefficient (Kcb) derived from vegetation indices (VI) obtained from satellite images and a daily soil water balance in the root zone of the crop was proposed to accurately estimate the daily grape crop coefficient and actual evapotranspiration. The modeled values were compared with field measurements of crop evapotranspiration (ET) using an energy balance eddy-covariance flux tower and adjusted for closure using the measured Bowen ratio. A linear relation between Kcb and VI for vineyard was obtained, Kcb = 1.44 × NDVI-0.10 and Kcb = 1.79 × SAVI-0.08. The correlation of the measured crop coefficient (Kc) and modeled (Kcrf) exhibits a linear tendency, Kc = 0.96Kcrf, r2 = 0.67. Other derived parameters such as weekly Kc and daily and weekly ET show good consistency with measurements and higher coefficients of determination. The study of the soil water balance suggests the importance of soil water storage in grapes within the La Mancha region. These results validate the use of remote sensing as a tool for the estimation of evapotranspiration of irrigated wine grapes planted on trellis systems.  相似文献   

16.
The evapotranspiration (ET c) of a table grape vineyard (Vitis vinifera, cv. Red Globe) trained to a gable trellis under netting and black plastic mulching was determined under semiarid conditions in the central Ebro River Valley during 2007 and 2008. The netting was made of high-density polyethylene (pores of 12 mm2) and was placed just above the ground canopy about 2.2 m above soil surface. Black plastic mulching was used to minimize soil evaporation. The surface renewal method was used to obtain values of sensible heat flux (H) from high-frequency temperature readings. Later, latent heat flux (LE) values were obtained by solving the energy balance equation. For the May–October period, seasonal ET c was about 843 mm in 2007 and 787 mm in 2008. The experimental weekly crop coefficients (K cexp) fluctuated between 0.64 and 1.2. These values represent crop coefficients adjusted to take into account the reduction in ET c caused by the netting and the black plastic mulching. Average K cexp values during mid- and end-season stages were 0.79 and 0.98, respectively. End-season K cexp was higher due to combination of factors related to the precipitation and low ET o conditions that are typical in this region during fall. Estimated crop coefficients using the Allen et al. (1998) approach adjusting for the effects of the netting and black plastic mulching (K cFAO) showed a good agreement with the experimental K cexp values.  相似文献   

17.
This paper describes the use of satellite-based remote sensing (RS) data and geographic information system (GIS) tools for estimating seasonal crop evapotranspiration in Mahi Right Bank Canal (MRBC) command area of Gujarat, India. Crop coefficients (Kc) for various major crops grown in MRBC were estimated, empirically, from the RS derived soil adjusted vegetation index (SAVI) values. A reference crop evapotranspiration (ET0) map was generated from point meteorological observations. The Kc and ET0 maps were combined to generate seasonal crop evapotranspiration (ETcrop) map which highlighted spatial variation in ETcrop ranging from more than 600 mm for healthy tobacco crops to less than 150 mm for very poor wheat crops.  相似文献   

18.
Estimating crop coefficients from fraction of ground cover and height   总被引:2,自引:1,他引:1  
The FAO-56 procedure for estimating the crop coefficient K c as a function of fraction of ground cover and crop height has been formalized in this study using a density coefficient K d. The density coefficient is multiplied by a basal K c representing full cover conditions, K cb full, to produce a basal crop coefficient that represents actual conditions of ET and vegetation coverage when the soil surface is dry. K cb full is estimated primarily as a function of crop height. K cb full can be adjusted for tree crops by multiplying by a reduction factor (F r) estimated using a mean leaf stomatal resistance term. The estimate for basal crop coefficient, K cb, is further modified for tree crops if some type of ground-cover exists understory or between trees. The single (mean) crop coefficient is similarly estimated and is adjusted using a K soil coefficient that represents background evaporation from wet soil. The K c estimation procedure was applied to the development periods for seven vegetable crops grown in California. The average root mean square error between estimated and measured K c was 0.13. The K c estimation procedure was also used to estimate K c during midseason periods of horticultural crops (trees and vines) reported in the literature. Values for mean leaf stomatal resistance and the F r reduction factor were derived that explain the literature K c values and that provide a consistent means to estimate K c over a broad range of fraction of ground cover.  相似文献   

19.
Camelina sativa (L.) Crantz is an oilseed crop touted as being suitable for production in the arid southwestern USA. However, because any significant development of the crop has been limited to cooler, rain-fed climate-areas, information and guidance for managing irrigated-camelina are lacking. This study measured the crop water use of a November-through-April camelina crop in Arizona using frequent measurements of soil water contents. The crop was grown under surface irrigation using five treatment levels of soil water depletion. The seed yields of treatments averaged 1,142 kg ha−1 (8.0% seed moisture) and were generally comparable with camelina yields reported in other parts of the USA. Varying total irrigation water amounts to treatments (295–330 mm) did not significantly affect yield, whereas total crop evapotranspiration (ETc) was increased for the most frequently irrigated treatment. However, total ETc for the camelina treatments (332–371 mm) was markedly less than that typically needed by grain and vegetable crops (600–655 mm), which are commonly grown during the same timeframe in Arizona. The camelina water-use data were used to develop crop coefficients based on days past planting, growing degree days, and canopy spectral reflectance. The crop coefficient curves, along with information presented on camelina soil water depletion and root zone water extraction characteristics will provide camelina growers in arid regions with practical tools for managing irrigations.  相似文献   

20.
Based on successive observation, fifteen-day evapotranspiration (ETc) of Populus euphratica Oliv forest, in the extreme arid region northwest China, was estimated by application of Bowen ratio-energy balance method (BREB) during the growing season in 2005. During the growing season in 2005, total ETc was 446.96 mm. From the beginning of growing season, the ETc increased gradually, and reached its maximum value of 6.724 mm d−1 in the last fifteen days of June. Hereafter the ETc dropped rapidly, and reached its minimum value of 1.215 mm d−1 at the end of growing season. The variation pattern of crop coefficient (Kc) was similar to that of ETc. From the beginning of growing season, the Kc value increased rapidly, and reached its maximum value of 0.623 in the last fifteen days of June. Afterward, with slowing growth of P. euphratica, the value dropped rapidly to the end of growing season. According to this study, the ETc of P. euphratica forest is affected not only by meteorological factors, but by water content in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号