首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The heat generated during wildfires often leads to increases in soil water repellency. Above a critical heating threshold, however, its destruction occurs. Although the temperature thresholds for repellency destruction are relatively well established, little is known about the specific changes in the soil organic matter that are responsible for repellency destruction. Here we report on the analysis of initially water repellent surface soil samples (Dystric Cambisol, 0–5 cm depth) by transmission Fourier Transform Infrared (FTIR) spectroscopy analysis before and after destruction of its water repellency by heating to 225 °C in order to investigate heating-induced changes in soil organic matter (SOM) composition. Although assignment of absorption bands is made difficult by overlapping of some bands, it was possible to distinguish bands relevant for hydrophobicity of SOM in the soil before heat treatment. The most significant decrease in absorbance following water repellency destruction took place in the frequency area corresponding to stretching vibrations of aliphatic structures within SOM. The results suggest that besides a general decrease of SOM content during heating, the loss of soil water repellence is primarily caused by the selective degradation of aliphatic structures.  相似文献   

2.
Irrigation with saline–sodic water causes sodic conditions in the soil which reduces soil productivity. We evaluated the changes in a number of important indices related to soil structural stability when treated wastewater (TWW), albeit with higher loads of organic matter and suspended solids, was used instead of more saline–sodic irrigation water, under different degrees of aggregate slaking. We studied soil saturated hydraulic conductivity (HC) using disturbed samples packed in columns, and soil infiltration rate, runoff and erosion under simulated rainfall. Aggregate slaking was manipulated by wetting the samples prior to all tests at either a slow (1–2 mm h− 1) or a fast (50 mm h− 1) rate. Samples of a calcareous silty clay (Typic Calciorthids) from the Bet She'an Valley, Israel, were taken from plots irrigated for three years with either TWW, saline–sodic Jordan River water (JRW), or moderately saline–sodic spring water (SPW), and also from a non-cultivated area (control). With little or no aggregate slaking (use of slow wetting), higher HC values and lower amounts of total runoff and soil loss were measured compared to when more severe aggregate slaking was induced (use of fast wetting). The HC values for the TWW treatment were similar to, or lower than, those for the control and significantly higher than those for the JRW treatment. For the runoff and soil loss data, differences among the water quality treatments were, generally, more pronounced when aggregate slaking was substantially reduced, and were related to soil sodicity. Under the latter condition, runoff and soil loss from the TWW treatment were comparable with those from the control and significantly lower than those from the JRW treatment. Our results suggested that replacing saline–sodic irrigation water with TWW could have favorable effects on soil structural stability, especially under conditions where aggregate slaking can be reduced (e.g., in regions with low to moderate rain intensities; and/or use of low intensity irrigation systems).  相似文献   

3.
再生水灌溉对土壤斥水性的影响   总被引:8,自引:4,他引:4  
深入探求再生水灌溉条件下不同土壤中水分和溶质的分布及斥水性变化规律,能为再生水灌溉条件下土壤斥水性产生原因及其影响因素的研究提供一定的参考。选用砂土、砂姜黑土、塿土和盐碱土进行土柱再生水灌溉试验,取样测定不同灌水量条件下剖面土壤的潜在斥水性、含水率、Cl-、有机质(organicmatter,OM)含量及电导率(electrical conductivity,EC)等。结果表明:再生水灌溉后,塿土及盐碱土分别出现0~2,1~3级斥水性,砂土及砂姜黑土为0级斥水性,4种土表层表现出较强的斥水性。土壤斥水性随再生水灌水量和灌溉时间的增加而显著增强,并且灌水量越大,斥水性差异性越显著。4种土有机质含量OM与土壤斥水持续时间变化值TR呈正相关关系,Cl-含量、EC值与土壤斥水持续时间变化值TR呈负相关关系。相比较其他3种土而言,砂土更适合再生水灌溉。  相似文献   

4.
土壤初始含水率对优先流的影响   总被引:1,自引:0,他引:1  
土壤中优先流的存在会造成肥料利用率降低以及土壤深层甚至地下水污染.为确定土壤初始含水率对优先流的影响,通过室内含大孔隙土柱定水头入渗实验,以长武黑垆土及渭河砂土为研究对象,分析不同土壤初始含水率对优先流的影响.结果表明:1)相同质地,当土壤初始含水率大于其斥水性的峰值含水率时,湿润锋运移深度随着土壤初始含水率的增大而增大,反之湿润锋运移深度随着初始含水率的增加而减少,不同质地土壤湿润锋运移速度随土壤粉粒质量分数升高而减慢;2)累积入渗量受到土壤储水性及斥水性的双重影响,导致与湿润锋的运移趋势并不一致,黑垆土对照CK组及优先流O-C-30组(除7.04%含水率外)累积入渗量随着土壤初始含水率的增大而减小,渭河砂土CK组及O-C-30组均呈现2阶段特征,累积入渗量先随着土壤初始含水率的增加而减少,之后随土壤初始含水率的增加而增加;3)Kostiakov入渗模型能很好地拟合累积入渗量随时间的变化过程,适用于存在优先流的土壤入渗模拟.该研究结果对土壤优先流水分模拟具有一定的指导意义.  相似文献   

5.
The shortage of fresh water (FW) in Israel and other semiarid regions has forced farmers to significantly expand the use of treated wastewater (TWW). Recently, farmers utilizing reclaimed wastewater (TWW) reported a unique type of water distribution regime in drip-irrigated soils, as follows: (i) limited wetted area on the soil surface; and (ii) small saturated areas around and below the dripper, in TWW irrigated soil as opposed to an even, onion-like wet profile, formed under fresh water (FW) irrigation. Following this observation in the field and after conducting preliminary tests in the laboratory, we hypothesized that TWW irrigation introduces water-repellent organic constituents into the soil. Tests characterizing the water distribution showed the diameter of the saturated area on the soil surface and its water content (at a depth of 0–10 cm) was smaller with TWW than with FW irrigation. The TWW accumulated on the soil surface in small lenses and then flowed rapidly into the ground. The repellency of soils irrigated with FW and TWW was measured with the water drop penetration time test. Soils irrigated with FW were hydrophilic, whereas those irrigated with TWW exhibited hydrophobicity. Fourier transform infra-red spectroscopy (FTIR) and 13C-NMR analyses of organic components extracted from the soils with organic solvents indicated differences in composition only at a depth of 0–2 cm. Extracting soils with a methanol + chloroform (1:1, by volume) mixture was found to be very effective in the removal and extraction of hydrophobic aliphatic components from soils irrigated with TWW.  相似文献   

6.
The organic matter (OM) in biopore walls and aggregate coatings may be important for sorption of reactive solutes and water as well as for solute mass exchange between the soil matrix and the preferential flow (PF) domains in structured soil. Structural surfaces are coated by illuvial clay‐organic material and by OM of different origin, e.g., earthworm casts and root residues. The objectives were to verify the effect of OM on wettability and infiltration of intact structural surfaces in clay‐illuvial horizons (Bt) of Luvisols and to investigate the relevance of the mm‐scale distribution of OM composition on the water and solute transfer. Intact aggregate surfaces and biopore walls were prepared from Bt horizons of Luvisols developed from Loess and glacial till. The mm‐scale spatial distribution of OM composition was scanned using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The ratio between alkyl and carboxyl functional groups in OM was used as potential wettability index (PWI) of the OM. The infiltration dynamics of water and ethanol droplets were determined measuring contact angles (CA) and water drop penetration times (WDPT). At intact surfaces of earthworm burrows and coated cracks of the Loess‐Bt, the potential wettability of the OM was significantly reduced compared to the uncoated matrix. These data corresponded to increased WDPT, indicating a mm‐scaled sub‐critical water repellency. The relation was highly linear for earthworm burrows and crack coatings from the Loess‐Bt with WDPT > 2.5 s. Other surfaces of the Loess‐Bt and most surfaces of the till‐derived Bt were not found to be repellent. At these surfaces, no relations between the potential wettability of the OM and the actual wettability of the surface were found. The results suggest that water absorption at intact surface structures, i.e., mass exchange between PF paths and soil matrix, can be locally affected by a mm‐scale OM distribution if OM is of increased content and is enriched in alkyl functional groups. For such surfaces, the relation between potential and actual wettability provides the possibility to evaluate the mm‐scale spatial distribution of wettability and sorption and mass exchange from DRIFT spectroscopic scanning.  相似文献   

7.
The fate of organic matter (OM) in large-scale infiltration basins used for wastewater treatment by the soil aquifer treatment (SAT) system was investigated. Measured changes in the organic matter concentrations in the soil profiles of the infiltration basins and detailed long-term records of OM concentrations in the recharged effluent and in the observation wells and recovery wells water, were used to calculate OM material balances in the SHAFDAN wastewater treatment plant, serving the City of Tel-Aviv, Israel, since 1977. The average annual total organic matter (TOM) load delivered by the effluents to the soil was ~ 5 kg m− 2 y− 1. Soil OM concentrations increased from 0.11% in the pristine soil to ~ 0.8% and ~ 0.6%, in the 0-0.15 m and 0.15-0.30 m soil layers, respectively, after ~ 20 y of effluent recharge, but did not change significantly in the 1.80-2.10 m deep layer. The OM accumulation rates in the top two soil layers were fast initially, then declined slowly and the OM concentrations approached a steady state following 10-15 y of effluent recharge. This suggests that stabilization of the ‘active biofilm’ layer in the infiltration basins' soils is a relatively slow process. Material-balance calculations showed, that accumulated OM in the top 0-2.1 m soil layer amounted to only ~ 4% of the TOM added by the effluents during ~ 20 y of recharge. Along the flow pathway of the effluent through the vertical 50-100 m thick soil-sediment column, DOC concentrations decreased by 70-90% (from ~ 18.9 mg L− 1 to ~ 3.7 mg L− 1). Continued flow in the aquifer from the observation wells to the recovery wells further decreased DOC concentrations by about 50% (from ~ 3.7 to ~ 1.5 mg L− 1).  相似文献   

8.
四种入渗模型对斥水土壤入渗规律的适用性   总被引:10,自引:6,他引:4  
土壤斥水性影响入渗,进而影响作物产量。国外学者进行了一定的研究,但在中国研究的还很少。该文基于实测资料探讨几种常规的入渗模型在斥水土壤中的适用性。采用室内土柱进行积水入渗试验,对比了不同积水高度和斥水度条件下的土壤入渗规律,并采用4种模型分析了土壤入渗率变化特征。结果表明,累积入渗量随入渗历时的变化可用幂函数描述,不斥水土壤累积入渗量明显大于斥水土壤;累积入渗量与湿润锋推进距离呈良好的线性关系;利用Green-Ampt模型、Philip模型、Kostiakov公式和指数公式对入渗率与入渗历时间的关系进行拟合,其中Kostiakov公式更接近于实测值,其他模型拟合效果因斥水程度等因素的不同而异。  相似文献   

9.
Increasing temperatures and variability of precipitation events due to climate change will lead in the future to higher irrigation demands in agroecosystems.However,the use of secondary treated wasterwater(TWW)could have consequences for the receiving soil environment and its resident microbial communities.The objective of this study was to characterize the importance of soil properties and habitats to the response of soil bacteria and archaea to irrigation with TWW.Two agricultural soils with contrasting textures(loamy sand or silt loam)and,for each,three variants differing in soil organic carbon and nitrogen,as generated by long-term fertilization,were analyzed.For each of these six soils,prokaryotic communities from two habitats,i.e.,root-free bulk soil and the rhizosphere of developing cucumber plants in the greenhouse,were characterized.Communities were analyzed by the quantity and diversity of their polymerase chain reaction(PCR)-amplified 16S rRNA genes.To account for TWW-associated nutrient effects,potable water(PW)served as a control.Amplicon sequence analysis showed that prokaryotic communities mainly consisted of bacteria(99.8%).Upon irrigation,regardless of the water quality,prokaryotic diversity declined,p H increased,and no bacterial growth was detected in bulk soil.In contrast,the growth of cucumbers was stimulated by TWW,indicating that plants were the main beneficiaries.Moreover,strong responses were seen in the rhizosphere,suggesting an indirect effect of TWW by altered rhizodepositions.The main bacterial responders to TWW were Proteobacteria,Bacteroidetes,Actinobacteria,and Planctomycetes.Changes in bacterial communities due to TWW were less pronounced in all variants of the silt loam,indicating the importance of clay and soil organic carbon for buffering effects of TWW on soil bacterial communities.Hence,soil organic carbon and soil texture are important parameters that need to be considered when applying TWW in agriculture.  相似文献   

10.
Water repellency can reduce the infiltration capacity of soils over timescales similar to those of precipitation events. Compaction can also reduce infiltration capacity by decreasing soil hydraulic conductivity, but the effect of compaction on soil water repellency is unknown. This study explores the effect of compaction on the wettability of water repellent soil. Three air‐dry (water content ~4 g 100 g?1) silt loam samples of contrasting wettability (non‐repellent, strongly and severely water repellent) were homogenized and subjected to various pressures in the range 0–1570 kPa in an odeometer for 24 h. Following removal, sample surface water repellency was reassessed using the water drop penetration time method and surface roughness using white light interferometry. An increase in compaction pressure caused a significant reduction in soil surface water repellency, which in turn increases the soil's initial infiltration capacity. The difference in surface roughness of soils compacted at the lowest and highest pressures was significant (at P > 0.2) suggesting an increase in the contact area between sessile water drops and soil surfaces was providing increased opportunities for surface wetting mechanisms to proceed. This suggests that compaction of a water repellent soil may lead to an increased rate of surface wetting, which is a precursor to successful infiltration of water into bulk soil. Although there may be a reduction in soil conductivity upon compaction, the more rapid initiation of infiltration may, in some circumstances, lead to an overall increase in the proportion of rain or irrigation water infiltrating water repellent soil, rather than contributing to surface run‐off or evaporation.  相似文献   

11.
Considerable soil water repellency has been observed at a wide range of locations worldwide. The soil exhibiting water repellency is found within the upper part of the soil profile. The reduced rate of water infiltration into these soils leads to severe runoff erosion, and reduction of plant growth. Soil water repellency is promoted by drying of soil, and can be induced by fire or intense heating of soil containing hydrophobic organic matter. Recent studies outside soil science have shown how enhancement of the natural water repellency of materials, both porous and granular, by surface texture (i.e. surface roughness, pattern and morphology) into super‐hydrophobicity is possible. The similarities between these super‐hydrophobic materials and observed properties of water‐repellent soil are discussed from a non‐soil scientist, materials‐based perspective. A simple model is developed for a hydrophobic granular surface and it is shown that this can provide a mechanism for enhancement of soil water repellency through the relative size and spacing of grains and pores. The model provides a possible explanation for why soil water repellency should be more prevalent under dry conditions than wet. Consequences for water runoff, raindrop splash and soil erosion are discussed.  相似文献   

12.
Addition of organic matter (OM) to flooded soils stimulates reductive dissolution of Fe(III) minerals, thereby mobilizing associated phosphate (P). Hence, OM management has the potential to overcome P deficiency. This study assessed if OM applications increases soil or mineral fertilizer P availability to rice under anaerobic (flooded) condition and if that effect is different relative to that in aerobic (nonflooded) soils. Rice was grown in P‐deficient soil treated with combinations of addition of mineral P (0, 26 mg P/kg), OM (0, ~9 g OM/kg as rice straw + cattle manure) and water treatments (flooded vs nonflooded) in a factorial pot experiment. The OM was either freshly added just before flooding or incubated moist in soil for 6 months prior to flooding; blanket N and K was added in all treatments. Fresh addition of OM promoted reductive dissolution of Fe(III) minerals in flooded soils, whereas no such effect was found when OM had been incubated for 6 months before flooding. Yield and shoot P uptake largely increased with mineral P addition in all soils, whereas OM addition increased yield and P uptake only in flooded soils following fresh OM addition. The combination of mineral P and OM gave the largest yield and P uptake. Addition of OM just prior to soil flooding increased P uptake but was insufficient to overcome P deficiency in the absence of mineral P. Larger applications of OM are unlikely to be more successful in flooded soils due to side effects, such as Fe toxicity.  相似文献   

13.
Soil water repellency affects the hydrological functions of soil systems. Water repellency is associated with the content and the composition of soil organic matter. In the present study, we examined the effects of hydrophobic and hydrophilic organic matter contents, the hydrophobic/hydrophilic organic matter ratio and the total organic matter content on water repellency using model sandy soils. Stearic acid and guar gum were used as the hydrophobic and hydrophilic organic compounds, respectively. Water repellency was estimated using the sessile drop method. Hydrophobic organic matter content was found to be the dominant factor affecting soil water repellency. Hydrophilic organic matter was found to increase the contact angle to some extent without the presence of hydrophobic organic matter. With the presence of both hydrophobic and hydrophilic organic matter, the effects of the hydrophilic organic matter content on contact angle were found to be dependent on the hydrophobic organic matter content of the soil. This relationship was explained by the differences in the surface free energies of different organic matter and mineral surfaces. The contact angle increased with increasing hydrophobic/hydrophilic organic matter ratio when the hydrophilic organic matter content was constant. When the hydrophobic organic matter content was constant, contact angles were roughly comparable, irrespective of the hydrophobic/hydrophilic organic matter ratio. The contact angles were not comparable at each total organic matter content. Accordingly, the hydrophobic/hydrophilic organic matter ratio and the total organic matter content in soil may not provide satisfactory information about soil water repellency.  相似文献   

14.
Most climate change scenarios predict that the variability of weather conditions will increase in coming decades. Hence, the frequency and intensity of freeze-thaw cycles in high-latitude regions are likely to increase, with concomitant effect on soil carbon biogeochemistry and associated microbial processes. To address this issue we sampled riparian soil from a Swedish boreal forest and applied treatments with variations in four factors related to soil freezing (temperature, treatment duration, soil water content and frequency of freeze-thaw cycles), at three levels in a laboratory experiment, using a Central Composite Face-centred (CCF) experimental design. We then measured bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth, basal respiration, soil microbial phospholipid fatty acid (PLFA) composition, and concentration of dissolved organic carbon (DOC). Fungal growth was higher in soil exposed to freeze-thawing perturbations and freezing temperatures of −6 °C and −12 °C, than under more constant conditions (steady 0 °C). The opposite pattern was found for bacteria, resulting in an increasing fungal-to-bacterial growth ratio following more intensive winter conditions. Soil respiration increased with water content, decreased with treatment duration and appeared to mainly be driven by treatment-induced changes in the DOC concentration. There was a clear shift in the PLFA composition at 0 °C, compared with the two lower temperatures, with PLFA markers associated with fungi as well as a number of unsaturated PLFAs being relatively more common at 0 °C. Shifts in the PLFA pattern were consistent with those expected for phenotypic plasticity of the cell membrane to low temperatures. There were small declines in PLFA concentrations after freeze-thawing and with longer durations. However, the number of freeze-thaw events had no effect on the microbiological variables. The findings suggest that the higher frequency of freeze-thaw events predicted to follow the global warming will likely have a limited impact on soil microorganisms.  相似文献   

15.
Appropriate management of sewage sludge is an important worldwide issue due to the still growing amount of wastewaters. In the study we examined to what extent the addition of dairy sewage sludge compared with mineral fertilization affects porosity, repellency index, and hydraulic conductivity of variously sized aggregates from two soil depths of Eutric Cambisol derived from loess: 5–15 cm and 25–35 cm. The repellency index was calculated as a ratio of ethanol and water sorptivity. Data on water and ethanol sorptivities of initially air‐dry soil aggregate fractions were obtained from steady state flow measurements using an infiltration device. Hydraulic conductivity was determined by measuring water infiltration at five pressure heads: –8, –6, –4, –2, and 0 cm of water column with the same device as for sorptivity determination. Addition of sewage sludge to the soil decreased the soil repellency index by an average of 27% in topsoil and 32% in subsoil for both aggregate sizes, respectively, and increased hydraulic conductivity about four times in both layers. Smaller aggregates (15–20 mm diameter) from soil amended with sewage sludge, in comparison with larger ones (30–35 mm diameter), had a higher repellency index by 36 and 24% in topsoil and subsoil, respectively. As for aggregates from soil with mineral fertilization, those differences were smaller and equal to 15% in subsoil, in topsoil smaller aggregates even had slightly lower repellency index (by 5%). Aggregates taken from the upper soil layer were more water repellent and had smaller hydraulic conductivity than those taken from subsoil, regardless of soil treatment and aggregate size.  相似文献   

16.
It is established that soil hydrophobicity reduces soil infiltration rates, and enhances runoff flow and soil erosion. Water repellency has been studied with special interest in coniferous and eucalyptus forests, particularly after burning, but the number of studies concerning Mediterranean heathlands is still very low. In this paper, we study the occurrence and persistence of water repellency in soil samples collected under different plant species susceptible to induce soil hydrophobicity (Erica arborea, Erica australis, Calluna vulgaris, Quercus lusitanica and Rhododendron ponticum) in a natural protected area in southern Spain. Great attention has been paid to the relationships between soil water repellency and environmental factors as organic matter content and soil acidity. The largest hydrophobicity was measured in soil samples collected under E. australis, E. arborea and C. vulgaris. For these species, the organic matter content and pH showed positive and negative correlations with the persistence of water repellency, respectively. The hydrophobicity originated by humic substances in the soil seems to be the only explanation for slight soil water repellency under Q. lusitanica or R. ponticum. The patchy patterns of occurrence and persistence of soil water repellency is governed by the spatial distribution of the studied species and modulated by other factors. Soil surface water repellent layers reduce the infiltration rates and limit the water storage capacity. However, the macropore flow can be enhanced on non-repellent layers, cracks or roots such us the wetting's front shown. The vegetation effects on soil hydrology should be considered for afforestation works and flooding control.  相似文献   

17.
土壤有机质含量是反映土壤肥力的重要特征,利用高光谱技术对耕层土壤有机质(OM)含量进行定量化反演可为土壤信息化管理和精准施肥提供重要的依据。本文利用ASD FR 2500高光谱仪在室内条件下测定了风干土壤样品的可见近红外光谱,分析了东北平原不同土壤类型土壤光谱反射率曲线形状变化及土壤有机质含量的光谱反演模型,结果表明,根据土壤光谱反射率曲线变化特点可以初步将东北平原的几种土壤类型划分为三类,其主要区别在于460~1350nm范围内曲线斜率变化的差异。通过相关分析进一步确定了土壤有机质敏感波段为650~750nm,建立了不同土壤类型的有机质含量回归预测模型,并且对不同模型的回归系数和截距进行了方差同质性检验。结果显示,黑土和黑钙土、黑土和暗棕壤的模型没有显著差异,即可以分别构建同质性模型来简化有机质的预测,但是预测精度有所降低。  相似文献   

18.

Purpose

With the increase of surfactant usages, more and more concerns were paid on their effects on the physicochemical characteristics of soils. Up to now, only few researches have examined the effects of ionic surfactants on the stability of soil structure and soil water repellency.

Materials and methods

Cetyltrimethyl ammonium bromide (CTAB) as cationic surfactant and sodium dodecyl sulfate (SDS) as anionic surfactant were adopted to investigate their effects on the aggregate stability and water repellency of a silt loam soil which was sampled in Corn High-Tech Park, Huang-Huai-Hai region, China. (1) Aggregate stability: 50 g soil was mixture with 100 mL surfactant solution in a beaker. The concentrations of surfactant solutions were 0 (the blank), 200, 400, 600, 800, 1000, and 2000 mg L?1, respectively. After 30 min, the soil was sieved and divided into four fraction aggregates. (2) Soil water repellency: the concentrations of surfactant solutions were the same as experiment 1. Forty grams of soil was blended with 80 mL surfactant solution in an aluminum specimen. Drying the water by oven of 40 °C firstly and then by air, the whole period was about 1 week. After that, soil water infiltration and sorptivity were measured.

Results and discussion

Compared to the blank, surfactants increased the amounts of 2–0.25 and <0.053 mm aggregates of the soil and decreased the amounts of 0.25–0.053 mm aggregates of the soil. Surfactants also increased the mean weight diameter (MWD) of the soil. Except the 200 mg L?1 treatment, CTAB promoted the soil water infiltration. All SDS treatments impeded the soil water infiltration. The soil repellency factor (R) value of the blank was 1.22, lower than the critical value of 1.95, which implied that the soil of blank treatment was free of soil water repellency. For CTAB, only 200 and 400 mg L?1 treatment’s R were higher than 1.95 while for SDS, all the treatment’s R were higher than 1.95.

Conclusions

Surfactants improved the stability of soil aggregates. Soil treated with CTAB did not show the repellency, whereas SDS treatment resulted in intense water repellency compared with the wettable blank soil. Findings of this study can be used to explain the role of ionic surfactants on soil structure stability as well as on the development of water repellency in lower soil depths.
  相似文献   

19.
Recent research shows that most soils are more or less water repellent. Already subcritical water repellency may cause incomplete soil wetting and preferential flow. Both processes potentially reduce the residence time of water and solutes in the vadose zone, resulting in an enhanced risk of groundwater contamination. The objective of the present paper is, therefore, to evaluate the impact of reduced soil wettability on the soil water infiltration rate and to investigate the tendency towards preferential flow with the analysis of the immobile water content in the infiltration zone. In november 2002, a field experiment was done in a coniferous forest, 30 km N of Hannover, Germany. Soil hydrophobicity was quantified by measuring the contact angles. The hydraulic conductivity of the podsolic sandy soil was measured depth‐dependent with a double‐ring tension infiltrometer in three soil horizons. To quantify possible preferential‐flow effects, a LiBr‐Tracer was added to the infiltrating water to evaluate the mobile water‐content fraction after infiltration. Additionally, infiltration rates of water were compared with infiltration rates of ethanol which were determined after water infiltration at the same locations. Results show that the actual water repellency of field‐moist soil was mainly subcritical (contact angle <90°). Water infiltration rates were reduced due to subcritical repellency by a factor of 3–170 compared with ethanol infiltration rates (exclusion of wetting effects). This spatially variable infiltration behavior was not clearly reflected neither by the small‐scale contact‐angle measurements nor by the analysis of the average immobile soil water content in the infiltration zone. We conclude that this specific infiltration behavior of water caused by small‐scale wettability effects may temporarily reduce the local connectivity of water‐flow pathways.  相似文献   

20.
应用近红外光谱法测定土壤的有机质和pH值   总被引:11,自引:4,他引:7  
为了满足精细农业对土壤快速实时测试的需要,对未经过粉碎、过筛等处理的土壤,采集了4000~12500 cm-1范同的近红外光谱.研究了土壤的光谱特性,并采用偏最小二乘回归分析方法建立了一阶微分光谱的光谱吸光度与有机质含量和pH值之间的定量分析模型.试验分析表明:有机质的预测相关系数为0.818,预测标准偏差SEP为0.069,预测均方根误差为RMSEP为0.085;pH值的预测相关系数为0.834,SEP为0.095,RMSEP为0.114.表明采用近红外光谱仪经一阶微分处理可以很好地预测经过简单处理的上样中的有机质含量和pH值,该结论为今后田间快速土壤特性光谱测量奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号