首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of zinc-oxide nanoparticles on physical and mechanical properties, as well as biological resistance of untreated and heat-treated beech wood were investigated in this study. Test specimens were prepared from sapwood and impregnated with a 5,000-ppm nano-zinc-oxide (NZ) suspension with a size ranging from 10 to 80 nm at 2.5 bars of pressure and using the Rueping process for 20 min. Control (C) and nano-zinc-oxide-impregnated specimens after (NZA) and before (NZB) heat treatment were divided into four subgroups of unheated (C and CNZ), heated at 50, 145 and 185 °C. Heat treatment resulted in a significant decrease in mechanical strength at temperatures of 145 and 185 °C. Heat-treated specimens showed less dimensional instability and fungal degradation. Impregnation with nano-zinc resulted in a slight and significant increase in weight loss and biological resistance against Trametes versicolor. The results showed that the impregnation significantly decreased the water absorption of the specimens. Impregnation before heat treatment showed considerable effect on the properties of wood compared to that of untreated ones.  相似文献   

2.
Wood modification, of which thermal modification is one of the best-known methods, offers possible improvement in wood properties without imposing undue strain on the environment. This study investigates improvement of the properties of heat-treated solid wood. Scots pine (Pinus sylvestris) was modified in two stages: impregnation with modifiers followed by heat treatment at different temperatures. The impregnation was done with water glass, melamine, silicone, and tall oil. The heat treatment was performed at the temperatures of 180°C and 212°C for three hours. The modified samples were analyzed using performance indicators and scanning electron microscope micrographs. The mechanical and physical properties were determined with water absorption, swelling, bending strength, and impact strength tests. All the modifiers penetrated better into sapwood than hardwood; however, there were significant differences in the impregnation behavior of the modifiers. As regards the effect of heat treatment, generally the moisture properties were improved and mechanical strengths impaired with increasing treatment temperature. In contrast to previous studies, the bending strength increased after melamine impregnation and mild heat treatment. It is concluded that the properties of impregnated wood can be enhanced by moderate heat treatment.  相似文献   

3.
We examined the effect of thermal treatment at two temperatures (60 s of 90°C dry heat and 60 min in 40°C hot water) versus control conditions on the germination of oriental spruce (Picea orientalis (L.) Link.) seeds originating from different subalpine provenances. Cutting test results showed that there was wide variation (between 10% and 90%) in filled seed rates. The results revealed that highest germination yield was attained via the hot water treatment. The maximum germination percentages were observed in seeds from “tree 3” in the first tree collective of provenances 1 (85.33 ± 5.77 control; 88.67 ± 7.02 via the hot water treatment; 82.00 ± 10.58 via the dry heat treatment) and 3 (70.67 ± 17.24 control; 88.00 ± 4.00 via the hot water treatment; 86.67 ± 11.37 via the dry heat treatment). The mean germination percentages were significantly different (p-value < .05): percentage values were 32.57% in provenance 1, 23.22% in provenance 3, 12.25% in provenance 4, and 2.82% in provenance 2. Mean germination time of seeds from different provenances and experiencing various pretreatments showed significant variation. The best pretreatment increase in germination rates was achieved via the wet heat method (60 min in 40°C hot water).  相似文献   

4.
The present study is aimed at investigating the effect of heat treatment of nano-silver-impregnated Populus nigra on weight loss, modulus of rupture (MOR), modulus of elasticity (MOE), and compression parallel to grain. Specimens were impregnated with 200 PPM water-based solution of nano-silver particles at 2.5 bar in a pressure vessel. For heat treatment, both nano-silver-impregnated and simple specimens were kept for 24 h at 45°C and then further for 24 h at 145°C and finally for 4 h at 185°C. MOR decreased from 529 to 461 kg/cm2 in heat-treated specimens; MOE and compression parallel to grain were though improved. Also, comparison between heat-treated and nano-silver-impregnated heat-treated specimens showed that there was a decrease in MOR and MOE in nano-silver-impregnated heat-treated specimens. This shows that nano-silver impregnation facilitates transfer of heat in wood and it may increase the process of degradation and pyrolysis of wood structures in deeper parts of specimens.  相似文献   

5.
Based on the strong correlation between acidity and thermal degradation in wood reported in previous studies, the effect of borate impregnation as an alkali-buffering medium was investigated on the strength properties of thermally modified wood. Wood samples were impregnated with 0.1 M Sodium borate solution (pH=9) before they were subjected to heat treatment at temperatures of 180°C and 200°C for durations of 2 and 4 h. The borate impregnation results in some reductions in the severity of strength loss during heat treatment and this is invariably due to buffering effect of the alkali on the acidity of wood, which could have mitigated the degree of degradation. The positive effects of borate impregnation as a pretreatment on the strength properties of heat-treated wood depend on the degree of heat treatment. Hence, the use of borate impregnation as a pretreatment method for heat treatment is recommended only where a relatively mild heat treatment is involved.  相似文献   

6.
Low-density hybrid poplar wood (Populus deltoides?×?Populus trichocarpa) was densified by mechanical compression under saturated steam, superheated steam, and transient conditions at temperature levels of 150, 160, and 170°C. Furthermore, compression of wood under saturated steam conditions at 170°C, followed by post-heat-treatment at 200°C for 1, 2, and 3?min, was performed. To determine the influence of compression treatment on the set recovery, specimens were subjected to five cycles of water soaking and drying. Modulus of rupture (MOR) and modulus of elasticity (MOE) of specimens compressed under saturated steam conditions at 170°C and post-heat-treated at 200°C were determined in the dry condition and after five soak/dry cycles. Higher temperature of the compression treatment resulted in lower equilibrium moisture content, while the steam conditions during the treatment and the post-heat-treatment did not have significant effect. Furthermore, the highest degree of densification was obtained in specimens compressed under saturated steam conditions at 170°C and post-heat-treated at 200°C. The steam condition and temperature influenced the set recovery of compressive deformation. Reduced hygroscopicity does not necessarily imply reduced set recovery. The results established that considerable fixation of compressive deformation can be obtained by compressing the wood in a saturated steam environment and by post-heat-treatment at 200°C. The short heat-treatment had no influence on MOR or MOE, but soaking/drying treatments caused a decrease in the MOR and MOE.  相似文献   

7.
Hybrid poplar (Populus deltoides × Populus trichocarpa) and Douglas-fir (Pseudotsuga menziesii) wood specimens were densified with three variations of thermo-hydro-mechanical (THM) treatment. The THM treatments differed in the steam environment, including transient steam (TS), saturated steam (SS), and saturated steam with 1-min post–heat treatment at 200 °C (SS+PHT). The bending properties, FTIR spectra, and colour of the THM wood specimens were studied before and after exposure to two different wood decay fungi, brown rot Gloeophyllum trabeum, and white rot Trametes versicolor. The results showed that the performance of densified hybrid poplar wood was considerably poorer than the performance of Douglas-fir heartwood. The FTIR spectra measurements did not show changes in the densified hybrid poplar wood, while some changes were evident in densified Douglas-fir specimens. After fungal degradation, the most prominent changes were observed on the SS+PHT specimens. Colour is one of the most important parameter predominantly influenced by the wood species and the intensity of the densification process for both wood species, while after fungal exposure, the colour of all densified Douglas-fir specimens obtained more or less the same appearance, and densified hybrid poplar specimens resulted in lighter colour tones, indicating that the pattern of degradation of the densified and non-densified specimens are similar. The 3-point bending test results determined that the THM treatment significantly increased the modulus of rupture (MOR) and modulus of elasticity (MOE) of the densified wood specimens, while fungal exposure decreased the MOE and MOR in hybrid poplar and Douglas-fir specimens.  相似文献   

8.

Context

Black poplar (Populus nigra L.) is an alluvial forest tree species whose genetic pool is decreasing in Europe. Poplar trees produce short-lived seeds that do not store well.

Aim

The feasibility of seed storage in conventional and cryogenic conditions after their desiccation from water content (WC) of 0.15 to 0.07 g H2O g?1 dry mass (g g?1) was investigated.

Methods

Seed germinability was evaluated (seeds with a radicle and green cotyledons were counted) after storage of seeds for a period of 3 to 24 months at different temperatures: 20°, 10°, 3°, ?3°, ?10°, ?20° or ?196°C.

Results

Seeds desiccated to a 0.07 g g?1 WC can be stored successfully at ?10 °C and ?20 °C for at least 2 years. A significant decrease in germination was observed only after 12 months of seed storage (WC 0.15 g g?1) at temperatures above 0 °C. We demonstrated that both fresh (0.15 g g?1 WC) and desiccated (0.07 g g?1 WC) seeds can be preserved at ?196 °C for at least 2 years.

Conclusions

Seed storage temperature and time of storage were statistically significant factors affecting seed storability. The presented data provide a foundation for the successful gene banking of P. nigra seeds.  相似文献   

9.
The kinetics of heat treatment as well as its effect on some physical and mechanical properties of poplar wood (Populus alba L.) were analysed in this research. Kinetic tests were performed at different treatment temperatures and two different air ventilation settings [low and high air exchange rate (AER) with the exterior]. The treatment kinetics was studied, starting from the oven-dry condition, according to the mass loss during time. The time–temperature equivalency was checked, the mass loss versus time formalised through a master curve. The analysis clearly showed how the heat treatment at low and high AER presents different degradation kinetics even if similar activation energy values were found. Some physical and mechanical properties of wood after treatments up to a mass loss of 7 and 10 % starting from oven-dry or standard environmental conditions state were also studied. All of the treated samples showed statistically significant differences compared to the untreated one. The treatments performed at 7 or 10 % of dry mass loss showed homogeneous behaviour. The same tendency was observed for the treatments starting at oven-dry or standard environmental conditions with the exception of Young’s modulus, which resulted in smaller reductions in wet starting condition when compared to dry samples.  相似文献   

10.
Wood polymer nanocomposites (WPNCs) based on simul wood (Bombex ceiba, L.) were prepared by impregnation of styrene acrylonitrile copolymer, γ-methacryloyloxy trimethyl silane-modified TiO2, SiO2 nanoparticles and nanoclay intercalating mixture through vacuum impregnation. The impact of nanofillers on the physical properties, flame retardancy, water resistance, anti-swelling efficiency and biodegradability of the resultant WPNCs was investigated. Remarkable enhancement in wood properties such as flame retardancy, water resistance and anti-swelling efficiency was achieved with the treatment. The results showed that all the properties were maximum for wood samples treated with SAN/TiO2 (0.5 %)/SiO2 (0.5 %)/nanoclay (0.5 %). The presence of TiO2 nanoparticles in WPNC exhibited antibacterial activity. The resistance to biodegradation was observed by incorporation of nanofillers into wood.  相似文献   

11.
Heat treatment is an alternative to the chemical treatment in wood preservation, which has been used to some extent in improving timber quality. However, reduction in strength properties has been one of the major limitations in the use of this technique and therefore investigations on the use of various pre-treatment methods are highly essential. Wood samples from Scots pine were immersed in already boiling water (100°C) for 20 min followed by 2 h of heat treatment at 160 and 200°C. The acidity and strength properties were determined by measurement of pH and static bending test, respectively. There were no significant changes in pH due to preboiling in both heat-treated and untreated wood. Similarly, preboiling did not result in any appreciable differences in strength both before heat treatment and during heat treatment at 160°C. However, for 200°C heat treatment preboiling reduced significantly the degree of strength loss as indicated by 19.4% reduction in modulus of rupture in preboiled wood compared to 26.6% reduction in unpreboiled wood. From the results of this study it is evident that preboiling has a buffering effect on wood during heat treatment and the higher the intensity of heat treatment the higher the significance of the buffering effect of pre-boiling.  相似文献   

12.
In this paper, the compressive deformation of hybrid poplar wood (Populus deltoides?×?Populus trichocarpa) at high temperature (150, 160, and 170°C) and under various conditions of steam pressure was studied. Temperature and conditions of steam environment affected the relative density change and creep deformation during compression, as well as properties of the resulting densified material. While the temperature significantly affected the compression deformation of specimens compressed under transient and superheated steam conditions, temperature within the range studied had little effect on the compressive deformation in saturated steam. In all tested conditions, compression deformation was achieved without cell wall fractures. Higher temperature of compression, regardless of steam condition, resulted in lower equilibrium moisture content. In specimens compressed under saturated steam, the modulus of rupture (MOR) and modulus of elasticity (MOE) were increased proportionally to the increase in density, while the compression under superheated steam produced lower increase in the MOE and MOR than expected based on the increase in density. Compression in transient steam conditions at 170°C produced densified wood with higher MOE and MOR than expected based on the increase in density.  相似文献   

13.
With the aim of obtaining findings on the dynamic properties of branches and their bases, as well as their support mechanisms, the present study examined the temperature dependence of the dynamic viscoelasticity of Japanese cypress samples saturated with water to clarify the responses in different regions, and identified factors influencing the characteristics. In the bases of the branches: E′ sharply decreased at approximately room temperature and significantly decreased at around 20 and 60 °C; a peak and shoulder peak of E″ or tan δ were noted at around 20 °C, and there was another peak of tan δ at around 60–80 °C; and mechanical relaxation was noted at around 20 °C and 60–80 °C. On the other hand, in some regions, including the trunks, branches, and their bases, mechanical relaxation was only noted on the high-temperature side. However, boiling treatment with about 12 % weight loss inhibited mechanical relaxation, and there were decreases in E′, E″, and tan δ at approximately room temperature. The bases of the branches of Japanese cypress are considered to develop its elasticity and viscosity to tolerate external stress by accumulating an extract, which enhances the strength of lignin.  相似文献   

14.
Several studies have been conducted on the response of crops to greater concentrations of atmospheric CO2 (CO2 fertilization) as a result of climate change, but only few studies have evaluated this effect on multipurpose agroforestry tree species in tropical environments. The objectives of this study were to quantify differences in growth parameters and in leaf carbon (C) and nitrogen (N) concentrations of Cedrela odorata L. and Gliricidia sepium (Jacq.) Walp. seedlings under current ambient temperature (32°C daytime, 22°C night time) and CO2 (360 ppm) (AMB); CO2 fertilization (800 ppm, 32°C daytime, 22°C night time) (fCO2); elevated ambient temperature (360 ppm, 34°C daytime, 25°C night time) (TEMP); and a combination of elevated temperature (32°C daytime, 22°C night time) and CO2 fertilization (800 ppm) (TEMPxfCO2). Results showed significant differences (P < 0.05) in seedling growth parameters (seedling height, number of stem leaves, leaf area ratio, shoot and root biomass, and shoot/root ratio) between treatments for both tree species. The greatest increases in growth parameters occurred in the TEMP and TEMPxfCO2 treatments compared to the AMB treatment for both tree species. However, growth parameters were significantly lower (P < 0.05) in the fCO2 treatment compared to that of the AMB treatment. Leaf N concentration was 1.1 to 2.1 times lower (P < 0.05) in all treatments when compared to current ambient conditions (AMB) in both tree species, but no significant changes in leaf C concentrations were observed. Results from our study suggested that fCO2 had the greatest negative impact on tree growth parameters, and leaf N concentrations were affected negatively in all treatments compared to current ambient conditions. It is expected that such changes in growth parameters and plant N content may impact the long-term cycling of nutrients in agroforestry systems.  相似文献   

15.
Carbon (C) sequestration potential was quantified for five tree species, commonly used in tree-based intercropping (TBI) and for conventional agricultural systems in southern Ontario, Canada. In the 25-year-old TBI system, hybrid poplar (Populus deltoides × Populus nigra clone DN-177), Norway spruce (Picae abies), red oak (Quercus rubra), black walnut (Juglans nigra), and white cedar (Thuja occidentalis) were intercropped with soybean (Glycine max). In the conventional agricultural system, soybean was grown as a sole crop. Above- and belowground tree C Content, soil organic C, soil respiration, litterfall and litter decomposition were quantified for each tree species in each system. Total C pools for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and a soybean sole-cropping system were 113.4, 99.4, 99.2, 91.5, 91.3, and 71.1 t C ha?1, respectively at a tree density of 111 trees ha?1, including mean tree C content and soil organic C stocks. Net C flux for hybrid poplar, white cedar, red oak, black walnut, Norway spruce and soybean sole-crop were 2.1, 1.4, 0.8, 1.8, 1.6 and ?1.2 t C ha?1 year?1, respectively. Results presented suggest greater atmospheric CO2 sequestration potential for all five tree species when compared to a conventional agricultural system.  相似文献   

16.
Conventional measurements of tree root biomass in tree-based intercropping (TBI) systems can be inadequate in capturing the heterogeneity of rooting patterns or can be highly destructive and non-repeatable. In this study, we estimated coarse root biomass using ground penetrating radar (GPR) of 25-year-old trees inclusive of five species (Populus deltoides × nigra clone DN-177, Juglans nigra L., Quercus rubra L., Picea abies L. Karst, and Thuja occidentalis L.) at a TBI site in Southern Ontario, Canada. Subsurface images generated by GPR were collected in grids (4.5 × 4.5 m) centred on tree stems. The predictive relationship developed between GPR signal response and root biomass was corrected for species effects prior to tree-scale estimates of belowground biomass. Accuracy of the tree-scale estimates was assessed by comparing coarse root biomass measured from complete excavations of the corresponding tree. The mean coarse root biomass estimated from GPR analysis was 54.1 ± 8.7 kg tree?1 (mean ± S.E.; n = 12), within 1 % of the mean coarse root biomass measured from excavation. Overall there was a root mean square error of 14.4 kg between measured and estimated biomass with no detectable bias despite variable conditions within the in-field and multi-species study. Root system C storage by species, calculated with species-specific root carbon concentrations, is estimated at 5.4 ± 0.7–34.8 ± 6.9 kg C tree?1 at this site. GPR is an effective tool for non-destructively predicting coarse root biomass in multi-species environments such as temperate TBI systems.  相似文献   

17.
Climate warming has resulted in rapid range shifts of plant species, but it is not well known how species with different natural distribution ranges adapt to increase in temperature through physiological adjustment. We experimentally imposed a 1.8 °C increase of air temperature to the cuttings of two common poplar species Populus yunnanensis and Populus szechuanica naturally growing in southwest China using open-top chambers. Populus yunnanensis is distributed along a narrower elevation range compared with P. szechuanica. We determined some key physiological parameters and plant growth regulator activities during the growing season without soil water limitation. Our results showed that a 1.8 °C increase in air temperature increased shoot growth of P. szechuanica through an extension of its growth period but did not affect the growth of P. yunnanensis. Malondialdehyde content, guaiacol peroxidase activities and abscisic acid content increased while indoleacetic acid content decreased in P. yunnanensis. Our results suggest that the two common poplar species in southwest China should be able to adapt to the moderate increase in temperature projected for future climate. The growth of P. szechuanica may benefit through phenological adjustment but a further increase in temperature may inhibit the growth of P. yunnanensis. For poplar plantation management, selecting species with a wide natural distribution range could provide an adaptive alternative for buffering anthropogenic induced increase in temperature and help in sustaining productivity for the long term.  相似文献   

18.
This paper evaluated the density and biological resistance of pinewood samples modified with thermo-mechanical densification and thermal post-treatment. The samples were densified with 20 and 40% compression ratios at either 110 or 150 °C. The thermal post-treatment was then applied to the pine samples at 185 and 212 °C for 2 h. These samples were exposed to white-rot (Trametes versicolor) and brown-rot (Coniophora puteana) fungi for twelve weeks and the resulting mass loss was determined. In the densified samples, the effects of the compression ratio on T. versicolor-initiated mass loss and of the compression temperature on C. puteana-initiated mass loss were found to be significant. The mass loss was less in the samples compressed at 150 °C with the 40% ratio, while the highest mass loss was observed in the undensified samples. In the thermally post-treated samples, the resistance to both decay fungi was significantly increased with the increase of the treatment temperature. The mass loss in the thermally post-treated samples at 212 °C after T. versicolor and C. puteana fungi testing was reduced by 73 and 67%, respectively. However, the effect of the densification processes on decay resistance in the thermally post-treated samples was insignificant.  相似文献   

19.

? Context

A large area of abandoned land in the semiarid temperate region of China has been converted into plantations over the past decades. However, little information is available about the ecosystem C storage in different plantations.

? Aim and methods

Our objective was to estimate the C storage in biomass, litter, and soil of four different plantations (monospecific stands of Larix gmelinii, Pinus tabuliformis, Picea crassifolia, and Populus simonii). Tree component biomass was estimated using allometric equations. The biomasses of understory vegetation and litter were determined by harvesting all the components. C fractions of plant, litter, and soil were measured.

? Results

The ecosystem C storage were as follows: Picea crassifolia (469 t C/ha)?>?Larix gmelinii (375 t C/ha), Populus simonii (330 t C/ha)?>?Pinus tabuliformis (281 t C/ha) (P?<?0.05), 59.5–91.1 % of which was in the soil. The highest tree and understory C storage were found in the plantation of Pinus tabuliformis (247 t/ha) and Larix gmelinii (1.2 t/ha) respectively. The difference in tree C fraction was significant among tree components (P?<?0.05), following the order: leaf?>?branch?>?trunk?>?root. The highest soil C (SC) was stored in Picea crassifolia plantation (411 t C/ha), while Populus simonii plantation had a higher SC sequestration rate than others.

? Conclusion

C storage and distribution varied among different plantation ecosystems. Coniferous forests had a higher live biomass and litter C storage. Broadleaf forests had considerable SC sequestration potential after 40 years establishment.  相似文献   

20.
The hygroscopicity and thermodynamic properties of buried juvenile Pinus sylvestris L. wood with an age of 1,170 ± 40 BP were compared with the corresponding values of juvenile wood of the same species from recently cut trees. The 35 and 50°C isotherms were plotted following the saturated salts method and subsequently fitted in accordance with the GAB model. The isotherms were then compared by means of the hysteresis coefficients. X-ray diffractograms were used to analyse the crystal structure of the cellulose. The effect of time on the buried wood caused hemicelluloses degradation and a decrease in the crystallinity index and the crystallite length, resulting in an increase in the proportion of amorphous zones. Because of this, the equilibrium moisture contents of the buried wood are higher than of the recent wood, both in adsorption and desorption. In terms of the thermodynamic properties, the heat involved is greater in the buried wood than in the recent wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号