首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Triumfetta pilosa contain malvalic acid (2.4%) and sterculic acid (6.6%) along with the other normal fatty acids like palmitic (16.7%), stearic (10.8%), oleic (20.1%) and linoleic (43.4%). The cyclopropenoid (malvalic and sterculic) and other normal fatty acids have been determined by FTIR, 1H NMR, gas liquid chromatographic-techniques and chemical degradations.  相似文献   

2.
Cryptostegia grandiflora, a member of Asclepiadaceae, was evaluated as a potential multi-use crop. The plant contained 14.0% protein, 6.5% oil, 6.9% polyphenol, and 2.13% hydrocarbon. The gross heat value of the species was 3878.0 cal/g, while the oil fraction was 7350.1 cal/g, and the hydrocarbon fraction was 9300.0 cal/g. The NMR spectra of the hydrocarbon fraction reveals the presence of cis-polyisoprene (natural rubber). The oil fraction contains both saturated and unsaturated fatty acids including: lauric acid (trace), myristic acid (15.24%), palmitic acid (25.90%), stearic acid (3.8%), oleic acid (8.0%), linoleic acid (24.76%), and arachidic acid (22.28%). The high proportion of saturated fatty acids and the high oil content (>5.0%) make C. grandiflora a potential source for industrial raw material and alternative for conventional oil.  相似文献   

3.
This study was designed to profile the metabolites of Isochrysis galbana, an indigenous and less explored microalgae species. 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Liquid Chromatography-Mass Spectrometry (LCMS) were used to establish the metabolite profiles of five different extracts of this microalga, which are hexane (Hex), ethyl acetate (EtOAc), absolute ethanol (EtOH), EtOH:water 1:1 (AqE), and 100% water (Aq). Partial least square discriminant analysis (PLS–DA) of the generated profiles revealed that EtOAc and Aq extracts contain a diverse range of metabolites as compared to the other extracts with a total of twenty-one metabolites, comprising carotenoids, polyunsaturated fatty acids, and amino acids, that were putatively identified from the NMR spectra. Meanwhile, thirty-two metabolites were successfully annotated from the LCMS/MS data, ten of which (palmitic acid, oleic acid, α-linolenic acid, arachidic acid, cholesterol, DHA, DPA, fucoxanthin, astaxanthin, and pheophytin) were similar to those present in the NMR profile. Another eleven glycerophospholipids were discovered using MS/MS-based molecular network (MN) platform. The results of this study, besides providing a better understanding of I. galbana’s chemical make-up, will be of importance in exploring this species potential as a feed ingredient in the aquaculture industry.  相似文献   

4.
The essential oil and fatty acid composition of two provenances of Ruta chalepensis from four organs (leaves, flowers, stems and fruits) was determined. The effect of the plant part on total fatty acid contents, essential oil yields, fatty acid and volatile constituents was significant.Fatty acid profiles varied significantly among the studied provenances and organs. Linolenic acid had the highest amount in leaves of the two provenances. From R. chalepensis, in all organs, the main fatty acids were palmitic (13.10-25.31%), followed by palmitoleic (0-15.72%), stearic (1.03-6.85%), oleic (1.90-24.04%), arachidic (0.11-4.03%), eicosatetraenoic (0.10-5.60%) and behenic (0.47-6.09%) acids. Saturated fatty acids had the highest amounts in growing wild R. chalepensis flowers, and cultivated R. chalepensis stems were characterized by the predominance of polyunsaturated fatty acids. Oil composition of all studied organs has a healthy and nutritionally value. Essential oil yields varied from 0.39% to 2.46% and showed a remarkable variation with plant organs. Thirty-six volatile compounds were identified in different analyzed essential oils; 2-undecanone, 2-nonanol and 2-dodecanone had the highest percentages.  相似文献   

5.
Payenapara lleloneura Kurz. (Kan-zaw), an endemic medicinal plant only found in Tanintharyi Region of Myanmar, is widely used in the treatment of various cancer and different ailments. In the present research, the seeds were phytochemical investigated for their nutritional potential for their use as functional foods or novel diet oil resources. Nutritional evaluation showed that the seeds are rich in fats and carbohydrates (soluble sugars and starch). Fatty acid analyses showed that the seeds accumulate very rich α-eleostearic acid (α-ESA, 18:3Δ9cis,11trans,13trans), an important conjugated fatty acid, up to more than 70 ​% of total fatty acids. The seed oil derived from the Kan-zaw tree contains approximately 3.25 ​% β-eleostearic acid (18:3Δ9trans,11trans,13trans), an unusual conjugated fatty acid that imparts a potent anticancer application and industrially important drying qualities to Kan-zaw oil. Physicochemical properties of the Kan-zaw seeds were examined; petroleum ether (60–90 ​°C) extract of seed oils were also investigated for the saponification value, iodine value and estimation of acid value. Further, the present study investigated cytotoxic potential of ethanol, methanol, acetone, chloroform Kan-zaw seed extracts and commercial Kan-zaw oil against human cervical cancer cell line (HeLa). The Kan-zaw extracts and oil have shown significant anticancer activity on HeLa cells.  相似文献   

6.
The utilization of Hura crepitans seed oil in the formulation of alkyd resins was investigated using a two-stage alcoholysis-polyesterification method. The percentage yield of the oil was 36.4%; and the physicochemical characterization revealed that the seed oil is an unsaturated semi-drying oil. The fatty acid profile of the oil showed that it contains linoleic acid (81.6%) as the most abundant fatty acid, and two other fatty acids: palmitic acid (16.92%) and stearic acid (1.76%). Short (I), medium (II) and long (III) oil alkyds were synthesized using the oil, glycerol and phthalic anhydride in different ratios. Properties of the three prepared samples of H. crepitans seed oil alkyds having oil content of 30% (I), 50% (II), and 65% (III) were evaluated. The alkyd resins synthesized compared favourably with the commercially available alkyd resin. The presence of unsaturation in the oil was confirmed by infra-red peak at 2930 cm−1 attributed to CC stretch. The infra-red peaks of the sample also compared well with that of the commercial sample indicating that H. crepitans seed oil has been successfully converted to alkyd resin. Evaluation of prepared alkyds by determination of acid values, solubility in butanol and toluene, resistance of dry film to acid, alkali and water, and drying time revealed that H. crepitans seed oil is a potential raw material for the coating industry.  相似文献   

7.
Fatty acids are important compounds for insects, but the requirements for essential fatty acids may differ between insect species. Most of the fatty acids are acquired through the insect’s diet; therefore, supplementing the diet with baker’s yeast (Saccharomyces cerevisiae Meyen ex E.C. Hansen), which produces unsaturated fatty acids, was predicted to affect the fatty acid composition of the insect. The tested insect was the black soldier fly (BSF) (Hermetia illucens L.), that is used as a source of protein and fat in feed. Therefore, there is importance for BSF larvae (BSFL) nutritional composition, especially the unsaturated fatty acids content, which is one of the nutritional limitations for mammalian diets. The dominant fatty acids of the tested BSFL were the saturated fatty acids: lauric, myristic, and palmitic acids, as found in other BSF studies. Oleic acid (c18:1) and linoleic acid (C18:2) were the abundant unsaturated fatty acids in the BSFL. The proportion of linoleic acid was higher in the substrate with the supplemental yeast; however, this did not affect its proportion in the larvae. The higher proportion of linoleic acid may have been exploited as a source for production of saturated lauric acid. Therefore, providing unsaturated fatty acids to the substrate through supplemental baker’s yeast is not the most efficient way to increase the proportion of unsaturated fatty acids in the larvae.  相似文献   

8.
There is a constant search for biomaterials from natural products like plants for food and industrial applications. The work embodied in this report aimed at investigating the effects of microwave-assisted and soxhlet extraction (MAE and SE) techniques on the functional physicochemical quality characteristics of Moringa oleifera seed oil and proteins extracts. M. oleifera ​seeds were ground to fine powders and oil was extracted by microwave-assisted and soxhlet extraction techniques using petroleum ether. Quality attributes including yield percent, moisture content, iodine, saponification, specific gravity, viscosity, pH, thiobarbituric acid, acid and peroxide values were measured. Mineral and vitamin contents, chemical/functional groups, fatty acid (FA) composition, and reducing power of the oil were evaluated. Metabolomics of protein extracted from the defatted powders were analyzed by nuclear magnetic resonance (NMR). M. oleifera ​oil from MAE and SE methods had good yield (34.25 ​± ​0.0%, 28.75 ​± ​0.0%), low moisture content (0.008 ​± ​0.0%, 0.011 ​± ​0.0%), non-drying and unsaturated, moderately saponified, less dense (0.91 ​± ​0.01, 0.92 ​± ​0.02 g mL−1), had Newtonian flow, were weakly acidic, showed good content of FAs, recorded strong potential for long shelf-life, showed stability against oxidative rancidity and enzymatic hydrolysis, had very rich deposits of micro- and macro-nutrients as well as water-soluble and lipid-soluble vitamins, and functional groups in the oil were reflective of its content of long- and medium-chain triglycerides (LCT and MCT). Monounsaturated and saturated fatty acids (MUFA and SFA) were detected and the oil has excellent ferric ion reducing power. NMR metabolomic assay revealed the presence of nine essential amino acids (EAAs) in the protein extract. MAE technique is a feasible and acceptable alternative for high throughput extraction of ​M. oleifera ​oil with high yield and excellent quality attributes. The study revealed that MAE did not impart any remarkable advantage(s) on the physicochemical properties of ​M. oleifera ​seed oil and protein compared to SE technique.  相似文献   

9.
Instead of sole nutrient starvation to boost algal lipid production, we addressed nutrient limitation at two different seasons (autumn and spring) during outdoor cultivation in flat panel photobioreactors. Lipid accumulation, biomass and lipid productivity and changes in fatty acid composition of Nannochloropsis oculata were investigated under nitrogen (N) limitation (nitrate:phosphate N:P 5, N:P 2.5 molar ratio). N. oculata was able to maintain a high biomass productivity under N-limitation compared to N-sufficiency (N:P 20) at both seasons, which in spring resulted in nearly double lipid productivity under N-limited conditions (0.21 g L−1 day−1) compared to N-sufficiency (0.11 g L−1 day−1). Saturated and monounsaturated fatty acids increased from 76% to nearly 90% of total fatty acids in N-limited cultures. Higher biomass and lipid productivity in spring could, partly, be explained by higher irradiance, partly by greater harvesting rate (~30%). Our results indicate the potential for the production of algal high value products (i.e., polyunsaturated fatty acids) during both N-sufficiency and N-limitation. To meet the sustainability challenges of algal biomass production, we propose a dual-system process: Closed photobioreactors producing biomass for high value products and inoculum for larger raceway ponds recycling waste/exhaust streams to produce bulk chemicals for fuel, feed and industrial material.  相似文献   

10.
The lipid profile of nuts from Ximenia caffra and Ricinodendron rautanenii was determined and compared. Although the total oil content of X. caffra and R. rautanenii nuts was similar (47.6 ± 7.5% versus 53.3 ± 13.7%), the fatty acid profiles differed significantly. X. caffra had a higher content (p < 0.05) of saturated fatty acids than R. rautanenii (20.19 ± 1.07% versus 13.87 ± 3.68%) and contained C22:0 and C24:0 which were lacking in R. rautanenii. Total monounsaturated fatty acids were higher in X. caffra than R. rautanenii (71.48 ± 0.99% versus 36.66 ± 1.95%). Oleic acid (C18:1n9) was the major monounsaturated fatty acid (MUFA) in X. caffra whereas erucic acid (C22:1n9), the major MUFA in R. rautanenii, was undetectable in X. caffra. R. rautanenii had a greater polyunsaturated fatty acid content than X. caffra which contained C18:3n3 (α-linolenic acid) and nervonic acid (24:1n9). X. caffra is potentially an important source of essential fatty acids.  相似文献   

11.
Unusual fatty acids such as ricinoleate (12-hydroxyoleic acid) occurring in Ricinus communis L. or vernoleate (12,13-epoxyoleic acid) occurring in Euphorbia lagascae L. are suitable for industrial uses. Euphorbia lathyris L. is also a potential new oilseed crop on account of its high content of oleic acid in the seeds. The objective of this work was to test in vitro the preferences of E. lathyris microsomes for its native substrates (oleoyl-CoA and diolein) and to compare with R. communis and E. lagascae systems.The diacylglycerol acyltransferase (DGAT) catalyses the final step in transferring a fatty acid moiety to a diacylglycerol (DAG) into a triacylglycerol (TAG). To study the DGAT activity in microsomes of the three euphorbs: (1) plants of the three species were grown in a glasshouse at Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (Murcia, Spain), (2) endosperms were removed from developing seeds and the tissue was extracted, (3) in vitro DGAT assays using [14C]-oleoyl-CoA with or without 1,2-diolein were carried out and 4) labelled TAG were recorded using a molecular imager and a scintillation counter.Incorporation of [14C]-oleoyl into TAG was greater in R. communis and E. lathyris (72–89% of total TAG) than in E. lagascae. Adding exogenous 1,2-diolein (1 mM) to E. lagascae microsomes increased the amount of labelled TAG to 39%, suggesting that other acyl groups were being incorporated as well. R. communis and E. lagascae microsomes gave more-polar radiolabelled TAGs than E. lathyris possibly because endogenous DAGs (not 1,2-diolein) were being used in the reaction. Although E. lathyris microsomes showed specificity towards 1,2-diolein as a substrate, the preparations from R. communis, E. lagascae and E. lathyris were able to use the acyl donor and acyl receptor, possibly suggesting that DGAT enzymes would not be a limiting factor to engineer Euphorbiaceae crops with functionalized fatty acids.  相似文献   

12.
This study is evaluating the seasonal lipid and fatty acid composition of the brown seaweed Saccharina latissima. Biomass was sampled throughout the year (bi-monthly) at the commercial cultivation site near a fish farm in an integrated multi-trophic aquaculture (IMTA) and at a reference site in Denmark (2013–2014). Generally, there was no difference in the biomass composition between sites; however, significant seasonal changes were found. The lipid concentration varied from 0.62%–0.88% dry weight (DW) in July to 3.33%–3.35% DW in November (p < 0.05) in both sites. The fatty acid composition in January was significantly different from all the other sampling months. The dissimilarities were mainly explained by changes in the relative abundance of 20:5n-3 (13.12%–33.35%), 14:0 (11.07%–29.37%) and 18:1n-9 (10.15%–16.94%). Polyunsaturated fatty acids (PUFA’s) made up more than half of the fatty acids with a maximum in July (52.3%–54.0% fatty acid methyl esters; FAME). This including the most appreciated health beneficial PUFA’s, eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), but also arachidonic (ARA) and stearidonic acid (SDA), which are not found in land vegetables such as cabbage and lettuce. Compared to fat (salmon) and lean fish (cod) this seaweed species contains higher proportions of ARA and SDA, but lower EPA (only cod) and DHA. Conclusively, the season of harvest is important for the choice of lipid quantity and quality, but the marine vegetables provide better sources of EPA, DHA and long-chain (LC)-PUFA’s in general compared to traditional vegetables.  相似文献   

13.
Porphyridium purpureum is a well-known Rhodophyta that recently has attracted enormous attention because of its capacity to produce many high-value metabolites such as the pigment phycoerythrin and several high-value fatty acids. Phycoerythrin is a fluorescent red protein-pigment commercially relevant with antioxidant, antimicrobial activity, and fluorescent properties. The volumetric mass transfer coefficient (kLa) was kept constant within the different scaling-up stages in the present study. This scaling-up strategy was sought to maintain phycoerythrin production and other high-value metabolites by Porphyridium purpureum, using hanging-bag photobioreactors. The kLa was monitored to ensure the appropriate mixing and CO2 diffusion in the entire culture during the scaling process (16, 80, and 400 L). Then, biomass concentration, proteins, fatty acids, carbohydrates, and phycoerythrin were determined in each step of the scaling-up process. The kLa at 16 L reached a level of 0.0052 s−1, while at 80 L, a value of 0.0024 s−1 was achieved. This work result indicated that at 400 L, 1.22 g L−1 of biomass was obtained, and total carbohydrates (117.24 mg L−1), proteins (240.63 mg L−1), and lipids (17.75% DW) were accumulated. Regarding fatty acids production, 46.03% palmitic, 8.03% linoleic, 22.67% arachidonic, and 2.55% eicosapentaenoic acid were identified, principally. The phycoerythrin production was 20.88 mg L−1 with a purity of 2.75, making it viable for food-related applications. The results of these experiments provide insight into the high-scale production of phycoerythrin via the cultivation of P. purpureum in an inexpensive and straightforward culture system.  相似文献   

14.
The production of polyunsaturated fatty acids (PUFA) in Tisochrysis lutea was studied using the gradual incorporation of a 13C-enriched isotopic marker, 13CO2, for 24 h during the exponential growth of the algae. The 13C enrichment of eleven fatty acids was followed to understand the synthetic pathways the most likely to form the essential polyunsaturated fatty acids 20:5n-3 (EPA) and 22:6n-3 (DHA) in T. lutea. The fatty acids 16:0, 18:1n-9 + 18:3n-3, 18:2n-6, and 22:5n-6 were the most enriched in 13C. On the contrary, 18:4n-3 and 18:5n-3 were the least enriched in 13C after long chain polyunsaturated fatty acids such as 20:5n-3 or 22:5n-3. The algae appeared to use different routes in parallel to form its polyunsaturated fatty acids. The use of the PKS pathway was hypothesized for polyunsaturated fatty acids with n-6 configuration (such as 22:5n-6) but might also exist for n-3 PUFA (especially 20:5n-3). With regard to the conventional n-3 PUFA pathway, Δ6 desaturation of 18:3n-3 appeared to be the most limiting step for T. lutea, “stopping” at the synthesis of 18:4n-3 and 18:5n-3. These two fatty acids were hypothesized to not undergo any further reaction of elongation and desaturation after being formed and were therefore considered “end-products”. To circumvent this limiting synthetic route, Tisochrysis lutea seemed to have developed an alternative route via Δ8 desaturation to produce longer chain fatty acids such as 20:5n-3 and 22:5n-3. 22:6n-3 presented a lower enrichment and appeared to be produced by a combination of different pathways: the conventional n-3 PUFA pathway by desaturation of 22:5n-3, the alternative route of ω-3 desaturase using 22:5n-6 as precursor, and possibly the PKS pathway. In this study, PKS synthesis looked particularly effective for producing long chain polyunsaturated fatty acids. The rate of enrichment of these compounds hypothetically synthesized by PKS is remarkably fast, making undetectable the 13C incorporation into their precursors. Finally, we identified a protein cluster gathering PKS sequences of proteins that are hypothesized allowing n-3 PUFA synthesis.  相似文献   

15.
This study investigated whether the amounts and types of fatty acids present in millet plays a role in its known hypoglycemic properties. In a two part study, the first part involved complexing excess amount (2 mmol/g of starch) of palmitic, oleic and linoleic acids to cooked pearl, finger, proso and foxtail millet starches, subjecting the complexes to in vitro starch digestibility and calculating their expected glycemic index (eGI). The second part of the study consisted of complexing the millet starches with the fatty acids in the amounts present in their respective millet flours. Elaidic acid in equal amounts to oleic acid was also used to ascertain the effects of the cis or trans configuration of the fatty acid on millet starch digestibility. The complex index (CI) of the fatty acids with millet starch increased with increasing level of unsaturation. Significant (p < 0.05) reductions in the in vitro starch digestibility and eGI of the millet starch-fatty acid complexes were observed. Reductions in the starch hydrolysis of the samples were found to be significantly linked to the amounts of the fatty acids added. The presence of unsaturated fatty acids generally resulted in less starch being hydrolyzed. Oleic acid seemed to be a very effective fatty acid in reducing the amount of starch hydrolyzed. Trans oleic acid (elaidic acid) showed to be less efficacious compared to oleic acid in cis configuration. The amount and type of fatty acids interacting with starch plays a significant role in the hypoglycemic property of millet.  相似文献   

16.
The physicochemical characteristics, fatty acid and triacylglycerol compositions, DSC profile and UV/vis spectrum of oil extracted from Albizia julibrissin seeds were determined in this study. The oil content and the moisture of the seeds were 10.50% and 1.56%. The free fatty acid, the peroxide value, the p-anisidine value, the saponification value, the iodine value were 2.54%, 6.61 mequiv. O2/kg of oil, 1.98, 190.63 (mg KOH/g) and 111.33 (g/100 g of oil), respectively. The specific extinction coefficients K232, K268 were 7.55 and 0.96, respectively. Linoleic acid (C18:2, 58.58%), palmitic acid (C16, 13.86%) and oleic acid (C18:1, 10.47%) were the dominant fatty acids in the A. julibrissin seed oil. LLL (36.87%), OLL (21.62%), PLL (16.69%) and PLO + SLL (8.59%) were the abundant triacylglycerol representing > 83% of the seed oil (L: linoleic, O: oleic, P: palmitic, S: stearic). The DSC melting curves reveal that: melting point = −14.70° C and melting enthalpy = 54.34 J/g. A. julibrissin seed oil showed some absorbance in the UV-B and UV-C ranges. The results of the present analytical study show that A. julibrissin is a promising oilseed crop, which can be used for making soap, hair shampoo and UV protectors. Furthermore, the high level of unsaturated fatty acids makes it desirable in terms of nutrition.  相似文献   

17.
Tisochrysis lutea is a marine haptophyte rich in omega-3 polyunsaturated fatty acids (e.g., docosahexaenoic acid (DHA)) and carotenoids (e.g., fucoxanthin). Because of the nutraceutical applications of these compounds, this microalga is being used in aquaculture to feed oyster and shrimp larvae. In our earlier report, T. lutea organic crude extracts exhibited in vitro cytotoxic activity against human hepatocarcinoma (HepG2) cells. However, so far, the compound(s) accountable for the observed bioactivity have not been identified. Therefore, the aim of this study was to isolate and identify the chemical component(s) responsible for the bioactivity observed. Bioassay-guided fractionation through a combination of silica-gel column chromatography, followed by preparative thin layer chromatography (PTLC), led to the isolation of two diastereomers of a monoterpenoid lactone, namely, loliolide (1) and epi-loliolide (2), isolated for the first time in this species. The structural elucidation of both compounds was carried out by GC-MS and 1D (1H and 13C APT) and 2D (COSY, HMBC, HSQC-ed, and NOESY) NMR analysis. Both compounds significantly reduced the viability of HepG2 cells and were considerably less toxic towards a non-tumoral murine stromal (S17) cell line, although epi-loliolide was found to be more active than loliolide.  相似文献   

18.
Thraustochytrids are the most promising microbial source for the commercial production of docosahexaenoic acid (DHA) for its application in the human health, aquaculture, and nutraceutical sectors. The present study isolated 127 thraustochytrid strains from mangrove habitats of the south Andaman Islands, India to study their diversity, polyunsaturated fatty acids (PUFAs), and biotechnological potential. The predominant strains were identified as belonging to two major genera (Thraustochytrium, Aurantiochytrium) based on morphological and molecular characteristics. The strain ANVKK-06 produced the maximum biomass of 5.42 g·L−1, while ANVKK-03 exhibited the maximum total lipid (71.03%). Omega-3 PUFAs such as eicosapentaenoic acid (EPA) accumulated up to 11.03% in ANVKK-04, docosapentaenoic acid (DPA) up to 8.65% in ANVKK-07, and DHA up to 47.19% in ANVKK-06. ANVKK-06 showed the maximum scavenging activity (84.79 ± 2.30%) while ANVKK-03 and ANVKK-10 displayed the highest antibacterial activity against human and fish pathogens, S. aureus (18.69 ± 1.2 mm) and V. parahaemolyticus (18.31 ± 1.0 mm), respectively. All strains were non-toxic as evident by negative blood agar hemolysis, thus, the thraustochytrids are suggested to be a potential source of DHA for application in the health care of human and fish.  相似文献   

19.
A method using methanolic sulphuric acid as transmethylating reagent was developed for determining the fatty acid composition of lipids of oats. The method was optimised for reaction conditions and applied to the determination of the fatty acid composition of lipids of a number of varieties of Australian oats grown in several locations. Thirteen fatty acids were detected with oleic, linoleic and palmitic acids comprising more than 95% of the total fatty acids. Total lipid content of the oats was positively related to the proportion of stearic (r=0·32) and oleic (r=0·81) acids and negatively correlated with the proportion of palmitic (r=−0·64), linoleic (r=−0·39) and linolenic (r=−0·65) acids. Significant positive correlations were found between total lipid content and absolute content of the major fatty acids (r=0·670·98), except for linolenic acid (r=0·12). Environment had significant effects on fatty acid composition, but variety was the controlling factor. The broad sense heritability estimated from individual plot ranged from 69 to 73% and that from the average of three replications and eight locations ranged from 94 to 98% for the major fatty acids. It is possible to improve fatty acid composition of oats by breeding procedures.  相似文献   

20.
Studies were conducted on the properties of seeds and oil extracted from Maclura pomifera seeds. The following values (on a dry-weight basis) were obtained for M. pomifera seed, respectively: moisture 5.88%, ash 6.72%, oil 32.75% and the high protein content 33.89%. The carbohydrate content (20.76%) can be regarded as a source of energy for animals if included in their diets. The major nutrients (mg/100 g oil) were: potassium (421.65), calcium (218.56) and magnesium (185.00). The physicochemical properties of the oil include: the saponification number 174.57; the iodine value 141.43; the p-anisidine value 1.86; the peroxide value 2.33 meq O2/kg; the acid value 0.66; the carotenoid content 0.59 mg/100 g oil; the chlorophyll content 0.02 (mg/100 g oil) and the refractive index 1.45. Polymorphic changes were observed in thermal properties of M. pomifera seed oil. This showed absorbency in the UV-B and UV-C ranges with a potential for use as a broad spectrum UV protectant. The main fatty acids of the crude oil were linoleic (76.19%), oleic (13.87%), stearic (6.76%) and palmitic acid (2.40%). The polyunsaturated triacylglycerols (TAGs) LLL, PLL, POL + SLL, OLL, OOL (L: linoleic acid, O: oleic, P: palmitic acid and S: stearic acid) acids were the major TAGs found in M. pomifera seed oil. A relatively high level of sterols making up 852.93 mg/100 g seed oil was present. The sterol marker, β-sitosterol, accounted for 81% of the total sterol content in the seed oil and is followed by campesterol (7.4%), stigmasterol (4.2%), lupeol (4.1%) and Δ5-avenesterol (3.2%). The seed oil was rich in tocopherols with the following composition (mg/100 g): α-tocopherol 18.92; γ-tocopherol 10.80; β-tocopherol 6.02 and δ-tocopherol 6.29. The results showed that M. pomifera seed oil could be used in cosmetic, pharmaceutical and food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号