首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gibel carp (Carassius auratus gibelio) of mean initial weight 3.1 g were fed one of seven casein‐dextrin‐based diets containing graded levels of magnesium (Mg) (39, 120, 220, 380, 700, 1600 and 2900 mg kg?1) for 3 months with the waterborne Mg concentration of 10.6–12.7 mg L?1. Magnesium sulphate was used as the supplementation Mg source in the diets. The experiment was carried out in a flow‐through system. Growth, survival rate, Na+/K+‐ATPase, Mg2+‐ATPase and tissue mineral contents were measured to investigate the effect of dietary magnesium in gibel carp. At the end of the experiment, the hepatopancreas of fish were collected for enzyme determination. The hepatopancreas, vertebrae and whole body were collected for tissue magnesium content analysis. After 3 months, dietary magnesium supplementation did not improve the growth performance, including feed intake, weight gain and feed conversion efficiency of juvenile gibel carp. On the contrary, negative impacts on survival, reduced growth performance and dramatically decreased Na+/K+‐ATPase, Mg2+‐ATPase and superoxide dismutase activities were observed in gibel carp fed a high Mg diet of 2900 mg kg?1. Although serum and hepatopancreas Mg and Ca contents were not affected by dietary Mg supplementation, vertebrae and whole‐body Mg contents increased significantly with the increasing dietary Mg concentrations. Based on the relationship between whole‐body Mg retention and dietary Mg concentration, a suitable dietary Mg level of 745 mg kg?1 could be estimated for gibel carp. It could be concluded that dietary Mg supplementation did not improve the growth performance, but could increase vertebrae Mg contents of gibel carp. Considering the adverse effects, a dietary Mg concentration of above 2900 mg kg?1 is not recommended and it should be careful to supplement magnesium in practical diets for gibel carp as most feed ingredients contain high magnesium concentrations.  相似文献   

2.
A growth trial was conducted to estimate the optimum concentration of dietary potassium (K) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (3.96 ± 0.06 g) were fed diets containing graded levels (0.87, 2.90, 5.37, 7.54, 9.87 and 12.4 g kg?1) of K for 8 weeks. Final body weight, weight gain and feed efficiency and gill Na+‐K+ ATPase activity were highest in fish fed with 9.87 g kg?1 dietary K and lowest in fish fed the basal diet (P < 0.05). The K contents in whole body and muscle were linearly increased up to the 9.87 g kg?1 dietary K and then levelled off beyond this level, whereas in scales and vertebrae up to the 7.54 g kg?1 dietary K (P < 0.05). However, dietary K levels had no significant effect on ash, Ca, P and Mg contents in whole body, scales, vertebrae or muscle. Analysis using polynomial regression of weight gain and gill Na+‐K+ ATPase activity and using the broken‐line regression of whole body K concentrations indicated that the adequate dietary K concentration for grass carp is about 9.45–9.99 g kg?1 diet.  相似文献   

3.
Two, 8‐week feeding trials were conducted to compare protein‐sparing capability of dietary lipid in herbivorous grass carp (Ctenopharyngodon idella) and omnivorous tilapia (Oreochomis niloticus × O. aureus). Utilizing a 2 × 3 factorial design, experimental diets containing two levels of crude protein (380 and 250 g kg−1) and three levels of lipid (0, 40 and 100 g kg−1) were formulated for use in both feeding trials. Growth performances showed better response of both fish fed 380 g kg−1 protein diet than those fed 250 g kg−1 protein diet. Despite the dietary protein level, weight gain (WG), specific growth ratio (SGR), feed conversion ratio (FCR) and protein efficiency ratio were much higher (P < 0.05) for grass carp fed 40 g kg−1 lipid diet than those fed 100 g kg−1 lipid diet; however, there were no significant differences in tilapia fed the two diets. The feed intake of grass carp fed lipid‐free diet was the lowest, but it tended to decrease with increase in dietary lipids in tilapia. Lipid retention (LR) was negatively correlated with dietary lipid concentration of both fish. Viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF) and whole‐body and liver lipid content positively correlated with dietary lipid concentration of both fish. Plasma parameters and liver enzymes activities were also positively correlated with dietary lipid concentration of both fish. Liver lipid contents were higher and enzymes activities were lower in grass carp when compared with tilapia. These data suggested that there was no evidence of a protein‐sparing effect of dietary lipids in grass carp. Tilapia has relatively higher capacity to endure high dietary lipid level compared to grass carp.  相似文献   

4.
A growth trial was conducted to estimate the optimum concentration of dietary magnesium (Mg) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (5.56 ± 0.02 g) were fed diets containing graded levels (187, 331, 473, 637, 779 and 937 mg kg?1) of Mg for 8 weeks. Weight gain, specific growth rate and feed efficiency were linearly increased up to 637 mg kg?1 dietary Mg and then levelled off beyond this level. For body composition, dietary Mg levels higher than 473 mg kg?1 significantly decreased the moisture content but increased the lipid content of whole body, muscle and liver. Dietary Mg levels higher than 473 mg kg?1 significantly decreased the ash contents of vertebrae, scales and muscle. Mg contents in whole body, vertebrae, scales and plasma were increased up to 637 mg kg?1 dietary Mg and then levelled off beyond this level. However, Ca and P contents seem to be inversely related to dietary Mg. Dietary Mg levels higher than 473 mg kg?1 significantly decreased Zn and Fe contents in whole body and vertebrae. Broken‐line analysis indicated that 687 mg kg?1 dietary Mg was required for maximal tissue Mg storage, as well as satisfied for the optimal growth.  相似文献   

5.
An 11‐week growth trial was conducted to determine dietary myo‐inositol (MI) requirement for juvenile gibel carp (Carassius auratus gibelio). Myo‐inositol was supplemented to the basal diet to formulate six purified diets containing 1, 56, 107, 146, 194 and 247 mg MI kg?1 diet, respectively. Each diet was fed to triplicate groups of juvenile gibel carp (initial body weight 3.38 ± 0.27 g, mean ± SD) in a flow‐through system. The diets were randomly assigned to different fish tanks. Fish fed ≥ 107 mg MI kg?1 diet had significantly higher weight gain (WG), feed efficiency (FE) and protein efficiency ratio than those fed 1 mg MI kg?1 diet. Fish fed ≥ 56 mg MI kg?1 diet had higher feeding rate and survival compared with fish fed 1 mg MI kg?1 diet. Dietary supplemental inositol did not affect fish liver inositol concentration. Fish fed ≥ 56 mg MI kg?1 diet had higher body dry matter, crude protein and gross energy and lower hepatosomatic index than fish fed 1 mg MI kg?1 diet. Dietary inositol supplementation decreased fish body ash. Quadratic regression of weight gain indicated that the myo‐inositol requirement to maximum growth for juvenile gibel carp was 165.3 mg MI kg?1 diet.  相似文献   

6.
This experiment was undertaken to establish the magnesium (Mg) requirement in young Atlantic salmon, Salmo salar L., in seawater-treated fresh water. In Norwegian hatcheries it is a common practice to add sodium hydroxide and/or sea water (1–2%) to improve pH and conductivity of the natural fresh water. Parr with initial weight of 8 g, were divided in six triplicate groups in brackish water containing 54 mg Mg L?1 and fed a basal casein-gelatine diet supplemented with minor amounts of krill and fish meal (containing 200 mg Mg kg?1) for an initial period of 3 weeks. Thereafter the fish were fed this diet supplemented with either 0, 100, 200, 300, 400 or 500 mg Mg kg?1 (as MgSO4) for 12 weeks. Growth and feed efficiency were recorded. Concentrations of Mg and other divalent cations (Ca and Zn) were measured in whole fish, serum and vertebrae. Sodium concentration in vertebrae was also measured. Growth and feed efficiency were unaffected by the levels of dietary magnesium used in the experiment. Magnesium concentrations in the whole body, serum and vertebrae Mg appeared to be more sensitive than growth and feed efficiency to differences in dietary Mg intake. The group fed the unsupplemented diet showed significantly lower Mg concentration in these tissues than the other groups. Whole-body calcium concentration was negatively correlated with dietary Mg and Ca:Mg ratios in the vertebrae were significantly affected by the dietary Mg levels. Zinc concentration in whole body, serum and vertebrae was not altered by the dietary Mg levels. Further, vertebral Na concentration did not vary between the dietary treatments. In conclusion, a minimum Mg supplementation level of 100 mg kg?1 dry diet (in total, 326 mg kg?1) was needed to maintain Mg concentration in the whole body and serum and for proper bone mineralization.  相似文献   

7.
A growth trial was conducted to estimate the optimum concentration of dietary available phosphorus (P) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (5.59 ± 0.02 g) were fed diets containing graded levels (2.36, 4.27, 6.31, 8.36, 10.4 and 14.8 g kg?1) of available P for 8 weeks. Grass carp fed with the P‐supplemented diets had significantly higher specific growth rate, weight gain, protein efficiency ratio and feed efficiency than fish fed with the basal diet. In whole‐body composition, protein content increased, while lipid content decreased with the increase in P level in diet (P < 0.05). Fish fed with the P‐supplemented diets had significantly higher whole body, vertebrae and scales mineralization (P < 0.05), but Ca/P ratios were not influenced. The blood chemistry analysis showed that dietary available P had distinct effects on P, Ca and Mg contents, as well as on the contents of triacylglycerol and total cholesterol. Broken‐line analysis indicated that 8.49 g kg?1 dietary available P was required for maximal tissue storage and mineralization as well as optimal growth.  相似文献   

8.
This study was conducted to investigate the effect of dietary manganese (Mn) on growth, vertebrae and whole‐body Mn content of juvenile grouper, and to examine the effect of dietary Mn on copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), phosphorus (P) and magnesium (Mg) content of vertebrae and whole body. Seven casein‐gelatin‐based diets were supplemented with 0, 5, 10, 15, 20, 50 and 1000 mg kg?1 of Mn from MnSO4·H2O. Grouper with an initial weight of 12.9 ± 0.4 g were fed to satiation with one of the seven diets for 8 weeks. Growth was not significantly affected by dietary Mn supplements. Vertebrae Mn increased from 31.7 to 118.1 mg kg?1 dry weight with dietary Mn supplement increasing from 0 to 50 mg kg?1 (y = ?0.0002x3 + 0.0162x2 + 1.3903x + 26.27, R2 = 0.9561, where y is the vertebrae Mn content and x is the dietary Mn content). Whole‐body Mn increased from 2.5 to 7.8 mg kg?1 wet weight with dietary Mn supplement increasing from 0 to 50 mg kg?1 (y = 0.00001x3 ? 0.00107x2 + 0.11054x + 2.24615, R2 = 0.9080, where y is the whole‐body Mn content and x is the dietary Mn content). Dietary Mn had no significant effect on vertebrae Fe, Ca, P and Mg content, and whole‐body Cu, Zn and Mg content. However, vertebrae Zn and whole body Ca, P were highest in fish fed diet supplemented with 15 mg kg?1 of Mn. Based on this, Mn supplement of 15 mg kg?1 might be the optimum when the basal diet contained 4 mg kg?1 of Mn. Fish fed diet supplemented with 1000 mg kg?1 of Mn did not show any gross abnormality or change in feeding behaviour, but Mn contents of vertebrae and whole body were as high as 695.1 mg kg?1 dry weight and 42.5 mg kg?1 wet weight, respectively. Also, whole body Fe decreased significantly when Mn supplement was up to 1000 mg kg?1.  相似文献   

9.
A feeding experiment was conducted to determine the dietary calcium (Ca) requirement for juvenile hybrid tilapia, Oreochromis niloticus × O. aureus reared in nature water. Purified diet supplemented with 0, 1, 2, 3, 4, 5, 7 and 10 g Ca kg−1 diet providing of 0.6, 1.6, 2.6, 3.7, 4.7, 5.5, 7.5 and 10.7 g Ca kg−1 diet, respectively, were fed to tilapia (mean initial weight: 0.52 ± 0.01 g, n = 3) for 8 weeks. Each diet was fed to three replicate groups of fish in a closed, recirculating fresh water rearing system. The rearing water contained 27.1–33.3 mg L−1 Ca. The tilapia fed the diets supplemented with ≥3.7 g Ca kg−1 had significantly (P < 0.05) higher weight gain, when compared with fish fed the diet with ≤1.6 g Ca kg−1. Fish fed the unsupplemented control showed significantly lower weight gain when compared with the other groups (P < 0.05). Bone Ca concentration was highest in fish fed the diets with ≥4.7 g Ca kg−1, intermediate in fish fed the diet with 2.6 g Ca kg−1 and lowest in fish fed the control diet. Scale Ca concentration was higher in fish fed the diets with ≥3.7 g Ca kg−1 than in fish fed the diets with ≤2.6 g Ca kg−1. Serum alkaline phosphatase activity was 36% increased in fish fed the diets with ≥2.6 g Ca kg−1 than fish fed the diets with <1.6 g Ca kg−1. Analysis by broken‐line regression of weight gain, bone and scale Ca concentrations indicated that the adequate dietary Ca concentration for tilapia in water containing 27.1–33.3 mg Ca L−1 was 3.5, 4.3 and 4.2 g Ca kg−1 diet, respectively, supplied as Ca‐lactate.  相似文献   

10.
An experiment was conducted to investigate the effect of dietary iron supplement on growth, haematology and microelements of juvenile grouper, Epinephelus coioides. Casein–gelatine‐based diets supplemented with 0, 50, 100, 150, 200 and 250 mg kg−1 iron from ferrous sulphate were fed to grouper (mean initial weight: 21.0 ± 0.2 g) for 8 weeks. Weight gain was highest in fish fed the diet supplemented with 100 mg kg−1 iron, intermediate in fish fed diets with 50, 150, 200 and 250 mg kg−1 iron and lowest in fish fed the basal diet. Feed efficiency followed a similar trend except that the lowest value was in fish fed the basal diet and the diet supplemented with 250 mg kg−1 iron. Hepatic iron was highest in fish fed diets supplemented with iron ≥100 mg kg−1, followed by fish fed diet with 50 mg kg−1 iron and lowest in fish fed the basal diet. The whole‐body iron was lowest in fish fed the basal diet but not significantly different from other groups, as judged by anova . Iron supplement to the basal diet had no significant effect on haematological parameters (red blood cell count, haematocrit and haemoglobin), hepatic copper concentration or manganese, zinc concentration in liver and whole body. Broken‐line analysis of hepatic iron indicated that iron supplementation of 100 mg kg−1 satisfied the hepatic iron storage and that further supplementation did not expand the iron status.  相似文献   

11.
Two 8‐week feeding trials were conducted to evaluate dietary carbohydrate utilization by omnivorous gibel carp (Carassius auratus gibelio) (2.4 ± 0.1 g) and herbivorous grass carp (Ctenopharyngodon idellus) (6.5 ± 0.1 g). Five isonitrogenous (370 g kg?1) and isolipid (70 g kg?1) diets were formulated with increasing corn starch levels (60, 140, 220, 300 and 380 g kg?1). Results showed that specific growth rate (SGR), feed efficiency (FE) and protein retention efficiency (PRE) of gibel carp significantly increased from dietary starch of 60 to 300 g kg?1 and then decreased from 300 to 380 g kg?1, but those of grass carp showed no significant differences between treatments. Independent of dietary starch levels, grass carp gained significantly higher FE and PRE than gibel carp. Feeding rate (FR) of gibel carp was significantly higher than that of grass carp. In two fish species, high dietary starch (300 and 380 g kg?1) tended to obtain higher hepatosomatic index (HSI), serum triglyceride, hepatic lipid and body lipid contents. Serum glucose concentration of grass carp was not affected, while that of gibel carp fed the starch of 300 g kg?1 diet was significantly lower than those of the fish fed other four diets (60, 140, 220 and 380 g kg?1). Grass carp showed high tolerance to dietary starch while dietary corn starch should be no more than 300 g kg?1 for gibel carp. High starch contents may cause lipid accumulation in the liver and body.  相似文献   

12.
An 8‐week feeding trial was conducted to evaluate two vitamin C derivatives, L‐ascorbyl‐2‐monophosphate‐Mg (C2MP‐Mg) and L‐ascorbyl‐2‐monophosphate‐Na (C2MP‐Na), to satisfy the vitamin C requirement and to test their effects on the immune responses of juvenile grouper, Epinephelus malabaricus. C2MP‐Mg and C2MP‐Na were each supplemented at 20, 50, 80, 150, 250, and 400 mg kg?1 diet in the basal diet providing of 7, 18, 31, 51, 93, 145 mg ascorbic acid (AA) equivalent of C2MP‐Mg kg?1 diet and 4, 10, 17, 31, 47, 77 mg ascorbic acid (AA) equivalent of C2MP‐Na kg?1 diet, respectively. Basal diet without AA supplementation was included as control. Each diet was fed to triplicate groups of grouper (mean initial weight 3.20 ± 0.05 g). Fish fed diets supplemented with either C2MP‐Mg or C2MP‐Na had significantly (P < 0.05) greater weight gain (WG), feed efficiency and survival than those fed the unsupplemented control diet. Liver ascorbate concentrations in fish generally increased as dietary C2MP‐Mg or C2MP‐Na supplementation level increased. Haemolytic complement activity was higher in fish fed diets supplemented with 92 mg AA equivalent of C2MP‐Mg kg?1 or 10–17 mg AA equivalent of C2MP‐Na kg?1 than fish fed the unsupplemented control diet. Lysozyme activity was higher in fish fed ≥51 mg AA equivalent of C2MP‐Mg kg?1 or ≥47 mg AA equivalent of C2MP‐Na kg?1 than fish fed the unsupplemented control diet. Analysis by broken‐line regression of WG indicated that the adequate dietary vitamin C concentration from each vitamin C derivative in growing grouper is 17.9 mg AA equivalent of 2MP‐Mg kg?1 and 8.3 mg AA equivalent of C2MP‐Na kg?1, and it also indicated that C2MP‐Mg is about 46% as effective as C2MP‐Na in meeting the vitamin C requirement of grouper.  相似文献   

13.
A 60‐day feeding trial was carried out to investigate the effect of iron on growth, body composition and digestive enzyme activities. Diets with seven levels of iron (53.9, 90.0, 115.6, 146.1, 176.0, 215.8 and 266.0 mg iron kg?1 diet) were fed to Jian carp (initial weight 11.4 ± 0.0 g). Per cent weight gain (PWG), feed efficiency (FE) and protein efficiency ratio were the lowest in fish fed the basal diet (P < 0.05). Body protein content was increased with the increasing iron levels (P < 0.05), but moisture, lipid and ash of fish were not significantly affected by dietary iron levels (P > 0.05). Activities of trypsin, lipase, α‐amylase, Na+, K+‐ATPase, alkaline phosphatase and gamma‐glutamyl transpeptidase were improved with increasing dietary iron levels. Serum iron were significantly enhanced with dietary iron levels up to 146.1 mg iron kg?1 diet, and plateaued. In conclusion, iron improved digestive enzyme activities of juvenile Jian carp and the dietary iron requirement for serum iron of juvenile Jian carp (11.4–64.0 g) was 147.4 mg iron kg?1 diet with ferrous fumarate as the iron source.  相似文献   

14.
Herbivorous grass carp (Ctenopharyngodon idella) has been reported to exhibit low capacity to utilize high dietary lipid, but different lipid sources might affect this limited capacity. In order to compare the effects of different lipid sources with different lipid levels, juvenile grass carp were fed one of nine diets containing three oils [lard, plant oil mixed by maize and linseed oil, and n‐3 high unsaturated fatty acid‐enriched (HUFA‐enriched) fish oil] at three lipid levels (20, 60 and 100 g kg?1 dry diet) for 8 weeks. Decreased feed intake, poor growth performance, hepatic pathology and higher blood lipid peroxidation were found in 60 and 100 g kg?1 fish oil groups. Conversely, in lard and plant oil groups, even at 100 g kg?1 dietary lipid level, feed intake and growth performance did not decrease, despite histological observation revealed hepatic pathology in these groups. Plasma triglyceride and cholesterol contents increased significantly in all 100 g kg?1 dietary lipid groups. In the comparison of hepatic FA β‐oxidation among three oil groups at 60 g kg?1 dietary lipid level, impaired mitochondrial and peroxisomal FA oxidation capacity was observed in fish oil group. The results confirmed the relatively low capacity of grass carp to utilize high dietary lipid, and furthermore excess HUFA intake will result in more serious adverse effects than other FA.  相似文献   

15.
A feeding trial was conducted for 8 weeks to evaluate the effects of supplemental phytic acid (PA) on the apparent digestibility and utilization of dietary amino acids (AAs) and minerals in juvenile grass carp. Five experimental diets consisted of graded levels of PA (0.2, 4.7, 9.5, 19.1 and 38.3 g kg?1, named as P0, P5, P10, P20 and P40). Triplicate groups of fish (initial weight, 22.37 ± 0.16 g) were fed twice daily (08:00 and 16:00 h). The crude protein content in whole body significantly (< .05) decreased in fish fed with 19.1 and 38.3 g PA kg?1 diet. Supplemental PA (>4.7 g kg?1) significantly reduced the apparent digestibility coefficient (ADC) of AAs (Asp, Thr, Ser, Glu, Gly, Ala, Cys, Val, Met, Ile, Leu, Phe, Lys, Pro, His and Arg) and the ADC of minerals (P, Ca, Mg, Zn, Cu, Fe and Mn) in grass carp. The contents of minerals (P, Ca, Mg and Zn) in whole body and bone were also found to be significantly reduced in dietary PA > 4.7 g kg?1, while the bone ash, serum Alkp and Zn contents were found to be significantly decreased when the PA supplementation level was above 9.5 g kg?1, and the contents of serum Ca and Mg were found to be markedly altered in higher PA‐supplemented groups. The results indicated that supplemental PA decreased the apparent digestibility and utilization of AAs and minerals, and thus reduced the feed utilization of grass carp, suggesting that the level of total PA should be below 4.7 g kg?1 in grass carp diet.  相似文献   

16.
To study the effects of manganese on growth performance, digestive and absorptive abilities, as well as the antioxidative capacity in the hepatopancreas and intestine, young grass carp (Ctenopharyngodon idellus Val.) (264 ± 1 g) were fed diets containing graded levels of manganese at 3.65 (control), 8.62, 13.48, 18.24, 22.97 and 27.86 mg kg?1 diet for 8 weeks. Per cent weight gain (PWG) and feed intake were the poorest in fish fed the basal diet (< 0.05). The activities of trypsin, lipase and alkaline phosphatase in the intestine were significantly enhanced with dietary manganese level at 13.48 mg kg?1 diet (P < 0.05). Additionally, in the hepatopancreas and intestine, the protein carbonyl and malondialdehyde contents were the lowest in fish fed the diet with dietary manganese level at 13.48 mg kg?1 diet (< 0.05), while the anti‐hydroxyl radical capacities, manganese superoxide dismutase (MnSOD), glutathione peroxidase and glutathione‐S‐transferase activities were significantly enhanced with dietary manganese level at 13.48 mg kg?1 diet (< 0.05). Moreover, the catalase activity and glutathione content in the intestine were the highest in fish fed the diet with dietary manganese level at 18.24 mg kg?1 diet (< 0.05). These results indicated that optimum dietary manganese promoted growth, enhanced the digestive and absorptive abilities, and improved the antioxidative capacity in young grass carp. Based on the quadratic regression analysis for PWG and intestinal MnSOD activity, the manganese requirements for young grass carp with the initial body weight of 264 g were 16.91 and 18.21 mg kg?1 diet respectively.  相似文献   

17.
A 100‐day growth trial was executed to determine the dietary selenium (Se) requirement of juvenile gibel carp (Carassius auratus gibelio). Selenomethionine was supplemented to casein‐gelatin diets at 0, 0.1, 0.25, 0.5, 1.0, 2.5 and 5 mg Se kg?1, respectively. Each of these seven semi‐purified diets containing 0.34, 0.47, 0.66, 0.82, 1.23, 2.77 and 5.13 mg Se kg?1 was fed to triplicate groups of gibel carp (2.74 ± 0.02 g) in a flow‐through system. No behaviour abnormalities and no mortality were found in fish exposed to dietary Se concentrations. With the increasing dietary Se supplemented concentrations, weight gain of fish remarkably increased at the levels of ≤1 mg Se kg?1 diet and then showed no significant difference above 1 mg Se kg?1 levels. Although growth performances (weight gain, hepatosomatic index, condition factor and survival) were not impaired in gibel carp fed at above the levels of 2.5 mg Se kg?1, indicators of oxidative stress were changed significantly. Serum superoxide dismutase (SOD) activities significantly declined, hepatic glutathione peroxidase (GPx) activities significantly increased and the tissue Se concentrations significantly raised at the highest supplemented level of 5 mg Se kg?1. A clear linear relationship between Se‐depended GPx activities and hepatic Se concentrations was observed. The present results indicated that the dietary Se requirement for gibel carp is 1.18 mg Se kg?1 diet based on weight gain, GPx activities and tissue accumulation.  相似文献   

18.
A growth trial was conducted to estimate the optimum requirement of dietary zinc (Zn) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (3.97 ± 0.05 g) were fed diets containing graded levels (13, 25, 34, 53, 89 and 135 mg kg?1) of Zn for 8 weeks. Grass carp fed with dietary Zn levels higher than 34 mg kg?1 significantly increased final body weight, weight gain and specific growth rate (P < 0.05). For body composition, fish fed with dietary Zn levels higher than 53 mg kg?1 significantly decreased the moisture contents but increased the lipid contents of whole body and liver. Whole body, scales, vertebrae and liver mineralization were all affected significantly (P < 0.05) by dietary Zn levels. Zn contents in whole body, scales, vertebrae and plasma were linearly increased up to the 53 mg kg?1 dietary Zn and then remained stable beyond this level. Grass carp fed with dietary Zn levels higher than 53 mg kg?1 significantly increased triacyglyceride and total cholesterol contents and plasma alkaline phosphatase activity in plasma (P < 0.05). Broken‐line analysis indicated that 55.1 mg kg?1 dietary Zn was required for maximal tissue storage and mineralization as well as optimal growth of grass carp.  相似文献   

19.
A growth trial was conducted to estimate the optimum concentration of dietary Manganese (Mn) for grass carp (Ctenopharyngodon idella). Triplicate groups of grass carp (3.97 ± 0.05 g) were fed diets containing graded levels (4.0, 8.9, 13.8, 18.7, 23.6 and 33.3 mg kg?1) of Mn for 8 weeks. Weight gain, specific growth rate and feed efficiency were linearly increased up to the 18.7 mg kg?1 dietary Mn and then levelled off beyond this level. For body composition, lipid contents in whole body, muscle and liver decreased significantly with increasing dietary Mn level. Grass carp fed with dietary Mn levels higher than 19.7 mg kg?1 significantly decreased condition factor. Whole body, vertebrae and scales mineralization were all affected significantly by dietary Mn levels. Mn contents in whole body, vertebrae and scales were linearly increased up to the 18.7 mg kg?1 dietary Mn and then levelled off beyond this level. Contrarily, Ca and P contents seem to be inversely related to dietary Mn. However, dietary Mn levels had no significant effect on body Fe contents. Broken‐line analysis indicated that 20.6 mg kg?1 dietary Mn was required for maximal tissue Mn storage, as well as satisfied for the optimal growth of juvenile grass carp.  相似文献   

20.
A 63‐day growth trial was undertaken to estimate the effects of supplemented lysine and methionine with different dietary protein levels on growth performance and feed utilization in Grass Carp (Ctenopharyngodon idella). Six plant‐based practical diets were prepared, and 32CP, 30CP and 28CP diets were formulated to contain 320 g kg?1, 300 g kg?1 and 280 g kg?1 crude protein without lysine and methionine supplementation. In the supplementary group, lysine and methionine were added to formulate 32AA, 30AA and 28AA diets with 320 g kg?1, 300 g kg?1 and 280 g kg?1 dietary crude protein, respectively, according to the whole body amino acid composition of Grass Carp. In the groups without lysine and methionine supplementation, weight gain (WG, %) and specific growth rate (SGR, % day?1) of the fish fed 32CP diet were significantly higher than that of fish fed 30CP and 28CP diets, but no significant differences were found between 30CP‐ and 28CP‐diet treatments. WG and SGR of the fish fed 32AA and 30AA diets were significantly higher than that of fish fed 28AA diets, and the performance of grass carp was also significantly improved when fed diets with lysine and methionine supplementation (P < 0.05), and the interaction between dietary protein level and amino acid supplementation was noted between WG and SGR (P < 0.05). Feed intake (FI) was significantly increased with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05), but feed conversion ratio (FCR) showed a significant decreasing trend (P < 0.05). Two days after total ammonia nitrogen (TAN) concentration test, the values of TAN discharged by the fish 8 h after feeding were 207.1, 187.5, 170.6, 157.3, 141.3 and 128.9 mg kg?1 body weight for fish fed 32CP, 32AA, 30CP, 30AA, 28CP and 28AA diets, respectively. TAN excretion by grass carp was reduced in plant‐based practical diets with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05). The results indicated that lysine and methionine supplementation to the plant protein sources‐based practical diets can improve growth performance and feed utilization of grass carp, and the dietary crude protein can be reduced from 320 g kg?1 to 300 g kg?1 through balancing amino acids profile. The positive effect was not observed at 280 g kg?1 crude protein level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号