首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Protein oxidation in fish meat is considered to affect negatively the muscle texture. An important source of free radicals taking part in this process is Fenton's reaction dependent on ferrous ions present in the tissue. The aim of this study was to investigate the susceptibility of cod muscle proteins in sarcoplasmic and myofibril fractions to in vitro metal-catalyzed oxidation and to point out protein candidates that might play a major role in the deterioration of fish quality. Extracted control proteins and proteins subjected to free radicals generated by Fe(II)/ascorbate mixture were labeled with fluorescein-5-thiosemicarbazide (FTSC) to tag carbonyl groups and separated by two-dimensional gel electrophoresis. Consecutive visualization of protein carbonyl levels by capturing the FTSC signal and total protein levels by capturing the SyproRuby staining signal allowed us to quantify the relative change in protein carbonyl levels corrected for changes in protein content. Proteins were identified using MALDI-TOF/TOF mass spectrometry and homology-based searches. The results show that freshly extracted cod muscle proteins exhibit a detectable carbonylation background and that the incubation with Fe(II)/ascorbate triggers a further oxidation of both sarcoplasmic and myofibril proteins. Different proteins exhibited various degrees of sensitivity to oxidation processes. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), nucleoside diphosphate kinase B (NDK), triosephosphate isomerase, phosphoglycerate mutase, lactate dehydrogenase, creatine kinase, and enolase were the sarcoplasmic proteins most vulnerable to ferrous-catalyzed oxidation. Moreover, NDK, phosphoglycerate mutase, and GAPDH were identified in several spots differing by their pI, and those forms showed different susceptibilities to metal-catalyzed oxidation, indicating that post-translational modifications may change the resistance of proteins to oxidative damage. The Fe(II)/ascorbate treatment significantly increased carbonylation of important structural proteins in fish muscle, mainly actin and myosin, and degradation products of those proteins were observed, some of them exhibiting increased carbonylation levels.  相似文献   

2.
Eighteen proteins and peptides that were found to change post-mortem in Longissimus dorsi from pig muscle were identified by the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The 18 peptides originate from 9 different proteins including the 3 structural proteins (actin, myosin heavy chain, and troponin T) and the 6 metabolic proteins glycogen phosphorylase, creatine kinase, phosphopyruvate hydratase, myokinase, pyruvate kinase, and dihydrolipoamide succinyltransferase. The molecular weight and estimated sequence length of the identified spots show that these fragments result from proteolytic activity in meat. Identification of the parent proteins and the enhanced post-mortem appearance of the degradation products make these specific peptides good candidates for meat quality markers, and further studies of these specific fragments will lead to a better understanding of the proteolytic activities involved in the post-mortem conversion of muscle to meat.  相似文献   

3.
The effects of Trichoderma reesei tyrosinase-catalyzed cross-linking of isolated chicken breast myofibril proteins as a simplified model system were studied with special emphasis on the thermal stability and gel formation of myofibrillar proteins. In addition, tyrosinase-catalyzed cross-linking was utilized to modify the firmness, water-holding capacity (WHC), and microstructure of cooked chicken breast meat homogenate gels. According to SDS-PAGE, the myosin heavy chain (MHC) and troponin T were the most sensitive proteins to the action of tyrosinase, whereas actin was not affected to the same extent. Calorimetric enthalpy (DeltaH) of the major thermal transition associated with myosin denaturation was reduced and with actin denaturation increased in the presence of tyrosinase. Low-amplitude viscoelastic measurements at constant temperatures of 25 degrees C and 40 degrees C showed that tyrosinase substantially increased the storage modulus (G') of the 4% myofibrillar protein suspension in the 0.35 M NaCl concentration. The effect was the most pronounced with high-enzyme dosages and at 40 degrees C. Without tyrosinase, the G' increase was low. Tyrosinase increased the firmness of the cooked phosphate-free and low-meat chicken breast meat homogenate gels compared to the corresponding controls. Tyrosinase maintained gel firmness at the control level of the low-salt homogenate gel and weakened it when both salt and phosphate levels were low. Tyrosinase improved the WHC of the low-meat and low-salt homogenate gels and maintained it at the level of the corresponding controls of phosphate-free and low-salt/low-phosphate homogenate gels. Microstructural characterization showed that a collagen network was formed in the presence of tyrosinase. Keywords: Chicken myofibrillar proteins; protein modification; cross-linking; tyrosinase; gelation; thermal stability; texture; water-holding capacity; microstructure.  相似文献   

4.
Proteins in the pulp of olive ( Olea europaea ) constitute a minor fraction. They have been sparsely studied despite their suggested role in oil stability and olive allergenicity. The analysis of a pulp protein extract by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a major band at 24 kDa that was subjected to tryptic in-gel digestion. Peptide extracts were analyzed by MALDI-TOF MS and nanoLC-MS/MS. The use of different search engines enabled the assignment of a number of fragmentation spectra to peptide sequences, identifying a major band as a thaumatin-like protein and other low-abundant proteins such a drought-induced protein SDi-6-like, an acyl carrier protein, Cu/Zn and Mn superoxide dismutases, a small heat shock protein, and an ATP-dependent protease subunit. Many of the produced spectra did not give good matches in the database searches, due to the scarce presence of O. europaea entries in protein databases. Nevertheless, a huge number of spectra corresponded to peptides, which showed a high degree of homology with others from sequenced organisms. These results proved that database searching with MS/MS spectra constitutes a promising approach for the characterization of olive pulp proteins.  相似文献   

5.
Fish are an important source of dietary protein for humans throughout the world. However, they are recognized as one of the most common food allergens and pose a serious health problem in countries where fish consumption is high. Many marine fish allergens have been extensively studied, but relatively little is known about freshwater fish allergens. This study identified two main allergens from blunt snout bream (Megalobrama amblycephala), a freshwater fish widely consumed in China. Sera from 11 patients with convincing clinical history of blunt snout bream allergy were utilized in IgE immunoblot analysis to identify prominent allergens. Several blunt snout bream proteins revealed specific binding to serum IgE, with the 47 and 41 kDa proteins being the most immunodominant among them. Two-dimensional gel electrophoresis (2D SDS-PAGE) enabled resolution of the 47 and 41 kDa proteins into several protein spots with distinct isoelectric points. 2D SDS-PAGE along with IgE immunoblot analysis further confirmed the strong reactivity of these protein spots with the pooled sera from blunt snout bream-sensitive patients. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis of the peptides generated by trypsin digestion of the different spots corresponding to the 47 and 41 kDa proteins indicated that these spots were isoforms of enolase and muscle creatine kinase, respectively. The potential allergenicity of these proteins was further verified by an bioinformatics approach using the full-length and 80 amino acid sliding window FASTA searches, which revealed a significant amino acid sequence homology between blunt snout bream allergens and several known inhaled and crustacean allergens.  相似文献   

6.
通过盆栽试验,研究了钙镁磷肥和过磷酸钙对土壤砷的生物有效性的影响。结果表明,施用钙镁磷肥和过磷酸钙能显著促进小白菜的生长,与对照相比生物量分别提高了约149%和119%;施磷可显著提高土壤有效态砷含量,其中钙镁磷肥高、低施肥量处理分别比对照增加了52.2%和20.9%,过磷酸钙高、低量施肥处理比对照分别提高了15.0%和5.5%;在同一施磷水平下,钙镁磷肥处理的土壤中有效态砷含量明显高于过磷酸钙处理,施磷可导致小白菜对砷的吸收总量显著增加(P〈0.05),施用钙镁磷肥处理的小白菜砷吸收量的增加幅度较大。磷肥施用可在一定程度上提高土壤中砷的生物有效性,其中施用钙镁磷肥比过磷酸钙的效果更为明显。  相似文献   

7.
采用蛭石栽培,对开花后10 d的菜用大豆 [Glycine max (L.) Merr.] 进行100 mmol/LNaCl处理,利用双向电泳(Two-dimensional gel electrophoresis, 2-DE)技术对胁迫5 d时的种子蛋白质进行分离,并对处理与对照2-DE图谱中蛋白质表达进行比较分析。在对照和处理的2-DE图谱上均检测到327个蛋白点,有28个差异表达蛋白,其中16个较对照显著上调,另外12个显著下调。利用基质辅助激光解吸离子化飞行时间质谱(Matrix-assisted laser desorption ionization time-of-flight mass spectrometry,MALDI-TOF-MS)对其中6个丰度差异较大(丰度变化在2.5倍以上)的蛋白进行分析,通过数据库检索,从中鉴定出5个蛋白质,分别是大豆球蛋白前体G2、肌动蛋白、大豆球蛋白前体G2相似蛋白、类-微管蛋白和Kunitz型胰蛋白酶抑制剂,并对这些蛋白质在NaCl胁迫下可能的作用进行了讨论。结果表明,NaCl胁迫对菜用大豆种子膨大初期的蛋白质代谢产生了显著影响,肌动蛋白、类-微管蛋白和Kunitz型胰蛋白酶抑制剂可能参与了对NaCl胁迫的应答反应。  相似文献   

8.
Muscle proteins are generally believed to be key players in free radical processes that eventually lead to oxidative deterioration or modifications of meat proteins resulting in alterations in functionality, for example, gel-forming ability, emulsification properties, and water-binding capacity. This study addresses protein oxidation in chicken muscles using a combined immunologic and proteomic approach and identifies specific proteins that contain carbonyls and/or 3-nitrotyrosine (3-NT). Whereas alpha-enolase was the predominant carbonyl-reactive species among the water-soluble muscle proteins, several other proteins (actin, heat shock protein 70, and creatine kinase) contained carbonyls and/or 3-nitrotyrosine. Finally, this approach was used to demonstrate differential susceptibility of water-soluble muscle proteins toward oxidation in chickens fed a low-antioxidant diet compared with chickens fed a diet supplemented with antioxidant-rich fruits/vegetables.  相似文献   

9.
Bioprocesses were developed to enhance the value of proteins from deoiled corn germ. Proteins were hydrolyzed with trypsin, thermolysin, GC 106, or Flavourzyme to generate the bioactive peptide sequences. At an enzyme to substrate ratio of 1:100, protein hydrolysis of wet-milled germ was greatest using thermolysin followed by trypsin, GC 106, and Flavourzyme. For the dry-milled corn germ, protein hydrolysis was greatest for GC 106 and least for Flavourzyme. Electrophoretic patterns indicated that the hydrolysis conditions used were adequate for generating low molecular weight peptides for both germs. Unhydrolyzed dry- and wet-milled corn germ did not appear to contain angiotensin I converting enzyme (ACE)-inhibitory peptides. After hydrolysis with trypsin, thermolysin, and GC 106 but not Flavourzyme, ACE inhibition was observed. ACE inhibition was greatest for the GC 106 hydrolysate for both wet- and dry-milled corn germ. Denaturing the protein with urea before hydrolysis, in general, increased the amount of ACE-inhibitory peptides found in the hydrolysate. Membrane fractionations of both the wet- and dry-milled hydrolysates indicated that most of the ACE-inhibitory peptides were in the <1 kDa fraction. Examination of the control total protein extracts (before treatment with proteases) from wet- and dry-milled germ revealed that neither had ACE-inhibitory properties. However, when both total corn germ control protein extracts were fractionated, the <1 kDa fraction of wet-milled corn germ proteins exhibited ACE inhibition, whereas the comparable low molecular weight fraction from dry-milled corn germ did not.  相似文献   

10.
Sorghum proteins have the potential to be used as a bio‐industrial renewable resource for applications such as biodegradable films and packaging. This project was designed to evaluate the effect of interactions between sorghum protein extraction and precipitation conditions on the yield, purity, and composition of sorghum protein fractions. Proteins were extracted with 70% ethanol under nonreducing conditions, with ultrasound, or under reducing conditions using either sodium metabisulfite or glutathione as the reducing agent. Several conditions were used to isolate the extracted proteins through precipitation, including lowering ethanol concentrations alone or in combination with lowering to pH 2.5, or by adding 1M NaCl to the extract. Combinations of these conditions were also tested. All precipitation conditions effectively precipitated proteins and lowering the pH and adding 1M NaCl to the extracts enhanced precipitation in some cases. However, the conditions that precipitated the maxium amount of protein or highest purity of protein varied according to how the proteins were initially extracted. Precipitated proteins were characterized by RP‐HPLC, SEC, HPCE, and SDS‐PAGE to compare the protein fractions composition. Nonreduced and sonicated samples had a much wider Mw distribution than reduced extracts. Thus, extraction and precipitation conditions influenced the isolated proteins yield, purity, and composition. Because the extraction and purification processes influenced the composition, purity, and biochemical properties, it may be possible to prepare protein fractions with unique functionalities for specific end‐uses.  相似文献   

11.
Two white clover (Trifolium repens L.) genotypes, identified by their differing ability to increase in biomass in response to added phosphorus (P) (high P responder, low P responder) were subjected to P deprivation and examined for differences in root growth, root surface acid phosphatase activity, and soluble and ionically‐bound root cell wall isoform profile. As leaf P levels declined, the high P responder showed a greater increase in biomass allocated to the roots, and highest root surface acid phosphatase activity. However, these differences were not statistically significant. The onset of P deprivation enhanced the intensity of several acid phosphatase isoforms in the P deprived root extracts from both genotypes. After 11 days, one basic isoform (resolved atpH4.5) was enhanced in the cell wall extract, an enhancement that was also observed after 26 days. However, for the soluble isoforms, a temporal separation of response was observed in both genotypes. After 11 days, there was no discernable enhancement of the major staining basic isoform or in the major staining acidic isoform (resolved at pH 8.8) in extracts from P‐deprived roots. After 26 days, these isoforms were enhanced in extracts from P‐derived root tissues. Further, a second acidic isoform could now be discerned as a major staining enzyme in P‐derived root extracts from both genotypes.  相似文献   

12.
A proteomic approach has been used to study changes in leaf protein content from plants transformed for alcohol dehydrogenase (ADH) activity. Individual quantitative analysis of 190-436 spots separated by two-dimensional electrophoresis was performed, and spots displaying significant quantitative changes between control (C), sense (S), and antisense (R) transformants were selected using Student's t test. Of the 14 spots selected and further analyzed after trypsic digestion, 9 could be identified by MS analysis and 5 by LC-MS/MS. Identified proteins had mainly a chloroplastic origin: four rubisco large subunits, one rubisco binding protein, two glutamine synthetases, one elongation factor Tu, one ATP synthase beta subunit, and one plastidic aldolase. Proteins with other localization were also identified, such as a UDP-glucose pyrophosphorylase, a mitochondrial aminomethyltransferase, a linalool synthase, which comigrated with the protein identified as elongation factor Tu, an enolase comigrating with a glyceraldehyde 3-phosphate dehydrogenase, and a mixture of eight proteins among which were a dehydroascorbate reductase, a chalcone isomerase, and a rubisco activase. The results emphasize the changes in carbon metabolism-associated proteins linked to the alteration in ADH activity of grapevine transformant leaves.  相似文献   

13.
Pineapple internal browning (IB) is a chilling injury that produces enzymatic browning associated with flesh translucency. Pineapple biodiversity allowed the investigation of how polyphenol oxidase (PPO) and peroxidase (POD) activities with their different isoforms are involved in the IB mechanism. Fruits of four varieties that expressed IB symptoms differently, Smooth Cayenne (SCay) and the hybrids MD2, Flhoran 41 (Flh 41), and Flhoran 53 (Flh 53), were stressed by cold. The susceptible varieties showed classical brown spots but different patterns of IB, whereas MD2 and controls showed no IB. Enzymatic activities were measured on fruit protein extracts and PPO and POD isoforms separated on mini-gels (PhastSystem). Only PPO activity was significantly enhanced in the presence of IB. Up to six PPO isoforms were identified in the susceptible varieties. PPO was barely detectable in the nonsusceptible variety MD2 and in controls. The number of PPO isoforms and the total PPO activity after chilling are varietal characteristics.  相似文献   

14.
Proteomic analysis of hen egg white   总被引:1,自引:0,他引:1  
Hen egg white is an original biological fluid in which major proteins have been widely studied, unlike the minor components. In this study, two-dimensional electrophoresis associated with mass spectrometry enabled the separation of 69 protein spots and their matching with major proteins, which were already known, and with minor proteins. Sixteen proteins were identified, and among them, two had never been previously detected in hen egg white, i.e., Tenp, a protein with strong homology with a bacterial permeability-increasing protein family (BPI), and VMO-1, an outer layer vitelline membrane protein. Thirteen proteins present a very wide polymorphism (ovotransferrin, ovomucoid, clusterin, etc.), some of them up to nine isoforms (ovoinhibitor). Eleven functional protein families were identified (serpin, transferrin, protease inhibitors Kazal, glycosyl hydrolases, lipocalin, bactericidal permeability-increasing protein, clusterin, UPAR/CD59/Ly6/ snake neurotoxin, cysteine protease inhibitor, VMO-1, and folate receptor families). These various biological functions could be interesting for further valorizations. In addition, three spots remain unidentified, probably because these proteins are not yet indexed in the international protein databanks.  相似文献   

15.
A modified phenol-based protocol and a phenol-free protocol that involves hot SDS extraction followed by TCA precipitation in acetone were qualitatively and quantitatively compared and evaluated on apple peel and strawberry fruit. The phenol protocol resulted in significantly higher protein yields of 2.35 +/- 0.1 and 0.46 +/- 0.06 mg/g of FW from apple and strawberry fruit, respectively, compared to the SDS protocol, which produced 0.74 +/- 0.1 and 0.27 +/- 0.02 mg/g of FW, respectively. 2-DE analysis of apple protein extracts revealed 1422 protein spots associated with the phenol protocol and 849 spots associated with the SDS protocol. Of these, 761 were present only in phenol gels, whereas 23 were exclusive to SDS samples. For strawberry, SDS extraction produced poor-quality spots with a high degree of streaking, indicating possible contamination. The application of a cleanup procedure resulted in a purified protein extract with high-quality spots. 2-DE analysis of strawberry protein extracts revealed 1368 spots for the phenol protocol and 956 spots for the SDS protocol accompanied by the cleanup procedure. Of these, 599 spots were present only in phenol gels, whereas 109 were present only in SDS samples. Spots from each fruit tissue and extraction procedure were selected, and a total of 26 were identified by LC-MS/MS. Overall, this study demonstrates the complexity of protein extraction of fruit tissues and suggests that a phenol-based protein extraction protocol should be used as a standard procedure for recalcitrant fruit tissues, whereas a SDS protocol with or without a cleanup procedure may be used as an alternative protocol.  相似文献   

16.
Previous studies have shown that anthocyanin-rich berry extracts inhibit the growth of cancer cells in vitro. The objective of this study was to compare the effects of berry extracts containing different phenolic profiles on cell viability and expression of markers of cell proliferation and apoptosis in human colon cancer HT-29 cells. Berry extracts were prepared with methanol extraction, and contents of the main phenolic compounds were analyzed using HPLC. Anthocyanins were the predominant phenolic compounds in bilberry, black currant, and lingonberry extracts and ellagitannins in cloudberry extract, whereas both were present in raspberry and strawberry extracts. Cells were exposed to 0-60 mg/mL of extracts, and the cell growth inhibition was determined after 24 h. The degree of cell growth inhibition was as follows: bilberry > black currant > cloudberry > lingonberry > raspberry > strawberry. A 14-fold increase in the expression of p21WAF1, an inhibitor of cell proliferation and a member of the cyclin kinase inhibitors, was seen in cells exposed to cloudberry extract compared to other berry treatments (2.7-7-fold increase). The pro-apoptosis marker, Bax, was increased 1.3-fold only in cloudberry- and bilberry-treated cells, whereas the pro-survival marker, Bcl-2, was detected only in control cells. The results demonstrate that berry extracts inhibit cancer cell proliferation mainly via the p21WAF1 pathway. Cloudberry, despite its very low anthocyanin content, was a potent inhibitor of cell proliferation. Therefore, it is concluded that, in addition to anthocyanins, also other phenolic or nonphenolic phytochemicals are responsible for the antiproliferative activity of berries.  相似文献   

17.
Our aim was to study changes in wheat proteomes across different growth locations as the first step in linking protein composition with functional changes in grains produced with commercial production systems. Soluble and insoluble proteins were extracted sequentially from grain of three commercial wheat cultivars grown at four locations in New South Wales, Australia, during a single season. Bands were separated with SDS‐PAGE and identified by peptide mass fingerprinting. Quantitative changes in the electrophoretic patterns were observed mainly in the insoluble polypeptides of molecular mass 40,000–70,000 for all three cultivars grown at two of the four locations. These proteins were identified as mainly globulin and serpin isoforms, as well as triticin. Other proteins with changed expression included disease‐resistance proteins, class III peroxidase, starch branching enzyme I, β‐amylase, and storage proteins. Two‐dimensional electrophoretic analysis was performed on two of the same wheat cultivars grown at one of the locations during two consecutive seasons. Protein spots that varied between seasons consisted of globulin and serpin isoforms, triticin, HMW glutenin, γ‐gliadin, starch branching enzyme IIb, and α‐amylase. The implications of the upregulation of globulin and triticin on whole meal flour quality, through their participation in polymerization of the gluten network, are considered.  相似文献   

18.
Sesame (Sesamum indicum L.) seed has been recognized as a nutritional protein source owing to its richness in methionine. Storage proteins have been implicated in allergenic responses to sesame consumption. Two abundant storage proteins, 11S globulin and 2S albumin, constitute 60-70 and 15-25% of total sesame proteins, respectively. Two gene families separately encoding four 11S globulin and three 2S albumin isoforms were identified in a database search of 3328 expressed sequence tag (EST) sequences from maturing sesame seeds. Full-length cDNA sequences derived from these two gene families were completed by PCR using a maturing sesame cDNA library as the template. The amino acid compositions of these deduced storage proteins revealed that the richness in methionine is attributed mainly to two 2S albumin isoforms and partly to one 11S globulin isoform. The presence of four 11S globulin and three 2S albumin isoforms resolved in SDS-PAGE was confirmed by MALDI-MS analyses. The abundance of these isoforms was in accord with the occurrence frequency of their EST sequences in the database. A comprehensive understanding of these storage proteins at the molecular level may also facilitate the identification of allergens in crude sesame products that have caused severe allergic reactions increasingly reported in the past decade.  相似文献   

19.
Germination in the soft wheat (Triticum aestivum L.) cultivar Rosella was followed for three days after imbibition by proteomic analysis of the germ tissue. Two‐dimensional electrophoresis was performed in triplicate for proteins extracted from embryos dissected from mature grain and from grains germinated for 1, 2, and 3 days. For this period, 63 proteins (in 86 spots) in the germ were identified as decreasing in abundance, 35 proteins (in 60 spots) as increasing in abundance, and 28 proteins (in 39 spots) as exhibiting no significant abundance change. Proteins with significant abundance changes are discussed in relation to physiology; these include proteases, amylases and amylase inhibitors, enzymes in lipid metabolism, proteins related to water stress, cell wall hydrolases, oxalate oxidase, and H+‐ATPases. Functions associated with proteins synthesized during the germination period are inconsistent with the embryo of mature grain being fully primed for germination.  相似文献   

20.
During coffee seed development, proteins are predominantly deposited in cotyledons and in the endosperm. Reserve proteins of the 11S family are the most abundant globulins in coffee seeds, acting as a nitrogen source during roasting and guaranteeing flavor and aroma. The aim of the present study was to compare the protein profiles of endosperm and zygotic embryos of coffee seeds. Proteins were extracted from whole seed as well as from embryo and endosperm, separately. Total proteins were analyzed by two-dimensional electrophoresis (2-DE) followed by identification by mass spectrometry (MS). The most abundant spots observed in the gels of coffee seeds were excised, digested with trypsin, and identified by MS as subunits of the 11S globulin. Spots with identical pI and molecular masses were also observed in the protein profiles of coffee endosperm and embryo, indicating that 11S protein is also highly expressed in those tissues. Peptide sequence coverage of about 20% of the entire 11S globulin was obtained. Three other proteins were identified in the embryo and endosperm 2-DE profiles as a Cupin superfamily protein, an allergenic protein (Pru ar 1), exclusive to the endosperm 2D map, and a hypothetical protein, observed only in the zygotic embryo profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号