首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The effect of different fertilisation (i.e. broadcast application and fertigation) and irrigation practices (tank sprinkler and drip irrigation) on yield, yield quality (nitrate content), nitrogen uptake of white cabbage (Brassica oleracea var. capitata L.) and the potential for N losses was assessed on sandy-loam agricultural soil. 15N-labelled fertiliser was used as a tracer. It was found that different practices significantly affected yield, nitrate content in plants, N uptake, as well as fertiliser use efficiency. The highest yield (93 t ha−1), plant N uptake (246 kg ha−1), and fertiliser use efficiency (42%) were obtained under treatment with broadcast fertilisation with farmer's practice of irrigation (tank sprinkler). The N surplus after harvest was −41 kg N ha−1, indicating the lowest potential for N losses. Treatment by fertigation and drip irrigation covering 100% of the crop's water requirements did not result in the highest yield as expected (72 t ha−1), the N surplus after harvest was about +38 kg ha−1. The lowest yield (58 t ha−1), fertiliser use efficiency (30%) and hence the highest potential for N losses (N surplus after harvest +68 kg ha−1) were found in treatment with broadcast fertilisation and drip irrigation covering 50% of the crop's water requirements.  相似文献   

2.
Current experiment was laid out in order to compare different kinds of organic manure and chemical fertilizer application in growing spinach under the open-field conditions in two successive seasons. Matador type spinach (Spinacea oleracea L.) was cultivated organically and conventionally and spinach growth, yield, vitamin C and nitrate concentrations were checked throughout two successive seasons (autumn and winter). Commercial chemical fertilizer was used as conventional application, and chicken manure (CM), farmyard manure (FM) and blood meal (BM) were used as organic manure applications as a single and as mixtures at different quantities by aiming to receive 150 kg N ha−1 for each, totally 19 applications. In general, autumn season gave the better results in terms of spinach growth, yield and resulted in lower nitrate concentration, whereas the vitamin C concentration was found to be higher in winter season. Reasonable applications to be recommended should be as follows with regard to the seasons; 3.5 ton ha−1 CM and 0.6 ton ha−1 BM + 0.85 ton ha−1 CM + 4.0 ton ha−1 FM for spinach growth; 3.5 ton ha−1 CM and 5.0 FM + 1.2 CM + 0.4 BM applications for spinach yield; 5.0 ton ha−1 FM + 2.5 ton ha−1 CM and 15.0 ton ha−1 FM for vitamin C and nitrate concentration in the autumn and the winter season, respectively. In conclusion, FM and CM can be used effectively in growing organic spinach especially in the autumn season and can be transferred successfully into an asset.  相似文献   

3.
In conservation tillage systems based on legume mulches it is important to optimize N management strategies. The present study evaluated the effect of some winter legume cover crops converted into mulches on the following no-tillage tomato (Solanum Lycopersicum L.) yield, tomato nitrogen uptake, tomato use efficiency (NUE), soil nitrate and the apparent N remaining in the soil (ARNS) in a Mediterranean environment. Field experiments were carried out from 2002 to 2004 in a tomato crop transplanted into: four different types of mulches coming from winter cover crops [hairy vetch (Vicia villosa Roth.), subclover (Trifolium subterranem L.), snail medic (Medicago scutellata L. Miller), and Italian ryegrass (Lolium multiflorum Lam.)]; a conventional tilled soil (CT); and a no-tilled bare soil (NT). All treatments were fertilized with three different levels of nitrogen (N) fertilizer (0, 75, and 150 kg N ha−1). Cover crop above-ground biomass at cover crop suppression ranged from 4.0 to 6.7 t ha−1 of DM and accumulated from 54 to 189 kg N ha−1, hairy vetch showed the highest values followed by subclover, snail medic and ryegrass. The marketable tomato yield was higher in no-tilled legume mulched soil compared to no-tilled ryegrass mulched soil, CT, and NT (on average 84.8 vs 68.7 t ha−1 of FM, respectively) and it tended to rise with the increase of the N fertilization level. A similar trend was observed on tomato N uptake. Hairy vetch mulch released the highest amount of N during tomato cultivation followed by subclover, snail medic, and ryegrass (on average 141, 96, 90 and 33 kg N ha−1). The tomato NUE tended to decrease with the increase of the N fertilization rates, it ranged from 39 to 60% in no-tilled legume mulched soil and from −59 to 30% in no-tilled ryegrass mulched soil when compared to the CT. The soil NO3-N content and the ARNS was always higher in the soil mulched with legumes compared to the soil mulched with ryegrass and in NT and CT. This study shows that direct transplanting into mulches coming from winter legume cover crops could be useful for improving the yield and the N-uptake in a no-tillage tomato crop. Furthermore, considering the high N content in the upper soil layer and the remaining N content in the organic mulch residues after tomato harvesting, there is a large amount of N potentially available which could be immediately used by an autumn–winter cash crop.  相似文献   

4.
Elevated levels of nitrate-nitrogen (NO3-N) in the surficial aquifer above the drinking water quality standard, i.e. maximum contaminant limit (MCL; 10 mg L−1), have been reported in some part of central Florida citrus production regions. Soils in this region are very sandy (sand content >95%), hence are vulnerable to leaching of soluble nutrients and chemicals below the rooting depth of the trees. The objective of this research was to develop N and irrigation best management practices for citrus in sandy soils to maintain optimal crop yield and quality, and to minimize potential leaching of nitrate below the root zone. Six years of field experiment was conducted in a high productive (mean fruit yield > 80 Mg ha−1yr−1) >20-year-old ‘Hamlin’ orange trees [Citrus sinensis (L.) Osbeck] on ‘Cleopatra mandarin’ (Citrus reticulata Blanco) rootstock grown on a well drained Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) in Highland county, FL. Nitrogen rates ranged from 112 to 280 kg ha−1 yr−1 applied as fertigation (FRT), water soluble granular (WSG), 50:50 mix of FRT and WSG, and controlled-release fertilizer (CRF). Tensiometers were used to monitor the soil water content as a basis to schedule optimal irrigation. Fruit yield response over the entire range of N rates was greater for the FRT and WSG sources as compared to that for the WSG + FRT or CRF sources. Using the regression analysis of the fruit yield in relation to N rate, the optimum N rate appeared to be at 260 kg ha−1 yr−1. Based on fruit production response in this study, the N requirement for production of 1 Mg of fruit varied from 2.2 to 2.6 kg across four N sources. This study demonstrated an increased N uptake efficiency, as a result of best management of N and irrigation applications. The optimal N and K concentration in the 4–6-month-old spring flush leaves were 26–30, and 15–18 g kg−1, respectively. However, fruit yield response showed no significant relationship with concentrations of P in the 4–6-month-old spring flush leaves over a range of 0.8–2.4 g kg−1. The results of fate and transport of N in soil and in soil solution with application of different rates and sources of N, and components of citrus tree N budget, are reported in a companion paper.  相似文献   

5.
Sweetpotato [Ipomoea batatas (L.) Lam. cv. Beniazuma] plug transplants produced from single node leafy cuttings under artificial light in a closed-type growth chamber were planted with roots and substrate of 11- and 15-day old (ca. two to three unfolded leaves with 0.08 m shoot length and three to four unfolded leaves with 0.11 m shoot length, respectively). The plug transplants of both the 11- and 15-day old were planted with one and three nodes depth (ca. 4 and 25 mm deep, respectively) inside the soil ridges (called one- and three-node depth, respectively, hereafter). The conventional vine cuttings (ca. 0.3 m long with seven to eight unfolded leaves) without roots were planted as Control treatment to compare the growth and yield of sweetpotato with each of the treatments of plug transplant. The main objectives of the study were to see the effects of ages of plug transplants and depths of planting for greater growth and yield of sweetpotato in the field. The yield of storage roots 115 days after planting in the field was 33 t ha−1 when using 15-day old plug transplants planted with three-node depth and was 10 t ha−1 greater than that in the Control. The mean storage root length was about 259 mm when using 11-day old plug transplants planted with three-node depth and was 33 mm greater than that in the Control. The mean diameter of storage roots was 70 mm when using 11- and 15-day old plug transplants planted with one-node depth and was 21 mm greater than that in the Control. The plug transplants planted either 11- or 15-day old showed greater overall performances than those of the conventional cuttings. The plug transplants planted with three-node depth showed greater performances than did the plug transplants planted with one-node depth.  相似文献   

6.
Pooled data analysis for intercropped versus monocropped citrus orchards showed superiority of monocultured (68.5 kg tree−1) over intercropped (51.4 kg tree−1) orchards. But, intercrop specific analysis revealed that citrus orchards with legumes as intercrop (soybean and chickpea), produced significantly (p < 0.05) higher fruit yield (72.2 kg tree−1) compared to orchards without intercrops (68.5 kg tree−1). These legume-based intercropped orchards maintained much higher levels of leaf nutrient (2.35% N, 0.13% P, 2.08% K, 86.5 ppm Fe, 71.1 ppm Mn, 22.2 ppm Cu, and 22.0 ppm Zn) than the orchards without intercrops (2.29% N, 0.13% P, 2.47% K, 79.2 ppm Fe, 63.8 ppm Mn, 21.7 ppm Cu, and 23.2 ppm Zn). Intercrop yield prediction through regression models in relation to leaf nutrient status were further investigated.  相似文献   

7.
Interest in cashew production in Australia has been stimulated by domestic and export market opportunities and suitability of large areas of tropical Australia. Economic models indicate that cashew production is profitable at 2.8 t ha−1 nut-in-shell (NIS). Balanced plant nutrition is essential to achieve economic yields in Australia, with nitrogen (N) of particular importance because of its capacity to modify growth, affect nut yield and cause environmental degradation through soil acidification and off-site contamination.  相似文献   

8.
The effects of successive brassinosteroid analogue (BR) applications (0.1 mg l−1 of brassinosteroid analogue BB-16) were evaluated on commercial yellow passion fruit (Passiflora edulis f. flavicarpa) orchards in the first year of production. The treatments applied were: control, BR-1 (1 BR application shortly after the first flowers appeared), BR-2, BR-3, BR-4 and BR-5 (BR application in two, three, four and five consecutive weeks after the appearance of the first flowers, respectively). The fruits were collected for seven consecutive weeks (105 fruits treatment−1) and fruit mass, length and diameter, soluble solid contents; pulp mass and peel thickness were evaluated in the laboratory. Multivariate analysis was performed in order to determine whether there were differences among the treatments taking into account all the measurements made. BR-3 was the most promising treatment because it produced the highest number of fruits plant−1 (81.5) compared to the control (53.5) and the soluble solid content was 1 °Brix greater than the control. The BR-3 treatment resulted in a 65% increase in the estimated yield of the passion fruit plants, corresponding to 20 t ha−1 compared to the control yield of 12 t ha−1. The results showed that BB-16 sprayed during a period of reproductive development can increase the number of fruits per plant.  相似文献   

9.
Aluminium phosphide (AlP) is a widely used fumigant due to its ability to kill a broad spectrum of stored-grain insect pests and its easy penetration into the commodity while leaving minimal residues. Field trials were conducted to ascertain the efficacy of AlP as a methyl bromide (MeBr) alternative in tomato (Solanum lycopersicum L.). Six treatments were replicated five times in a randomized complete block design: fumigation with MeBr (400 kg ha−1), three AlP doses (18.75, 37.50 and 56.25 kg ha−1), an avermectin dose (7.5 L ha−1), and a non-treated control. Results consistently indicated that MeBr was generally superior to the treatments involving all AlP and avermectin, which in turn were superior to the control, for improving tomato yield, inhibiting nematode and weed. In two successive seasons, AlP at the dose of 56.25 kg ha−1 was as effective as MeBr in increasing plant height and vigor as well as maintaining excellent tomato yield, but it providing relatively medium control over nematode and weeds. The present data support the conclusion that AlP is a promising alternative to MeBr for managing nematodes and weeds in tomato crop and can be used effectively in integrated pest management programs.  相似文献   

10.
This study was carried out to maximize the fertilization efficiency of mixed organic fertilizer (OF) for organically managed onion (Allium cepa L.) production during the one growing season of 2005–2006. The organic fertilizer was made of organic materials like sesame oil cake, rice bran and molasses and minerals like illite and mountainous soil. Four organic topdressing treatments, which all followed the same basal fertilization with solid OF, consisted of solid OF without mulch (OF/OFnM), liquid organic fertilizer without mulch (OF/LOFnM), liquid organic fertilizer under mulch (OF/LOFuM) and liquid organic fertilizer over mulch (OF/LOFoM). Chemical fertilizer (CF) and no fertilizer (NF) were treated as controls. The solid organic fertilization base was 2.0 ton ha−1, and 4.57 ton ha−1 and was used for topdressing. The total amount of liquid organic fertilization was 133.2 ton ha−1, which was divided into 6 applications from February through March. The OF/LOFuM and OF/LOFoM topdressings did not reduce onion height, leaf number or bulb diameter as compared to chemical fertilizer, whereas no mulch treatments made onion growth significantly poorer. Onion top weight in CF was significantly higher than that in OF groups at the peak growth stage, while there was not much difference in bulb weight between the CF and OF/LOFoM treatment. Finally, the onion marketable yield was 45.9 ton ha−1 in the OF/LOFoM treatment, which exceeded that in the CF treatment by up to 1.9 ton. Furthermore, OF/LOFoM was the most effective among all the treatments in transferring the nutrients from sink to source. CF made the soil pH more acidic than OF did, and the electrical conductivity (EC) remained higher with CF than OF as well. While organic fertilizer helped to keep the NO3-N content stable throughout the growing season, the concentration rapidly oscillated up and down according to CF fertilization. Organic fertilizer increased population number of soil microorganisms like aerobes, actinomycetes in the field.  相似文献   

11.
Soils in central Florida citrus production region are very sandy, hence are vulnerable to leaching of soluble nutrients and chemicals. The objective of this study was to develop nitrogen (N) and irrigation best management practices for citrus in sandy soils to maintain optimal crop yield and quality, and to minimize N leaching below the rootzone. A replicated plot experiment was conducted in a highly productive 20+ year-old ‘Hamlin’ orange [Citrus sinensis (L.) Osbeck] trees on ‘Cleopatra mandarin’ [(Citrus reticulata Blanco)] rootstock grove located on a well drained Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) in Highland County, FL. Nitrogen rates (112–280 kg ha−1 year−1) were applied as fertigation (FRT), water soluble granular (WSG), a combination of 50% FRT and 50% WSG, and controlled release fertilizer (CRF). Tensiometers were used to monitor the soil moisture content at various depths in the soil profile as basis to optimize irrigation scheduling. Fruit yield and quality and nutritional status of the trees were reported in a companion paper. Soil solution was sampled at 60, 120, and 240 cm depths under the tree canopy using suction lysimeters. Concentrations of NO3-N in the soil solution at 240 cm deep, which is an indicator of NO3-N leaching below the tree rootzone, generally remained below the maximum contaminant limit (MCL) for drinking water quality (10 mg L−1) in most samples across all N sources and rates, but for few exceptions. Total N in the fruit was strongly correlated with fruit load, thus, at a given N rate N removal by the fruit was lower during years of low fruit yield as compared to that during the years of high fruit yield. Furthermore, there was a strong linear relation between N and K in the fruit. This supports the need to maintain 1:1 ratio between the rates of N and K applications. In a high fruit production condition, the N in the fruit accounted for about 45% of the total N input on an annual basis. Fifteen percent of the total N input at 280 kg N ha−1 year−1 was not accounted for in the citrus N budget, which could be due to leaching loss. This estimate of potential leaching was very close to that predicted by LEACHM simulation model. The improved N and irrigation management practices developed in this study contributed to an improved N uptake efficiency and a reduction in N losses.  相似文献   

12.
Onion yield and quality response to two irrigation scheduling strategies   总被引:1,自引:0,他引:1  
Irrigation technologies that conserve water are necessary to assure the economic and environmental sustainability of commercial agriculture. This study was conducted in the Rio Grande Valley in Texas to evaluate yield and quality of subsurface drip irrigated onions (Allium cepa L.) using different scheduling strategies and water stress levels. One strategy consisted of initiating irrigation when the reading of a granular matrix sensors (Watermark® 1 soil moisture sensor, Irrometer, Co., Riverside, CA) installed at 0.2 m depth reached −20 kPa (optimum), −30 kPa and −50 kPa. The second strategy was to replace 100%, 75%, and 50% of crop evapotranspiration (ETc) weekly. Higher total yields, and jumbo onion size yields were obtained when the soil moisture was kept above −30 kPa. Yields were not affected when water applications were reduced from 100% to 75% ETc and from −20 to −30 kPa. The ETc strategies of 100%, and 75% ETc resulted in similar water usage to the soil moisture monitoring strategies of initiating irrigation at −20 and −30 kPa. Total yields dropped significantly when soil water stress increased below −50 kPa. For the ET based strategy yields also dropped with the 50% ETc treatment. Onion bulb pungency and brix were unaffected by water level.  相似文献   

13.
In the warm and wet north Florida climate, growing Italian parsley (Petroselinum crispum [Mill.]) is gaining popularity with small producers as a short duration crop on sandy soil. Application of compost to agricultural land can benefit the low fertile sandy soils in Florida and subsequent crop production, while providing an outlet for recycling municipal solid wastes (MSW) and biosolids. A field study was laid out in a randomized complete block design with four replications to evaluate the effects of compost (75% MSW:25% biosolids) application in comparison to fertilizer, fertilizer + compost (50:50), and control treatments on: (a) parsley fresh weight (FW), (b) soil and plant tissue nutrient concentrations, and (c) soil bulk density and moisture retention in winter and spring seasons. Soil amended with fertilizer or compost + fertilizer doubled parsley FW from 15.02 Mg ha−1 in the non-amended control plot to 30.75 and 32.67 Mg ha−1 in soils that received fertilizer + compost or fertilizer alone, respectively. Significantly higher total soil carbon (C) levels of 2.16% and 1.95% and nitrogen (N) levels of 0.19% and 0.16% were recorded in compost and fertilizer + compost treatments, respectively. Addition of compost reduced soil bulk density significantly to 1.03 Mg m−3 and increased soil moisture retention in simulated drier conditions at 1500 kPa to 0.12 m3 m−3 in plots that received only compost at the end of winter growing season. Overall, addition of compost resulted in improvement of both physical and chemical properties as well as increased parsley yields.  相似文献   

14.
The aim of this research was to determine the influence of various forms, diverse doses, and dates of application of nitrogen fertilizers and foliar nutrition on the concentration of sugars, carotenoids and phenolics compound in carrot. Two field experiments (Experiment I in 2003–2005 and Experiment II in 2004–2005) with carrot ‘Kazan F1’ were conducted in Trzciana (50°06′N; 21°85′E) in Poland. Both experiments were arranged in a split-plot design with four replications. Two sub-blocks were identified in both experiments: sub-block (A) without foliar nutrition and sub-block (B) with plant foliar nutrition. In sub-block (B), plants were sprayed three-times with: 2% (w/v) urea, a 1% (v/v) solution of multi-component ‘Supervit R’ fertilizer, and again with 2% (w/v) urea. Combinations with diversified nitrogen fertilization were distinguished within both sub-blocks. The treatments in Experiment I consisted of: (1) Control, (2) 70 kg N ha−1 as Ca(NO3)2, (3) 70 + 70 kg N ha−1 as Ca(NO3)2, (4) 70 kg N ha−1 as (NH4)2SO4 and (5) 70 + 70 kg N ha−1 as (NH4)2SO4, where 70 kg N ha−1 was used preplant and 70 + 70 kg N ha−1 was applied preplant and as a top dressing, respectively. The treatments in Experiment II consisted of: (1) Control, (2) 35 + 35 kg N ha−1 as ENTEC-26, (3) 70 + 70 kg N ha−1 as ENTEC-26, (4) 105 + 105 kg N ha−1 as ENTEC-26, (5) 35 + 35 kg N ha−1 as NH4NO3, (6) 70 + 70 kg N ha−1 as NH4NO3, (7) 105 + 105 kg N ha−1 as NH4NO3, where 35 + 35, 70 + 70, 105 + 105 kg N ha−1 was applied preplant and as top dressing, respectively. Solid nitrogen fertilizer was added to the soil, as produced: Ca(NO3)2—Yara International ASA (Hydro), (NH4)2SO4—Zak?ady Azotowe w Tarnowie, Poland, NH4NO3—Zak?ady Azotowe w Pu?awach, Poland and ENTEC-26–COMPO GmbH & Co., KG, Germany. In Experiment I, the highest sugar concentrations were found in carrot fertilized with (NH4)2SO4 70, while in Experiment II in the control and after fertilization with ENTEC-26 35 + 35 kg N ha−1. In both experiments N-fertilization affected an increase in phenolic compound concentrations in comparison with the control. Experiment I revealed no significant effect of N-fertilization on carotenoid concentrations in carrot, however in Experiment II the highest concentration of these compounds was characteristic for the control plants and carrot fertilized with ENTEC-26 35 + 35. The foliar nutrition applied in Experiment I caused a decline in sugar concentration and an elevated carotenoid concentration, however it had no influence on the phenolic compound concentrations in carrot. Yet the foliar nutrition in Experiment II led to a decrease in phenolic and carotenoid compound concentrations, but it did not affect sugar concentration in carrot.  相似文献   

15.
In arid regions, such as Tunisia, the reuse of treated wastewater (TWW) in agriculture can be a sustainable solution for water scarcity. A two-year field experiment was conducted in order to investigate the short-term effects of TWW on olive growth, yield and concentration of total nitrogen (Nt), potassium (K), phosphorous (P), and heavy metals (i.e. Zn, Mn, Pb and Cd) in olive leaves. Olive trees were subjected to the following irrigation treatments: (i) trees irrigated with well water (WW) and (ii) trees irrigated with treated wastewater (TWW). For both treatments, the TWW and WW were applied at a rate of 4.5 m3 day−1 tree−1 (5000 m3 ha−1 year−1). After two years, non-significant injuries caused by salts and/or heavy metals were observed on shoot growth of trees irrigated with TWW. The application of TWW significantly increased concentration of Nt, P and K in the leaves, whereas heavy metals (Zn and Mn) showed a significant increase only after the second year of irrigation.  相似文献   

16.
Protected horticultural crops as well as those planted in open fields particularly in the Mediterranean region have to cope with increasing salinization of irrigation water. High salinity of the supply water has detrimental effects on soil fertility and plant nutrition and reduces crop growth and yield. This study was conducted to determine if pre-inoculation of transplants with arbuscular mycorrhizal (AM) fungi alleviates salt effects on growth and yield of tomato (Lycopersicon esculentum Mill. Cv. Marriha) when irrigated with saline water. Tomato seeds were sown in polystyrene trays with 20 cm3 cells and treated with AM fungi (AM) or without (nonAM) Glomus mosseae. Once the seedlings were reached appropriate size, they were transplanted into nonsterile soil in concrete blocks (1.6 m × 3 m × 0.75 m) under greenhouse conditions. The soil electrical conductivity (ECe) was 1.4 dS m−1. Plants were irrigated with nonsaline water (ECw = 0.5 dS m−1) or saline water (ECw = 2.4 dS m−1) until harvest. These treatments resulted with soil EC at harvest 1.7 and 4.4 dS m−1 for nonsaline and saline water treatments, respectively. Root colonization with AM fungi at flowering was lower under saline than nonsaline conditions. Pre-inoculated tomato plants with AM fungi irrigated with both saline and nonsaline water had greater shoot and root dry matter (DM) yield and fruit fresh yield than nonAM plants. The enhancement in fruit fresh yield due to AM fungi inoculation was 29% under nonsaline and 60% under saline water conditions. Shoot contents of P, K, Zn, Cu, and Fe were higher in AM compared with nonAM plants grown under nonsaline and saline water conditions. Shoot Na concentrations were lower in AM than nonAM plants grown under saline water conditions. Results indicate that pre-inoculation of tomato transplants with AM fungi improved yield and can help alleviate deleterious effects of salt stress on crop yield.  相似文献   

17.
Zucchini squash (Cucurbita pepo L.) is an economically important vegetable crop in Florida. Typically, it is intensively managed with high inputs of fertiliser and irrigation water. Our objectives were to evaluate the interaction between fertilisation rates and irrigation treatments, and to quantify nitrate leaching in a plastic mulched/drip irrigated zucchini squash production systems. Three studies were carried out. The first study evaluated different depth placement of drip and fertigation lines on plant growth and fruit yield. Treatments included SUR (both irrigation and fertigation drip lines placed on the surface); S&S (both lines buried 0.15 m deep); and SDI (irrigation line placed 0.15 m below the fertigation line on the surface). The second and third studies compared three different N-rates and different soil moisture sensor-based irrigation strategies. Nitrate-N leaching was monitored by zero tension drainage lysimeters and soil samples. N leaching increased when irrigation and N-rates increased, with values ranging from 2 to 45 kg ha−1 of N. Use of SDI increased yields by 16% compared to the S&S treatment, and reduced nitrate leaching by 93% while increasing the water use efficiency by 75% compared to a fixed 2-h irrigation event per day treatment. Application of N above the standard recommended rate of 145 kg ha−1 did not increase yield, although yields were reduced at the lowest N-rate. The use of soil moisture sensors for automatic irrigation control reduced irrigation application and minimized nitrogen leaching. In addition, combining the soil moisture controlled SDI system that had surface applied fertigation resulted in similar or higher yields, while reducing both water use and potential N leaching because of improved nutrient retention in the root zone.  相似文献   

18.
Very little information is available on organic specialty cut flower production, especially fertilization requirements. In order to better understand organic fertilization requirements of two specialty cut flower crops, Limonium sinuatum and Celosia argentea, we initiated a field and greenhouse experiment to study the effect of compost (organic) and conventional (inorganic) fertilization treatments on the growth and productivity of these crops. Optimum yields in the field, expressed as fresh weight per plot, were achieved at compost applications of 98.8 t ha−1 for both Limonium and Celosia. However, when number of stems, height of the stems, and the environmental impacts of such compost applications are considered we concluded that the optimal organic fertilizer amounts were 12.4 and 24.7 t ha−1, for Limonium and Celosia, respectively. Limonium and Celosia plants in the greenhouse experiment were fertilized with 100, 200, 300, and 400 mg L−1 nitrogen, combined with 0, 5, 10, 20, 40, and 60 mg L−1 phosphorus. The generation of response surfaces for total weight per pot, number of stems per pot, average weight per stem, and average stem length were attempted for each species. The results showed that nitrogen did not significantly contribute to any of the models, except for Celosia average weight and length per stem models. Total weights per pot on the other hand showed both a linear and quadratic relationship over the range of phosphorus applications we tested. Maximum number of stems and total weight per pot were observed between 30 and 46 mg L−1 P in both Limonium and Celosia. Our results suggest that organic fertilizer recommendations, in the form of animal manure composts should be based on phosphorus content of the compost rather than nitrogen content especially for soils high in initial phosphorous content.  相似文献   

19.
Kosteletzkya virginica, a perennial dicot halophytic species of the Malvaceae, is native to American salt marsh. It was introduced into China as a potential species to improve coastal wetlands and to develop ecologically sound saline agriculture. K. virginica adapts excellently to the tidal-flat habitats in China's east coast, with multiple eco-benefits; in particular, its seed oil could be used to produce biodiesel. The purpose of this study was thus to develop a standardized protocol to induce a high frequency of callus and subsequent plantlet regeneration system for a K. virginica breeding program with the final objective of applying transgenic techniques to improve seed oil yield. The embryonic axes of K. virginica were used as explants for callus induction, shoot induction from the callus and then adventitious root induction from the shoots on nine culture media with different hormone combinations. The best results were achieved on the following media: (1) 93.94% callus induction on MS medium supplemented with 1.0 mg L−1 indole-3-acetic acid (IAA), 0.3 mg L−1 kinetin, 30 g L−1 sucrose and 8 g L−1 agar; (2) 65.83% shoot induction on 1/2MS medium supplemented with 0.1 mg L−1 IAA, 0.5 mg L−1 zeatin, 30 g L−1 sucrose and 8 g L−1 agar; (3) 96.67% rooting on MS medium containing 30 g L−1 sucrose and 8 g L−1 agar. The survival rate of plantlets by organogenic regeneration was 85% after being transplanted into potting soil in flowerpots and placed in the greenhouse. This experiment indicates that we established successful callus induction and plant regeneration protocols for K. virginica.  相似文献   

20.
Two field experiments were carried out in Egypt during two successive seasons (2007/2008 and 2008/2009). This study aimed to investigate the response of growth, yield quality and some metabolic constituents of onion (Allium cepa L. cv. ‘Giza 20’) to foliar application of putrescine (Put; 25, 50 and 100 mg L−1) and glutamine (Glut; 50, 100 and 200 mg L−1), the former a diamine and the latter an amino acid, either alone, or in combination. Foliar application of Put and Glut, either alone or in combination, significantly increased plant height, number of leaves, fresh weight of leaves/plant, fresh and dry weight/plant, leaf area, leaf area/plant, bulb length, bulb diameter and weight, as well as yield of onion and quality of bulbs. Total soluble sugars, sulfur compounds, total soluble phenols, total free amino acids and total photosynthetic pigment content in leaves were increased by increasing Put and/or Glut concentrations up to 100 and 200 mg L−1, respectively. Generally, foliar application of Put at 100 mg L−1 and Glut at 200 mg L−1 singly, or combined, effectively increased bulb yield and quality. In conclusion, the yield-contributing characters and quality of onion could be improved by application of Put and/or Glut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号