首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The effects of night interruption (NI) were examined on the vegetative growth and flowering of Cymbidium ‘Red Fire’ and ‘Yokihi’. Plants were grown under 9/15 h ambient light/dark (control), 9 h ambient light plus night interruption (22:00–02:00 h) with low light intensity at 3–7 μmol m−2 s−1 (LNI) and 9 h ambient light plus NI with high light intensity at 120 μmol m−2 s−1 (HNI) conditions. The number of leaves, leaf length, number of pseudobulbs and pseudobulb diameter increased in both LNI and HNI compared to controls for both cultivars. While none of the control plants flowered within 2 years, 100% of the ‘Yokihi’ and 80% of the ‘Red Fire’ plants grown under HNI condition flowered. In the LNI group, 60% of the plants flowered in both cultivars. Plants in the HNI group showed a decreased time to visible inflorescence and flowering than those in the LNI group. The number of inflorescences and florets were greater in the plants grown under HNI than those in the LNI group. The tallest plants at flowering were in the HNI group in both cultivars. NI with low light intensity can be used effectively to promote flower induction with increased growth rate during the juvenile stage in Cymbidium. To obtain high quality plants, however, NI with high light intensity strategies should be considered.  相似文献   

2.
Knowledge of the factors involved, and tools to control morphology and flowering are important in intensive and cost-efficient greenhouse production. Hydrangea macrophylla is an important flowering pot plant in Norway and is produced year-around in greenhouses. Due to problems in scheduling, a study was conducted to compare floral transition and morphology of two commercially important cultivars of Hydrangea (‘Early Blue’ and ‘Schneeball’) under different flower initiating treatments in growth chambers. Plants were grown with high pressure sodium lamps (HPS) at moderate temperature (17 °C) (MT) and high (24 °C) temperature. At high temperature, the effect of (1) irradiance under long day conditions (16 h lighting with 70 or 200 μmol m−2 s−1), and (2) short day (8 h lighting) was investigated. The short day treatment had similar light integral as the low irradiance long day treatment (SD: 8 h × 140 μmol m−2 s−1 and LD: 16 h × 70 μmol m−2 s−1 = 4.0 mol m−2 d−1). The intention was to test the effect of irradiance and SD on flower transition and morphology under high temperatures. The results clearly showed that MT is the strongest signal for floral transition. MT resulted in a rapid floral transition of the terminal buds and lateral flower buds. A short forcing period was required and the plants became short and compact without any use of chemical growth retardants. At high temperatures only SD had a promotive effect on flower transition and the response was found to be stronger in ‘Schneeball’ than ‘Early Blue’. In general, all the treatments under high temperatures required a long forcing time and the plants tended to be very tall with a low number of lateral flower buds.  相似文献   

3.
Asiatic hybrid lilies, Lilium × elegans Thunb., ‘Red Carpet’ and ‘Sunray’ were used to investigate the effect of bulb vernalization at 2.5 °C on plant growth, flowering, and CO2 production (respiration), and to use the CO2 production pattern to monitor the time of flower bud initiation and development. Lily shoot emergence and flowering were accelerated when bulbs received 2.5 °C bulb vernalization; however, flowering was delayed when bulbs were stored at 20 °C before treatment at 2.5 °C; this indicated that bulbs were de-vernalized. The maximum CO2 level, and the minimum level, reached in 78 h in non-vernalized bulbs and in 110 h in 6 weeks of 2.5 °C (6 weeks/2.5 °C) treated bulbs, was increased as the 2.5 °C duration was increased; this indicated that CO2 level can be an useful parameter to measure the cold stimulus (i) accumulated in bulbs following bulb vernalization. The respiration rate higher than the predicted values of the best-fit curves derived from the quadratic equations was designated as Blip A and this was correlated to the time of flower bud initiation and development. Shoot elongation may follow the rise in carbon dioxide levels after reaching the minimum level. It is proposed that increased carbon dioxide levels higher than the predicted levels (Blip A), was correlated to the time of flower bud initiation and development. Measurement of carbon dioxide production upon receipt of bulbs may be a useful technique to provide important information for optimum vernalization treatments for bulbs that have accumulated different levels of low temperature stimulus after bulb vernalization.  相似文献   

4.
Dendrobium nobile Lindl. is a popular temperate Chinese orchid commonly marketed as a traditional medicinal plant. Seedlings of Dendrobium nobile Lindl. produced floral buds (33.3–34.8%) precociously on a defined basal medium (1/2 MS) containing paclobutrazol (PP333) at 0.5 mg L−1 or thidiazuron (TDZ) at 0.1 mg L−1 within 4 months of culturing. The frequency of floral buds formation can be further increased to 95.6% by growing seedlings in a PN (PP333 0.3 mg L−1 + NAA 0.5 mg L−1)-containing medium followed by transfer onto 1/2 MS medium with PP333 and TDZ (PP333 + TDZ). However, flower developed was deformed under 25 °C but it developed fully when grown in a lower temperature regime (23 °C/18 °C, light/dark) for 45 days. Under optimal condition, in vitro flowering was observed about 6 months after seed sowing.  相似文献   

5.
Night break treatment was applied to Eustoma grandiflorum ‘Nail Peach Neo’ using light sources with different red (R: 660 ± 30 nm): far-red (FR: 730 ± 30 nm) ratios or FR light intensities in order to investigate growth and flowering responses. Flower initiation and induction were promoted by night break treatment with a low R:FR light source, but was delayed by a high R:FR ratio. The promotion or delay of flower bud formation was accompanied by a decrease or an increase, respectively, in the number of nodes on the main stem at anthesis to the first floret. The difference between date of visible bud with plants under night break treatment and that of the control was approximated with high accuracy by a sigmoid function of the logarithms of R:FR ratio. The threshold R:FR ratio demarcating the promotion and delay of date of visible bud was about 5.3 under the experimental conditions used. The critical R:FR ratios for promotion or delay of visible bud would be about 0.5 and 50.0, respectively. In addition, the time from planting to visible bud was approximated with an exponential function of FR light intensity. The maximum acceleration of date of visible bud by long-day treatment would be 20 days, and the critical FR light intensity would be 2.0 μmol m−2 s−1. It is concluded that growth and flowering of E. grandiflorum can be regulated by long-day treatment using light sources with different R:FR ratios or FR light intensities.  相似文献   

6.
The flowering responses of Brunonia australis (blue pincushion) and Calandrinia sp. to vernalization, photoperiod, temperature and plant age were investigated to provide a foundation for manipulating flowering in these potential potted plants. Plants were vernalized at 4.8 °C for 0, 3 or 6 weeks at the plant age of 1–4 or 8–14 leaves. Following vernalization, plants were grown at 25/10 or 35/20 °C (day/night) under short days (11 h, ambient daylight averaged 380 ± 44 μmol m−2 s−1) or long days (16 h) provided by an additional 5 h night break (21:00–2:00 h at <4.5 μmol m−2 s−1 from incandescent lamps), for 85 days. This is the first work to investigate flowering of these ornamental species. Both species showed enhanced flowering following vernalization and a quantitative requirement for long days. The reduction of the time until the first visible inflorescence (Brunonia) or flower (Calandrinia) buds by 8–13 days was affected by vernalization for 3 or 6 weeks, respectively. Long days were effective for reducing the time to first visible floral bud and increasing the number of inflorescence or flowers per plant for both species. For Brunonia, LDs replaced vernalization when applied to plants with 1–4 leaves. Raising temperature from 25/10 to 35/20 °C increased the number of flowers per plant of Calandrinia by 2–2.5-fold for plants with 1–4 or 8–14 leaves respectively.  相似文献   

7.
The Spanish type cultivar ‘Piel de Sapo’ (Cucumis melo L. var. saccharinus), has a limited compatibility with the Cucurbita maxima × Cucurbita moschata hybrids currently used as rootstocks. Double grafting can be used to improve compatibility between rootstock and scion by means of an intermediate rootstock compatible with both. Non-grafted, single, and double grafted melon plants of the cultivar Piel de Sapo were evaluated for water, nutrient absorption, photosynthesis activity, biomass production in early phases, as well as for yields and fruit quality in a long term trial. The hybrid ‘Shintoza’ (C. maxima × C. moschata) was used as rootstock, and the cantaloupe type melon cultivar ‘Sienne’ as an intermediate scion. Grafting did not affect net photosynthetic values, yet increased water use efficiency (35%). Double grafted plants increased aerial dry weights (66% and 31% with respect to non-grafted and simple graft plants, respectively), and also increased capacity for uptaking beneficial minerals (between 61% and 13% and particularly for NO3, P, K, Ca, Mn, and Zn) with respect to non-grafted and single grafted plants. The quantum efficiency PSII photochemistry values increased in double grafted plants (12%) with respect to the control plants. Consequently, double grafting on a vigorous rootstock such as ‘Shintoza’, with an intermediate scion, results in improved mineral and water absorption and achieves an increase in ion influx to the scion – so enabling an increase in light photosynthetic reaction and biomass. Double grafted plants increased fruit yield when compared to simple grafted and non-grafted plants (12% and 56%, respectively) and did not affect fruit quality in terms of °Brix and colour. In conclusion, double grafting presents several beneficial aspects that are counter-balanced by the extra cost of the technique. The difference in yields reflects compatibility problems.  相似文献   

8.
Salt tolerance of five cultivars of Capsicum annuum L. Early Jalapeno, Golden Treasure, NuMex Sweet, NuMex Joe E. Parker, and Santa Fe Grande, two cultivars of C. chinense Jacq. Habanero and Pimienta De Chiera, and one accession of C. annuum, NMCA 10652, were evaluated in a field study. Seedlings were transplanted in late May to field raised beds containing loamy sand soils in a semi-arid environment. Plants were well irrigated throughout the experiment. Three saline solution treatments, prepared by adding NaCl, MgSO4, and CaCl2 to tap water at different amounts to create three salinity levels of 0.82 dS m−1 (control, tap water), 2.5 dS m−1, and 4.1 dS m−1 electrical conductivity (EC), were initiated on 15th June and ended in late August. Among the eight varieties, NMCA 10652 had the highest survival percentage at 100% in the 4.1 dS m−1 treatment, followed by ‘Early Jalapeno’, ‘NuMex Sweet’, ‘Pimienta De Chiera’, ‘Santa Fe Grande’, ‘Golden Treasure’, and ‘NuMex Joe E. Parker’. ‘Habanero’ had the lowest survival at 28%. Compared to control, final shoot dry weight of the plants irrigated with saline solution at 4.1 dS m−1 was reduced by 92% in ‘Habanero’, followed by ‘Golden Treasure’ at 80%. For fruit fresh weight in 4.1 dS m−1 vs. control, ‘Habanero’ had the highest reduction at 86%, followed by ‘Golden Treasure’ at 74%, while NMCA 10652 and ‘Santa Fe Grande’ had the least at 26% and 19%, respectively. NMCA 10652, the most tolerant to salinity, had the lowest leaf Na+ accumulation, while ‘Habanero’, the most sensitive to salinity, had the highest Na+ in the leaves. For leaf Cl, ‘Early Jalapeno’ had the highest, while ‘Habanero’ had the lowest Cl accumulation in the leaves. Generally, sensitive varieties accumulated more Na+ and/or Cl in leaves, except for ‘Early Jalapeno’, which was relatively tolerant to salinity but had high Na+ and Cl accumulation in leaves.  相似文献   

9.
Orchids are currently the most valuable potted crop in the United States. To date, no studies focused on making possible the year-round greenhouse production of flowering nobile dendrobium orchids. This experiment was aimed at developing a strategy to defer flowering of nobile dendrobium orchids by holding them under low temperature. Mature Den. Red Emperor ‘Prince’ and Den. Sea Mary ‘Snow King’ were held at 10 °C for various durations (0, 4, 8, 12 or 16 weeks) after vernalization (4 weeks at 10 °C). Plants were forced in a greenhouse after holding. Time to flower, flower differentiation (flowering node percentage, number of aerial shoot and aborted bud) and flower quality (total flower number, flower diameter, flower number per flowering node and flower longevity) were determined. Increase of low temperature holding duration from 0 to 16 weeks extended time to flower up to 3 months and did not affect parameters of flower except producing larger flowers and reducing flower number per flowering node for Den. Red Emperor ‘Prince’. Notably, the flower longevity was not adversely affected. Defoliation was aggravated in Den. Red Emperor ‘Prince’ by longer duration of cooling and was considered a detrimental effect of low temperature holding.  相似文献   

10.
Many cool season garden crops, including Viola × wittrockiana Gams. (pansy), exhibit reduced flowering outdoors during the warm summer months. Twelve pansy cultivars varying in summer garden performance were grown under either 20 ± 1.5 or 30 ± 1 °C (air temperature) to determine growth and flowering responses to prolonged high-temperature exposure and to identify selection criteria to screen pansies for flowering heat tolerance. Increasing temperature from 20 to 30 °C increased leaf number below the first flower on ‘Crystal Bowl Primrose’ and ‘Skyline White’ only. Flower bud number reduction at 30 °C versus 20 °C varied from 20% for ‘Crystal Bowl Purple’ to 77% for ‘Majestic Giants Red and Yellow’. Flower diameter reduction at 30 °C versus 20 °C ranged from 14% for ‘Skyline Beaconsfield’ to 44% for ‘Super Majestic Giants Ocean’. The percentage reduction in total color (flower number × estimated flower area) ranged from 60% for ‘Crystal Bowl Primrose’ to 88% for ‘Majestic Giants Rose Shades’. Based on a weighted base selection index, ‘Super Majestic Giants Canary’ and ‘Delta Yellow’ were identified as the most heat-tolerant cultivars, while ‘Super Majestic Giants Ocean’ and ‘Majestic Giants Rose Shades’ were identified as the most heat-sensitive. In a second experiment, root and shoot dry mass were determined after 10, 20, or 30 d when grown at 20 or 30 °C. Relative growth rate and root:shoot ratio were also calculated. After 30 d, ‘Crystal Bowl Primrose’, ‘Crystal Bowl Sky Blue’ and ‘Skyline White’ relative growth rates were lower at 30 °C versus 20 °C. Root:shoot ratio on day 30 was lower at 30 °C compared to 20 °C for six cultivars, but similar across temperature for five cultivars and higher for ‘Crystal Bowl Primrose’. Flower bud number at first flower was positively correlated with branch number, shoot dry mass at flowering, but not correlated with root dry mass at flowering, and negatively correlated with flower diameter and root:shoot ratio (either at flowering, or after 10, 20 or 30 d at 30 °C), suggesting that these traits may be useful when screening pansies for flowering heat tolerance.  相似文献   

11.
12.
Abiotic factors affect the induction of PLBs and callus in hybrid Cymbidium Twilight Moon ‘Day Light’. The initiation and proliferation of new PLBs and callus could be achieved on NAA and kinetin, supplemented at 0.1 mg l−1 each, respectively, both within 45–60 days. Bacto agar was found to be the most suitable solidifying agent for PLB induction, although a higher shoot fresh weight was obtained on Gelrite; a pH 5.3 was optimal while pH 4.5 caused 100% explant necrosis; coconut water, when supplied at 10–20% (v/v) resulted in a significant increase in the number of PLBs formed per PLB segment (23.1 versus 14.6 in controls) while a massive (almost four-fold) increase in fresh top weight occurred when PLB explants were placed in liquid culture, as a result of hyperhydricity; Fe-EDTA (1 mg l−1) and activated charcoal (1 g l−1) stimulated total fresh weight and PLB formation in the presence of PGRs; PLB formation decreased but total fresh shoot weight increased with the addition of niacin or myo-inositol, both vitamins. Dark-grown PLB-induced plants were etiolated and had longer internodes and higher fresh weight than light-grown control plants at 45 μmol m−2 s−1; at 15 μmol m−2 s−1 shoots were slightly etiolated, fragile, and PLB formation was scarce. RAPD and mtDNA analysis of all resultant PLBs, callus or plants showed them to be genetically identical, with comparable chlorophyll contents. Despite the detection of cytological variation between different plant parts, little variation resulted from abiotic factor treatment.  相似文献   

13.
Changes in biophysical attributes, mangiferin and polyphenol oxidase (PPO), catalase and peroxidase activities in malformation resistant mango cultivar Elaichi were studied at various stages of flower development and compared with susceptible cvs. Amrapali, Beauty Mc-lin and Dashehari. Accumulation of mangiferin was maximum (96.0 and 108.0 mg g−1 FW) in Elaichi prior to flower bud differentiation (September) and at full bloom (February), while these were minimum (59.0 and 74.0 mg g−1 FW) in susceptible cv. Beauty Mc-lin. Mangiferin promoted vegetative growth and exhibited inhibitory role on the occurrence of malformation. It was also found that the resistant cultivar had highest activity of PPO as compared to susceptible ones. There was no significant difference in the enzymes catalase and peroxidase activity at early stage of flower differentiation but at flower bud burst stage the catalase activity was enhanced significantly in cv. Elaichi (25.28 unit min−1 g−1 FW) in comparison to Amrapali (16.20 unit min−1 g−1 FW), Beauty Mc-lin (18.39 unit min−1 g−1 FW) and Dashehari (17.50 unit min−1 g−1 FW). The resistant cultivar had high leaf temperature (30.30 °C) and diffusion resistance (476.14 m mol m−2 s−1) during the flowering but the rate of transpiration and relative humidity (RH) were high in susceptible cultivars. Results of the present study clearly indicate that level of mangiferin could be considered as a potential biochemical indicator for screening mango genotypes to malformation.  相似文献   

14.
Linaria maroccana Hook. f. Ann., ‘Lace Violet’, Lupinus hartwegii ssp. cruikshankii Lindl. ‘Sunrise’ and Papaver nudicaule L. ‘Meadow Pastels’ seeds were directly sown into 105 cell plug trays and received either ambient light or supplemental high intensity discharge (HID) lighting. For each species, a 2 × 3 × 3 factorial was used with two light intensities during propagation, three transplant stages, and three night temperatures. Seedlings were transplanted at the appearance of 2–3, 5–6, or 8–9 true leaves. Transplanted Linaria and Papaver seedlings were placed at 5/11, 10/16, or 15/21 ± 1 °C night/day temperatures and Lupinus seedlings were placed at 15/24, 18/25, or 20/26 ± 2 °C night/day temperatures. For this study, the optimum production temperature for Linaria was 10/16 °C as the cut stems produced at 15/21 °C were unmarketable and production time was excessively long at 5/11 °C. At 10/16 °C, Linaria seedlings should be transplanted at the 2–3 leaf stage to maximize stem number, stem length and profitability. For Lupinus the optimum temperature was 15/24 °C due to long stems and high profitability per plant. Lupinus seedlings should be transplanted at the 2–3 leaf stage when grown at 15/24 °C to obtain the longest and thickest stems; however, $/m2 week was higher for plants transplanted at the 8–9 leaf stage due to less time in finishing production space. For Papaver, the 15/21 °C temperature was optimal as that temperature produced the longest stems in the shortest duration, resulting in the highest $/m2 week. At 15/21 °C Papaver plants should be transplanted at the 2–3 leaf stage. Supplemental HID lighting had no effect on any of the species.  相似文献   

15.
Data on the growth-promoting effects of Azospirillum on lettuce exposed to either normal or saline conditions, is scarce. Lactuca sativa L., cv Mantecosa seeds were colonized with A. brasilense Sp245 cells during imbibition. Germination percentages were determined after 7 d treatments with 0, 30, 50 or 80 mol m−3 NaCl. In another experiment, seeds germinated in Hoagland were irrigated for 30 d with 0, 30, 50 or 80 mol m−3 NaCl supplemented media. Vegetative growth proceeded in a growth chamber with a 13–11 h day–night cycle. Buffer-imbibed seeds were considered non-inoculated controls. Plant samples were taken at 0, 14, 20, and 30 d after the onset of NaCl treatments and dissected in aerial and root portions. The weights of both tissues were measured. Azospirillum-inoculated seeds had significantly higher germination percentages than controls in all treatments. Inoculated dried seeds stored up to 30 d maintained such characteristic in most of the treatments, particularly at 80 mol m−3 NaCl. Plants grown from inoculated seeds and irrigated with saline media displayed higher total fresh and dry weights and biomass partition to the aerial portion, than non-inoculated controls. Azospirillum-inoculated lettuce seeds had better germination and vegetative growth than non-inoculated controls after being exposed to NaCl.  相似文献   

16.
The role of corm size, light and temperature in flowering of Watsonia species was evaluated to facilitate their commercial production. In addition to exhibiting desirable ornamental attributes, the species selected represented the major climatic regions in South Africa. A day/night temperature regime of 12/7 °C released vegetative dormancy in all species and thereafter elicited vernalization in Watsonia pillansii – highlighting an obligate cold requirement for this species. Flowering of Watsonia borbonica and Watsonia tabularis was not enhanced by additional chilling, but rather by long (16 h) or day-neutral (12 h) photoperiods. Microscopic examination of the shoot apical meristem revealed that extension of the 2nd leaf was a critical stage developmentally, and signified the anatomical transition to flowering. Late-development temperatures to a maximum of 25 °C ensured healthy vegetative growth and supported the maturation of the inflorescence and the opening of floret buds. Irradiance did not affect flower induction, but a minimum light intensity of 150 μmol m−2 s−1 proved essential in sustaining the energetic demands of the competitive growth and reproductive processes. Excessively high irradiance (950 μmol m−2 s−1) impacted negatively on attractiveness through increased bud blasting. Flowering success was not correlated to corm mass, but rather to the environment under which the corm was stored, or the conditions under which the plant was grown. Understanding the phenology of these species in situ and the link between flowering and season provide a useful tool for predicting the artificial requirements necessary to elicit optimal flowering under industry conditions.  相似文献   

17.
High temperatures are known to reduce fruit size and fruit weight in strawberry, but cultivar differences in the response to high temperature stress during the reproductive stage up to the second inflorescence have not been sufficiently reported. We examined the effect of two day/night temperature regimes on fruit set and fruit growth in two cultivars, ‘Nyoho’ and ‘Toyonoka’. A high day/night temperature of 30/25 °C reduced the number of inflorescences, flowers, and fruits in both cultivars compared with plants grown at 23/18 °C. The percentage of fruit set in ‘Nyoho’ was not significantly different between the two temperature treatments, while that in ‘Toyonoka’ was much lower at 30/25 °C than at 23/18 °C. Days to ripening was shorter at 30/25 °C than at 23/18 °C, and no cultivar differences were observed. Fresh weight of primary, secondary, and tertiary fruits was greater at 23/18 °C than at 30/25 °C in both cultivars, and no cultivar differences were observed, except in tertiary fruits. The diameter of fruits from all positions was also reduced at 30/25 °C in both cultivars. Relative growth rates of fruits showed two peaks in both cultivars and in both temperature treatments. Both peaks appeared earlier at 30/25 °C than at 23/18 °C. Percentage of fruit set at 30/25 °C in the second inflorescence was also significantly lower in ‘Toyonoka’ than in ‘Nyoho’. These results indicate that high temperature stress negatively affects the reproductive process in strawberry and that plant response to high temperature stress is cultivar-related in such responses.  相似文献   

18.
Ethylene exposure time required to induce flowering of Guzmania lingulata Mez. ‘Anita’ was investigated by exposing plants to ethylene at 100 μl l−1 for 4, 6, 8, 10, 12, 16, or 24 h. Plants were also exposed to ethylene-free air for the same lengths of time. Plants exposed to ethylene for 4 h did not flower, but exposure for 6 h or longer resulted in 100% flowering. Suppression of endogenous ethylene synthesis by aminoethoxyvinylglycine (AVG) resulted in a longer exposure time of 20 h being required to obtain 100% flowering. This result suggests that endogenous ethylene production contributes substantially to floral induction. Ethylene treatment on a single young leaf induced flowering as well. Application of a protein synthesis inhibitor, cycloheximide, prevented flowering induced by ethylene, indicating that activation of ethylene responsive genes is followed by synthesis of new proteins involved in flowering.  相似文献   

19.
The effects of photoperiod (12, 13, 14, 15 or 16 h), day temperature (12, 15, 18, 24 or 27 °C) and night temperature (6, 9 or 12 °C) and their interactions on flower and inflorescence emergence were investigated by exposing 4 week old runner plants of strawberry cvs. Korona and Elsanta during a period of 3 weeks. A daily photoperiod of 12 or 13 h resulted in the highest number of plants with emerged flowers. A photoperiod of 14 h or more strongly reduced this number, while no flowers emerged at a photoperiod of 16 h. Plants exposed to photoperiods of 12 or 13 h flowered earlier and had longer flower trusses. A day temperature of 18 °C and/or a night temperature of 12 °C were optimal for plants to emerge flowers and resulted in the shortest time to flowering. A night temperature of 6 °C strongly reduced the number of plants that emerged flowers, especially when combined with lower day temperatures. Photoperiod and temperature had no effect on the number of inflorescences, all flowering plants produced on average one inflorescence. The number of flowers on the inflorescence increased with decreasing day temperature and when photoperiod was raised from 12 to 15 h. In general, ‘Korona’ was more sensitive to photoperiod and temperature as ‘Elsanta’, and had a lower optimal day temperature for flower emergence. Results of this experiment may be used to produce high quality plant material or to define optimal conditions when combining flower induction and fruit production.  相似文献   

20.
Cenourete® is a minimally processed carrot root similar to the American product known as ‘baby-carrot’. This product is obtained through peeling and abrasion of cylindrical carrot root segments. The cultivar Esplanada is well suited for the production of Cenourete® due to its characteristics of long length and cylindrical root shape as well as uniform dark orange root colour. For Cenourete® production, the root should be less than 25 mm in diameter. However, it is well known that root size is influenced by planting density and harvest time. Therefore, the adjustment of the cultural practices would be necessary to increase root yield aimed for Cenourete® processing. The recovery of Cenourete® from ‘Esplanada’ was studied under two between-line spacings: 20 cm (5 transversal lines/m) and 12.5 cm (8 transversal lines/m). Roots were harvested at 80, 90, 100 and 110 days after sowing. Cenourete® yield ranged from 2.39 ± 0.37 to 10.75 ± 1.07 t/ha depending on the combination of harvesting date and between-line spacing. These values corresponded, respectively, to a percent Cenourete® yield recovery of 3.3 ± 0.7%–28.6 ± 2.8% in relation to the total root production. It was concluded that higher yield is obtained with 12.5 cm between-line spacing than with 20 cm between-line spacing and with earlier harvest (80–90 days) than with late harvest (100–110 days).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号