首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was carried out to investigate the efficacy of PGF2α for oestrus synchronization (ES) in Awassi ewes to which were administered the progestagen–PMSG combination, and to evaluate the effect of the exogenous GnRH administration immediately after the artificial insemination (AI) on their pregnancy rate and lambing performance during the breeding season. The ewes (n = 33) were treated with an intravaginal sponge impregnated with 30 mg fluorogestane acetate for 12 days and were injected with 500 IU PMSG at the time of removal of the sponge. The ewes were then divided into three equal groups of 11 ewes each. One millilitre of physiological saline (0.9% NaCl; placebo) was administered to each ewe in Group 1 at the time of second AI. Approximately 4 μg GnRH (busereline) was injected to each ewe in Group 2 immediately after second AI. A total of 150 μg PGF2α (cloprostenole) was injected at the time of sponge removal on day 12 and 4 μg GnRH immediately after the second AI was also treated to each ewe in Group 3. Intracervical AI with diluted fresh semen was performed twice at 12 and 24 h following the onset of oestrus. The injection‐oestrus onset and injection‐oestrus‐end interval in Group 3 was significantly (p < 0.001) shorter than both Groups 1 and 2. Although the pregnancy rates of Groups 2 and 3 (81.8%; 9/11) were numerically higher than of Group 1 (63.6%; 7/11), the difference among the groups was statistically insignificant. The multiple birth rate of Group 3 was found higher than Groups 1 and 2. However, the number of single lambs of Group 1 was also higher than Groups 2 and 3 (p < 0.05). Despite the litter sizes of Groups 2 (1.27; 14/11) and 3 (1.55; 17/11) being numerically higher than Group 1 (0.73; 8/11), the differences among all the groups were statistically insignificant. In conclusion, the administration of PGF2α at the time of removal of the sponge shortens the injection oestrus‐onset and oestrus‐end interval in Awassi ewes treated with progestagen–PMSG. Additionally, exogenous GnRH treatment immediately after the AI increases the multiple birth rate of Awassi ewes synchronized with progestagen–PMSG–PGF2α combination.  相似文献   

2.
This study aimed to evaluate three regimes for oestrus and ovulation synchronization in Farafra ewes in the subtropics. During autumn, 43 ewes were assigned to (i) controlled internal drug releasing (CIDR)‐eCG group, treated with CIDR for 12 days and eCG at insert withdrawal, n = 13; (ii) PGF2α‐PGF2α group, treated with two PGF2α injections at 11 days interval, n = 14; and (iii) GnRH‐PGF2α‐GnRH group, treated with GnRH, followed 5 days later with PGF2α and 24 h later with a second GnRH, n = 16. Oestrus‐mating detection was carried out at 4 h intervals starting on day 0 [the day of CIDR withdrawal (CIDR‐eCG group), the day of second PGF2α treatment (PGF2α‐PGF2α group) and the day of PGF2α treatment (GnRH‐PGF2α‐GnRH group)]. Ovarian dynamics was monitored by ultrasound every 12 h beginning on day 0 and continued for 4 days. Blood samples were obtained daily for progesterone (P4) and oestradiol 17β (E2) estimation starting on day 0 and continued for 4 days. The obtained results showed that, oestrus expression, ovulation and conception were greater (p < 0.05) in CIDR‐eCG and PGF2α‐PGF2α groups than in GnRH‐PGF2α‐GnRH group. All ewes of PGF2α‐PGF2α group presented, on day of second PGF2α injection with mature CL (P4 > 2.0 ng/ml), compared to 42.9% in GnRH‐PGF2α‐GnRH group (p = 0.01). The peak of oestrus occurred 32–52, 48–60 and 28–96 h after the end of treatment in CIDR‐eCG, PGF2α‐PGF2α and GnRH‐PGF2α‐GnRH groups, respectively. Ovulation started 48 h after treatment in all groups and extended for 24, 36 and 48 h for CIDR‐eCG, PGF2α‐PGF2α and GnRH‐PGF2α‐GnRH groups, respectively. Results demonstrated that oestrus and ovulation synchronization could be efficiently achieved in Farafra ewes using either CIDR‐eCG or PGF2α‐PGF2α regimes; however, the GnRH‐PGF2α‐GnRH treatment induced a more spread oestrus and ovulation that may make the protocol inadequate for timed artificial insemination.  相似文献   

3.
Conception rates after Ovsynch have been higher in primiparous than in multiparous cows. The objective of this study was to investigate whether this difference might be due to differences in ovulation rate or follicular size. The experiment was conducted with 136 Holstein Frisian cows from a commercial herd in Brandenburg, Germany. All cows were synchronized using Buserelin (GnRH analogue) at day ?10, Tiaprost (PGF2α analogue) at day ?3 and again GnRH at day ?1. Timed artificial insemination (TAI) was carried out 16–20 h after the second dose of GnRH on day 0. Milk samples for analysis of milk progesterone were obtained on days ?17, ?10, ?3 and at TAI. Progesterone concentrations were used to determine the stage of oestrus cycle at the start of the synchronization protocol and to investigate the presence of functional luteal tissue before treatment with PGF2α and TAI. All animals were examined by ultrasound at the second treatment with GnRH, at AI, 8 and 24 h after AI. Overall synchronization rate (proportion of cows with an ovulation within 40 h after GnRH) was 86.8% in primiparous and 88.2% in multiparous cows, respectively. Ovulation occurred earlier in primparous than in multiparous cows (p < 0.05) and ovulatory follicles were smaller. Conception rates were numerically higher in primiparous cows but the difference was not significant. Cows that displayed signs of oestrus on day ?1 and received an additional AI on this day were more likely to conceive than cows that only received TAI 16 to 20 h after GnRH2. It is concluded that ovulation occurs earlier in primiparous than in multiparous cows after Ovsynch. However, a significant relationship between these differences and the probability of conception could not be established.  相似文献   

4.
The study aimed to compare the acid–base balance and steroid concentrations between follicular fluids (FF) of pre‐ovulatory follicles derived from a spontaneous oestrus (SO), synchronized or induced oestrus (IO) and follicular cysts (CYS) and between FF and blood in dairy cows. Forty‐two dairy cows were included in this study. The animals were allocated to three groups: SO (n = 23); IO (n = 11) using GnRH at day 0 and day 9 and PGF2α at day 7; and animals with CYS (n = 10). The follicular fluids (FF) were aspirated from the cyst/pre‐ovulatory follicles (? ≥ 15 mm) after SO and after second GnRH dose in IO by transvaginal ultrasound‐guided ovum pick‐up technique. Blood samples (BL) were collected in heparinized vacutainer tubes. The oxygen tension (pO2) in FF of IO was higher (p < 0.05) than in SO and CYS groups. There were negative correlations (p < 0.001, r = ?0.89) between FF and blood pO2. The carbon dioxide tension (pCO2) and lactate level in FF of CYS group were higher (p < 0.05) than in SO and IO groups. There were negative correlations (p < 0.01, r = ?0.73) between blood and FF pO2. Oestradiol‐17β concentration in pre‐ovulatory follicles and plasma of the SO group was higher (p < 0.001) than in IO and CYS groups. Progesterone concentration in pre‐ovulatory follicles and plasma of the SO and IO groups was lower (p < 0.01) than in CYS group. Plasma androstenedione concentration in SO and IO groups was higher (p < 0.05) than in CYS group. In conclusion, acid–base parameters, E2 and P4 levels in the follicular fluid of both IO and CYS groups were deviated greatly from the physiological level (disturbances of intrafollicular/intracystic environment), which may affect the quality of both the oocyte and the granulosa cells.  相似文献   

5.
The objective of this experiment was to evaluate the effect of GnRH, progestagen and prostaglandin F on estrus synchronization in sheep and goats. Sixty Awassi ewes and 53 Damascus does were used in the study. The experiment started at the beginning of the breeding season (June/July). The same treatments were applied to sheep and goats as follows: no treatment (CON), 14‐day progestagen sponges and 600 IU equine chorionic gonadotropin (S), gonadotropin releasing hormone followed 5 days later by prostaglandin F (GP) and gonadotropin releasing hormone, progestagen sponges for 5 days and prostaglandin F on the day of sponge removal (GSP). None of the ewes in the S group lambed from mating during the induced cycle. A greater lambing rate (p < 0.05) was observed in the GSP group compared with the CON and S groups while the GP group was intermediate. The number of lambs born per lambed ewe was similar among the CON, GP and GSP groups. However, the number of lambs per exposed ewe was greater (p < 0.05) in the GSP than the remaining groups. The induced cycle kidding rate was 77% for all treatments combined. Similar kidding rate were observed among treatments. The numbers of kids born per kidded and exposed doe from mating during the induced estrus were also similar among treatments. Greater numbers of multiple births were observed in the GP and GSP than in the S group. In conclusion, a combination of GnRH, progestagen sponges and PGF can be effective in synchronizing estrus and improving fecundity in sheep and goats. Although the use of GnRH–PGF was effective, the addition of progestagen sponges at the time of GnRH administration appeared to improve reproductive parameters.  相似文献   

6.
Crossbred cows (n = 1073) from five locations had oestrous cycles synchronized with 100 μg of GnRH IM and insertion of controlled internal drug release device (CIDR) on Day 0 followed by 25 mg of PGF IM and CIDR removal on Day 7. Kamar® patches were placed on all cows at CIDR removal. Cows were observed three times daily for oestrus after PGF administration. In the Ovsynch‐CIDR group, cows detected in oestrus (n = 193) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 80 received and 113 did not receive a second GnRH at 48 h after PGF. Cows (n = 345) not detected in oestrus received a second GnRH at 48 h after PGF on Day 9, and fixed‐time AI 16 h after the GnRH on Day 10. In the CO‐Synch‐CIDR group, cows detected in oestrus (n = 224) within 48 h after PGF were inseminated using the AM–PM rule. Among these cows, 79 received and 145 did not receive a second GnRH at 64 h after PGF. Cows (n = 311) not detected in oestrus received a second GnRH on Day 10 at the time of AI, 64 h after PGF. The AI pregnancy rates were not different between the Ovsynch‐CIDR and CO‐Synch‐CIDR groups (p = 0.48). There were no differences in the AI pregnancy rates for cows inseminated at a fixed time (p = 0.26) or at detected oestrus (p = 0.79) between the treatment groups. Among cows inseminated in oestrus, there were no differences in the AI pregnancy rates between cows that received or did not receive the second GnRH (p = 0.47). In conclusion, acceptable AI pregnancy rates can be achieved with or without inclusion of oestrus detection in the Ovsynch‐CIDR and CO‐Synch‐CIDR protocols. Among cows detected in oestrus, cows that received a second GnRH yielded similar pregnancy rates when compared with cows that did not receive the second GnRH.  相似文献   

7.
The investigations were carried out on a total of 70 cows with puerperal endometritis. In addition to intrauterine antibiotic treatment, 30 experimental animals were administered 20 μg GnRH analogue, buserelin, between days 10 and 12 post‐partum followed by 500 μg PGF analogue, cloprostenol, 10 days later. Forty control cows were treated only with intrauterine antibiotics. Blood samples for progesterone determination were collected from the tail vein twice weekly until day 70 post‐partum. The first rise in progesterone level above 3.18 nmol/l occurred significantly earlier in the experimental than in control cows (21.6 ± 9.2 versus 27.8 ± 12.3 days; p ≤ 0.05). The duration of the first cycle post‐partum was 15.0 ± 4.3 days in experimental and 19.7 ± 7.3 days in control animals (p ≤ 0.05). However, no significant differences were observed in the occurrence of first oestrus post‐partum. The involution of the uterus was improved after hormone treatment. At day 42 post‐partum, completion of uterine involution was found in 93.3% of hormone‐treated cows and in 82.5% of those treated with antibiotic only (p ≤ 0.05). Clinical recovery was 96.6% in the experimental and 82.5% in the control group (p ≤ 0.05). First service pregnancy rate was significantly better in hormone‐treated than control cows (51.7 versus 36.4%; p ≤ 0.05). Total pregnancy rate and insemination index values were not significantly improved following GnRH and PGF treatment. The average service period was 89.8 ± 21.2 days in cows after hormone treatment, and 112.6 ± 24.5 days in control cows. The difference was statistically significant (p ≤ 0.05). These results indicate, that the sequential GnRH and PGF application in cows with puerperal endometritis positively affected ovarian function and uterine involution, resulting in improved fertility performance.  相似文献   

8.
The objective of the present study was to determine whether oestrous detection with the help of oestrous detection aids during the Heatsynch without timed AI protocol is equally effective with the progesterone‐combined protocol in dairy heifers. A total of 148 heifers were randomly assigned to one of the two groups. A group of heifers treated with Heatsynch with heat detection aids (n = 72) received GnRH on day 0, prostaglandin F (PGF) on day 7 and oestradiol benzoate (EB) on day 8, while in controlled internal drug release (CIDR)‐Heatsynch group (n = 76), CIDR was included during a period from GnRH to PGF. Heifers were checked for oestrus twice daily, i.e. from 09:00 to 10:00 hours and from 15:00 to 16:00 hours starting on day 2 for Heatsynch group and on day 8 in CIDR‐Heatsynch group, and continued up to day 12. KAMAR®heat mount detector (KAMAR® Inc., Steamboat Springs, CO, USA) and ALL‐WEATHER® PAINTSTIK® (LA‐CO Industries Inc., Elk Grove Village, IL, USA) were used as heat detection aids. AI was conducted within 1 h after confirming oestrus in 72 heifers, while 19 animals were transferred with embryo 7 days after oestrus according to the request of the owners. Premature oestrus before PGF injection occurred in 18% of Heatsynch group. Of 13 heifers which showed premature oestrus, six were inseminated and two of them conceived. Oestrus detection rate within 12 days after initiation of the protocols did not differ between the two groups (94% vs 95%). There was no difference in the conception rate after first AI (including heifers that were inseminated before PGF injection) and embryo transfer between Heatsynch with heat detection aids and CIDR‐Heatsynch groups (36% vs 44% and 70% vs 56%). It is concluded that the use of heat detection aids to monitor the occurrence of premature oestrus prior to PGF injection in Heatsynch protocol in dairy heifers was equally effective to the inclusion of CIDR.  相似文献   

9.
The objective of this study was to determine a value of serum progesterone (P4) concentration, assessed using an enzymeimmunoassay (EIA), for the early distinction between pregnant and non‐pregnant ewes and goats. Adult, non‐lactating ewes of Chios (n=53), Berrichon (n=30) and Sfakia (n=45) breeds were synchronized during the breeding season with progestagens and gonadotrophins and mated to fertile rams (Experiment I). Adult, lactating goats of Swiss breeds (Alpine and Saanen, n=104) and indigenous Greek breed (n=45) were synchronized during the transitional season with progestagens, PGF2α and gonadotrophins. Cervical artificial insemination (AI) with fresh semen was applied once, 42–44 h after sponge removal (Experiment II). Jugular blood samples were collected on day 19 after sponge removal (ewes) or on day 21 after AI (goats) and serum P4 concentration was determined by EIA. Progesterone concentrations ≥1.0, ≥1.5, ≥2.5 and ≥4.0 ng/ml were tested as indicative of pregnancy. Pregnancy diagnosis was verified on birth. In the case of sheep, using a discriminatory level of 2.5 ng/ml, overall accuracy of pregnancy diagnosis was 91.4% and predictive value of negative and positive diagnoses were 98.3 and 85.3%, respectively. In the case of goats, predictive value of negative diagnosis was 95.8 and 94.0% and predictive value of positive diagnosis 71.3 and 71.7%, for 1.5 and 2.5 ng/ml, respectively; overall accuracy was 79.2% using either level. The other discriminatory levels tested did not improve these results. A significant positive correlation was observed between P4 concentration and the number of lambs or kids born, and further analysis indicated that this relationship is not a simple linear function. Based on the results of this study, P4 concentrations of 2.5 ng/ml in the case of ewes and 1.5–2.5 ng/ml in the case of goats, determined with EIA, are proposed as discriminatory levels between pregnant and non‐pregnant animals, at an interval of one oestrous cycle after service.  相似文献   

10.
The aim of this study was to evaluate the effects of ram introduction after the second prostaglandin F2α (PG F2α) injection on day 11 on the secretion characteristics of pre‐ovulatory LH surge of fat‐tailed ewes. Multiparous Morkaraman ewes (n=12) were divided into three groups by balancing the groups for liveweight (BW) and body condition score (BCS). On the day of second PGF2α injection (0 h), performance tested rams (n=2) were either introduced to the ewes at 0 h (ram 0 group, n=4) or at 18 h (ram 18 group, n=4) or were not introduced (control group, n=4). Blood samples were collected at 6, 18, 42, 48, 56, 62, 66, 70, 74, 78 and 90 h for the determination of pre‐ovulatory LH surge. BCS and BW during the experimental period were 2.2 ± 0.2 units and 50.9 ± 2.3 kg, 2.4 ± 0.4 units and 49.2 ± 6.2 kg, 2.1 ± 0.3 units and 45.9 ± 4.4 kg, respectively for the ram 0, ram 18 and control groups (p > 0.05). No significant difference was observed in LH surge characteristics for the experimental groups. Peak LH concentrations were also not different between groups (p > 0.05) and they were 12.2 ± 8.3, 29.1 ± 9.9 and 15.8 ± 9.5 μg/l for the ram 0, ram 18 and control groups, respectively. There was, however, a significant correlation between peak LH concentrations and BCS (p < 0.05, R2=0.373). In conclusion, it appears that, compared with ram introduction, variability in body condition of the ewe has much pronounced effect on the amount of LH secreted after the usage of two PGF2α injections (11 days apart) as a tool for oestrus synchronization.  相似文献   

11.
The study investigated, for cycling sheep, synchronizing protocols simultaneously to the standard “P” protocol using progestogens priming with intravaginal devices and gonadotropin. In November 2014, 90 adult Menz ewes were assigned to either the “P” protocol, “PGF” treatment where oestrus and ovulation were synchronized using two injections of prostaglandin 11 days apart or a “GnRH” treatment where the ewes had their oestrus and ovulation synchronized with GnRH (day 0)–prostaglandin (day 6)–GnRH (day 9) sequence. The ewes were naturally mated at the induced oestrus and the following 36 days. Plasma progesterone revealed that 92% of the ewes were ovulating before synchronization and all, except one, ovulated in response to the applied treatments. All “P” ewes exhibited oestrus during the 96‐hr period after the end of the treatments in comparison with only 79.3% and 73.3% for “PGF” and “GnRH” ewes, respectively (< .05). Onset and duration of oestrus were affected by the hormonal treatment (< .05); “GnRH” ewes showed oestrus earliest and had the shortest oestrous duration. Lambing rate from mating at the induced oestrus was lower for “P” than for “PGF” ewes (55.6% and 79.3%, respectively; < .05). The same trait was also lower for “P” than for “PGF” and “GnRH” ewes (70.4%, 89.7% and 86.7%, respectively; < .05) following the 36‐day mating period. Prostaglandin and GnRH analogue‐based protocols are promising alternatives for both controlled natural mating and fixed insemination of Menz sheep after the rainy season when most animals are spontaneously cycling.  相似文献   

12.
Synchronization of oestrus and/or ovulation can reduce workload in heifer reproductive management. The objective of this study was to compare two protocols to synchronize oestrus and/or ovulation using GnRH and prostaglandin F2α (PGF2α) in dairy heifers concerning their effect on follicular dynamics and reproductive performance. Four trials were carried out. In trial 1, 282 heifers were treated with GnRH and PGF2α 7 days apart (GP protocol). One group was inseminated on detection of oestrus (IDO 1), and the other group received two timed artificial inseminations (AI) 48 and 72 h after PGF2α administration (TAI 1). In trial 2, 98 heifers were synchronized with the same GP protocol. Heifers in IDO 2 were treated as in IDO 1, heifers in TAI 2 received two TAI 48 and 78 h after PGF2α administration. In trial 3, heifers in IDO 3 (n = 71) were again treated as in IDO 1. Heifers in TAI 3 (n = 166) received a second dose of GnRH 48 h after PGF2α (GPG protocol) and TAI together with this treatment and 24 h later. Trial 4 compared the timing of ovulation after the GP and the GPG protocol, using a subgroup of the heifers from trials 1 to 3. The ovaries of the heifers were scanned via ultrasound at 48, 56, 72, 80, 96 and 104 h after PGF2α administration. Timing of ovulation and size of the ovulatory follicles were compared between the two groups. In trials 1 to 3, conception rates to first service were between 49 and 66%. They did not differ significantly between IDO and TAI groups within or between trials. Pregnancy rates per synchronization were numerically higher in the TAI groups, but the difference was not significant. Conception rates to breeding on spontaneous oestrus in heifers returning to oestrus were higher than that after synchronized oestrus. In trial 4, more heifers ovulated before the end of the observation period in GPG than in GP (96.5% vs 74.7%; p < 0.001). Overall, ovulatory follicles were smaller in GPG (13.1 ± 1.9 mm vs 14.3 ± 1.9 mm; p < 0.001).  相似文献   

13.
Objectives were to evaluate risk factors affecting ovulatory responses and conception rate to the Ovsynch protocol. Holstein cows, 466, were submitted to the Ovsynch protocol [day 0, GnRH‐1; day 7, prostaglandin (PG) F; day 9, GnRH‐2] and 103 cows were inseminated 12 h after GnRH‐2. Information on parity, days in milk at GnRH‐1, body condition, milk yield, exposure to heat stress, pre‐synchronization with PGF and the use of progesterone insert from GnRH‐1 to PGF was collected. Ovaries were scanned to determine responses to treatments. Overall, 54.7%, 10.6%, 2.2%, 81.1%, 9.0%, 91.5% and 36.9% of the cows ovulated to GnRH‐1, multiple ovulated to GnRH‐1, ovulated before GnRH‐2, ovulated to GnRH‐2, multiple ovulated to GnRH‐2, experienced corpus luteum (CL) regression and conceived, respectively. Ovulation to GnRH‐1 was greater in cows without a CL at GnRH‐1, cows with follicles >19 mm and cows not pre‐synchronized with PGF 14 days before GnRH‐1. Multiple ovulations to GnRH‐1 increased in cows without CL at GnRH‐1 and cows with follicles ≤19 mm at GnRH‐1. Ovulation before GnRH‐2 was greater in cows without CL at PGF. Ovulation to GnRH‐2 increased in cows that received a progesterone insert, cows with a CL at GnRH‐1, cows with follicles not regressing from the PGF to GnRH‐2, cows with larger follicles at GnRH‐2, cows that ovulated to GnRH‐1 and cows not pre‐synchronized. Multiple ovulations after GnRH‐2 increased in cows with no CL at GnRH‐1, multiparous cows and cows that multiple ovulated to GnRH‐1. Conception rate at 42 days after AI increased in cows with body condition score > 2.75 and cows that ovulated to GnRH‐2. Strategies that optimize ovulation to GnRH‐2, such as increased ovulation to GnRH‐1, should improve response to the Ovsynch protocol.  相似文献   

14.
The main goal of this study was to assess the usefulness of two imaging modalities, namely the B‐mode and colour Doppler sonography, and serum progesterone (P4) concentrations for determining the ovarian response in superovulated ewes. Twenty‐four sexually mature Santa Inês ewes underwent the superovulatory treatment consisting of eight injections of porcine FSH (total dose of 200 or 133 or 100 mg; =  8 ewes/total dose) given at 12‐hr intervals and initiated 48 hr before CIDR ® (Pfizer Inc., Auckland, New Zealand) removal. Six days after natural mating, the ovaries of all donor ewes were visualized and examined with transrectal ultrasonography and then with videolaparoscopy to identify and enumerate corpora lutea (CL ) and luteinized unovulated follicles (LUF s). Jugular blood samples were collected just prior to ovarian examinations. The total number of CL (=  .78 and 0.83, <  .0001) and LUF s (=  .74 and 0.90, <  .0001) enumerated using the B‐mode and colour Doppler ultrasonographic technique, respectively, were correlated with that ascertained by videolaparoscopy. Circulating concentrations of P4 were related directly to the number of healthy CL (=  .73, =  .0002) and inversely to the number of prematurely regressing CL (= ?.46, =  .03), but the accuracy of predicting the number of short‐lived CL with serum P4 concentrations was very poor. The present results indicate that ultrasonographic imaging and serum P4 measurements on the day of embryo recovery are useful indicators of total/normal CL numbers and both ultrasonographic techniques can be used to quantify LUF s in superovulated ewes.  相似文献   

15.
Inhalt Bei insgesamt 500 Schafen (260 Merino, 120 Dagliç, 120 Ramliç) in drei Schafzuchtbetrieben in der Türkei wurde durch Verabreichung von Gestagen-Vaginal-schwämmchen + PMSG oder PGF (ein- bzw. zweimal) die Brunst induziert. 4 bis 6 Stunden nach der Brunstbeobachtung mittels Suchbock erfolgte die zervikale Besamung mit tiefgefrorenem (TG) oder frisch gewonnenem Sperma von Böcken der jeweils selben Rassen. Mit Hilfe von Gestagen+PMSG wurde bei allen Rassen die höchste Östrusinduktionsrate (96, 7 bis 98,3%) erzielt. Einmalige PGF Verabreichung rief bei 60%, zweimalige PGF Injektion im Abstand von 9 Tagen bei 88,3% der Schafe Brunst hervor. PGF hatte den besten Synchronisationseffekt (80,6 bis 88,2%) 48 Stunden nach der Applikation. Die Non Return Raten 35 bis 40 Tage nach Besamung betrugen unabhängig vom Synchronisationsverfahren und von der Rasse 21,4 bis 41,9% bzw. 55,6 bis 84,2% nach Verwendung von TG- bzw. Frischsamen. Die besten Non Return Ergebnisse wurden bei den drei Rassen nach Brunstinduktion mit Gestagen+PMSG beobachtet. Rasseabhängige Unterschiede bezüglich der Brunstinduktion-und -synchronisation ließen sich statistisch nicht absichern. Contents: Investigations upon oestrus synchronization and artificial insemination in ewes of different breeds In a total of 500 ewes (260 Merino, 120 Dagliç, 120 Ramliç) of three sheep breeding farms in Turkey oestrus induction was performed by application of progestagen imprepated vaginal sponges+PMSG or of PGF (given once or twice). 4 to 6 hours after oestrus detection by a teaser ram the ewes were inseminated cervically with frozen-thawed or fresh semen of rams of the same breeds. In all breeds the highest rate of oestrus induction (96.7 to 98.3%) was obtained by means of progestagen+PMSG. A single injection of PGF provoced heat in 60%, while two injections with an interval of 9 days induced oestrus in 88.3% of the treated ewes. PGF had the best synchronizing effect (80.6 to 88.2%) at 48 hours after application. Regardless of the breed and the synchronization method, the non return rates 35 to 40 days after insemination were 21.4 to 41.9% and 55.6 to 84.2% for frozen-thawed and fresh semen resp. In all breeds the best non return results were observed after oestrus induction with progestagen+PMSG. With regard to induction and synchronization of oestrus breed dependent differences could not be statistically confirmed.  相似文献   

16.
Contents Progesterone and progestogens have proved to be effective in controlling follicle development and synchronization of ovarian activity in different species. In this study, vaginal sponges containing 120 mg medroxyprogesterone acetate were used to synchronize ovarian activity in llamas and to predict the time when a mature follicle will be present. Plasma concentrations of oestradiol-17β and progesterone were measured to determine follicle and corpus luteum development. The sponges were kept in the vagina for 9 days. Six days after sponge withdrawal, ovulation was induced by either GnRH injection (n = 4), mating with a vasectomized male (n = 8) or mating with an intact male (n = 10). Plasma progesterone concentrations varied between animals until day 6 after insertion of the sponges. Thereafter, progesterone levels remained close to the detection limit of the assay until ovulation was induced. The mean oestradiol-17β plasma concentration reached its lowest value 3–4 days after insertion of the sponges. Thereafter, concentrations increased and reached peak levels at day 6 after withdrawal of the sponges. All animals ovulated and developed a corpus luteum with a normal life span after the ovulatory stimulus. Blood samples were collected frequently after mating to evaluate the endocrine response to copulation. Plasma concentrations of PGF metabolite and cortisol increased in parallel after copulation. The metabolite concentrations returned to basal levels 3–4 h after mating whereas the cortisol concentrations remained elevated for about 12 h after copulation The luteinizing hormone secretory pattern resembled that reported when llamas with a mature ovulatory follicle were mated. In conclusion, the protocol evaluated in this study was shown to be useful for the synchronization of ovarian activity and for predicting the time when an ovulatory follicle will be present in llamas.  相似文献   

17.
During the cycle, the secretion of progesterone by the corpus luteum inhibits the positive feedback of oestrogens and thus prevents the LH discharge, and also primes the central nervous system for oestrous behaviour. Prostaglandin F has been identified as the hormone produced by the uterus which causes luteal regression. The LH discharge leading to ovulation follows the demise of the CL. None of the characteristics of the LH surge (duration, maximum level, total release) can be related to ovulation rate. However, the interval from onset of oestrus to the beginning of the LH discharge is greater in highly prolific breeds than in less prolific ones.The knowledge of these physiological processes leading to oestrus and ovulation makes possible the control of ovarian activity in the ewe. In cyclic females, the control of the timing of the LH discharge and ovulation can be obtained either by inducing luteolysis with PGF or its synthetic analogues after day 4–5 of the cycle, or by artificially lengthening the luteal phase with exogenous progesterone or progestagens.During the seasonal and post-partum anoestrus, PGF is ineffective and progesterone or progestagens alone are generally unable to induce oestrus and ovulation. Addition at the end of progestagen treatment of inducers of follicular growth and LH release is necessary. Both PMSG and synthetic GnRH are used for this purpose.  相似文献   

18.
Seventy‐five female Damascus goats aged between 1.5 and 5.5 years were used to evaluate the effectiveness of the intravaginal sponges and prostaglandin analogue on oestrous synchronization and fecundity; to diagnose pregnancy and to monitor the resumption of the luteal activity. Females were divided randomly, during the breeding season, into three equal groups, S, P and C. Females in group S were fitted with sponges containing 45 mg of flugestone acetate (FGA) for 14 days and injected with pregnant mare serum gonadotrophin (PMSG) at the sponge withdrawal. Females in group P were given two injections of prostaglandin F2α analogue at 11‐day intervals, whereas females in group C (control) received no treatment. The results showed that there was a significant difference (p < 0.001) in oestrous exhibition between females in group S as compared with those in groups P and C, with means being 30 ± 10, 172 ± 115 and 217 ± 75 h for groups S, P and C, respectively. Kidding rates resulting from the first and all matings were 80 and 88, 52 and 88, and 68 and 80% for groups S, P and C, respectively. Fecundity rates were 215, 175 and 180% for groups S, P and C, respectively, with a significant difference (p < 0.05) between the S and both P and C groups. Using an ultrasound pregnancy detector performed on days 57 ± 3 after mating, positive pregnancy diagnosis was 93.3% and 100% for non‐pregnancy. Females in the control group showed functional corpus luteum starting in September. It is concluded that FGA sponges plus PMSG treatment could be successfully used to synchronize oestrus and improve fecundity; whereas prostaglandin treatment was not effective to synchronize oestrus. It is also concluded that pregnancy can be diagnosed accurately and successfully using an ultrasound pregnancy detector. In addition, ovarian activity in the Damascus goat in Syria resumes in September.  相似文献   

19.
Two experiments were designed to investigate the administration of intravaginal progesterone in protocols for oestrus and ovulation synchronization in beef heifers. In Experiment 1, cyclic Black Angus heifers (n = 20) received an Ovsynch protocol and were randomly assigned to receive (CIDR‐Ovsynch) or not (Ovsynch) a progesterone device between Days 0 and 7. Treatment with a controlled internal drug release (CIDR) device significantly increased the size of the dominant follicle prior to ovulation (12.8 ± 0.4 CIDR‐Ovsynch vs 11.4 ± 0.4 Ovsynch) (p < 0.02). Plasma progesterone concentrations throughout the experiment were affected by the interaction between group and day effects (p < 0.004). In Experiment 2, cyclic Polled Hereford heifers (n = 382) were randomly assigned to one of the six treatment groups (3 × 2 factorial design) to receive a CIDR, a used bovine intravaginal device (DIB), or a medroxiprogesterone acetate (MAP) sponge and GnRH analogues (lecirelin or buserelin). All heifers received oestradiol benzoate plus one of the devices on Day 0 and PGF on Day 7 pm (device withdrawal). Heifers were detected in oestrus 36 h after PGF and inseminated 8–12 h later, while the remainder received GnRH 48 h after PGF and were inseminated on Day 10 (60 h). The number of heifers detected in oestrus on Day 8 and conception rate to AI on Day 9 were higher (p < 0.01) in the used‐DIB than in the CIDR or MAP groups, while the opposite occurred with the pregnancy rate to FTAI on Day 10 (p < 0.01). There was no effect of progesterone source, GnRH analogue or their interaction on overall pregnancy rates (64.9%). Progesterone treatment of heifers during an Ovsynch protocol resulted in a larger pre‐ovulatory follicle in beef heifers. Progesterone content of intravaginal devices in synchronization protocols is important for the timing of AI, as the use of low‐progesterone devices can shorten the interval to oestrus.  相似文献   

20.
This study was designed to study the effect of short‐term supplementation with rumen‐protected fat during the late luteal phase on reproduction and metabolism of sheep during breeding season. Seventy‐six ewes (Rahmani, Barki and Awassi × Barki) were allocated to two groups considering genotype: the control ewes (C‐group) received a maintenance diet, and the fat‐supplemented ewes (F‐group) received the maintenance diet plus 50 g/head/day of rumen‐ protected fat (Megalac) for 9 days during which oestrus was synchronized. The latter had been accomplished using double intramuscular injection of prostaglandin F (PGF) 11 days apart. Ovarian activity, serum concentration of cholesterol, glucose, insulin and reproductive performance variables were recorded. Data were analysed considering treatment (group) and genotype. Supplementation had positive effects on the overall mean serum concentrations of cholesterol (p < 0.05), glucose (p < 0.05) on day 6 of nutritional treatment and insulin (p = 0.07) on day 8. Fat supplementation did not affect the total number of follicles, follicle populations and ovulation rate. However, fat‐supplemented Rahmani ewes tended to have higher ovulation rate compared with other breeds (treatment × breed interaction, p = 0.06). Treatment also did not affect the mean concentration of serum estradiol or progesterone. Supplemented ewes had higher conception (p = 0.06) and lambing rates (p < 0.05) compared with control. In conclusion, short‐term supplementation with rumen‐protected fat as a source of energy around breeding time improved metabolism, conception and lambing rates of ewes without effects on steroidogenic capacity and ovarian activity being apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号