首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
阿特拉津在饱和砂质壤土中非平衡运移的模拟   总被引:8,自引:4,他引:8  
任理  毛萌 《土壤学报》2003,40(6):829-837
针对农药阿特拉津在稳定流场饱和砂质壤土中的运移 ,根据平衡与非平衡假设条件下对流—弥散方程数学模型的解析解 ,基于易混合置换实验获得的阿特拉津和示踪溶质Br- 的穿透曲线及批量平衡法求得的阻滞因子 ,应用CXTFIT 2 0软件 ,通过拟合土柱实验中溶质的出流浓度变化 ,估算了模型的有关参数 ,在此基础上模拟分析了实验土柱不同埋深处阿特拉津的出流浓度和累积淋溶量动态 ,结果表明 ,化学非平衡的两点模型对本文实验条件下阿特拉津运移的仿真具有较高的精度  相似文献   

2.
冬小麦/夏玉米轮作中NO3-N在土壤剖面的累积及移动   总被引:41,自引:0,他引:41  
巨晓棠 《土壤学报》2003,40(4):538-546
通过田间试验研究了冬小麦 /夏玉米轮作中NO- 3 N在土壤剖面的累积及移动 ,结果表明 ,尿素施入旱地土壤后 ,硝化作用一般在 7d之内完成 ,NH 4 N只在施肥后的短期内保持较高浓度 ,其它时期NH 4 N含量基本在 1~ 3mgkg- 1 范围内 ,土壤剖面不同层次NH 4 N一般也低于 4mgkg- 1 ,NH 4 N的含量不能反映土壤有效氮的水平。土壤剖面中的NO- 3 N随施氮量的增加而显著升高。在低施氮量条件下 (N <12 0kghm- 2 ) ,NO- 3 N主要在 0~ 40cm土层内移动 ,但当施氮量高于N 2 40kghm- 2 时 ,冬小麦季即有相当数量的氮移出 0~ 10 0cm土体。NO- 3 N在土体中的移动存在着很大的年际变化 ,在干旱年份 ,即使夏玉米季 ,NO- 3 N向深层移动的可能性也很小。试验年份中 ,除 1999年夏玉米季发生了较严重的气体损失以外 (该季节特别干旱 ) ,其余季节损失的肥料氮主要以NO- 3 N的形式在深层土壤剖面中累积 ,这在两个试验点的结果相当一致。  相似文献   

3.
Effluent concentration of chloride and two pesticides (prometon and atrazine) were measured during column displacement experiments at two water flow rates. A constant suction of approximately 1300 Pa was maintained in the packed soil columns which were positioned vertically on top of a vacuum chamber enclosing an automatic fraction collector. Measured breakthrough curves (BTC's) were analyzed in terms of two solute transport models: the standard two-parameter convection-dispersion equation (CDE), and a four-parameter two-site/two-region nonequilibrium model (TRM). Calculations obtained with the TRM model were found to be in better agreement with measured BTC's than predictions using the CDE model. Column retardation factors for prometon and artrazine calculated from equilibrium batch sorption coefficients were comparable to those estimated from the observed BTC's only when the nonequilibrium TRM model was used.  相似文献   

4.
阿特拉津在饱和砂质壤土中非平衡运移的模拟   总被引:3,自引:0,他引:3  
任理  毛萌 《土壤学报》2003,40(4):529-537
针对农药阿特拉津在稳定流场饱和砂质壤土中的运移 ,根据平衡与非平衡假设条件下对流—弥散方程数学模型的解析解 ,基于易混合置换实验获得的阿特拉津和示踪溶质Br- 的穿透曲线及批量平衡法求得的阻滞因子 ,应用CXTFIT 2 .0软件 ,通过拟合土柱实验中溶质的出流浓度变化 ,估算了模型的有关参数 ,在此基础上模拟分析了实验土柱不同埋深处阿特拉津的出流浓度和累积淋溶量动态 ,结果表明 ,化学非平衡的两点模型对本文实验条件下阿特拉津运移的仿真具有较高的精度  相似文献   

5.
Cu/Pb/Zn/Cd在石英砂中的迁移实验及模拟   总被引:4,自引:0,他引:4  
孙军娜  徐绍辉 《土壤学报》2010,47(6):1101-1109
通过稳定流混合置换实验,研究了孔隙水流速和pH变化对Cu/Pb/Zn/Cd在石英砂中迁移行为的影响,获得了示踪剂Br-和Cu/Pb/Zn/Cd的穿透曲线(BTCs);并通过室内批量平衡实验获得吸附系数,进而计算出阻滞因子Rd。基于这些实验结果,借助CXTFIT2.1软件,用平衡CDE模型拟合了Br-的BTCs,得到了弥散系数D;在此基础上应用CDE非平衡模型拟合Cu/Pb/Zn/Cd在不同流速和pH条件下的BTCs,并预测了平行实验和不同埋深处Cu/Pb/Zn/Cd浓度的动态变化。结果表明,Cu/Pb/Zn/Cd的迁移能力随流速的增大而增强,而随pH的增大而降低;化学非平衡的两点模型能较好地模拟本文实验条件下Cu/Pb/Zn/Cd的迁移过程。  相似文献   

6.
The transport parameters were determined for the 18O isotope (in the form of H2 18O), the Br? ion, and atrazine in intact columns of allophanic Andosol (Mexico State, Mexico). A one-dimensional model for the convective-dispersive transport of chemicals with account for the decomposition and equilibrium adsorption (HYDRUS-1D), which is widely applied for assessing the risk of the chemical and bacterial contamination of natural waters, was used. The model parameters were obtained by solving the inverse problem on the basis of laboratory experiments on the transport of the 18O isotope, the Br? ion, and atrazine in intact soil columns at a fixed filtration velocity. The hydrodynamic dispersion parameters determined for the 18O and Br? ions in one column were of the same order of magnitude, and those for atrazine were higher by 3?C4 times. The obtained parameters were used to calculate the transport of these substances in another column with different values of the water content and filtration velocity. The transport process was adequately described only for the 18O isotope. In the case of the Br? ion, the model significantly underestimated the transport velocity; for atrazine, its peak concentration in the column was overestimated. The column study of the transport of the three chemical compounds showed that transport parameters could not be reliably predicted from the results of a single experiment, even when several compounds were used in this experiment.  相似文献   

7.
This study was conducted to investigate the effects of soil structure on bromide (Br) transport through three soils with granular, prismatic, and single-grain structures. The breakthrough curve (BTC) of the single-grain structure was sigmoidal, symmetrical and similar to a piston flow, showing the dominance of mass flow. In contrast, the BTCs of the granular and prismatic structures were initially steep, becoming more gradual at high pore volumes (PVs). The stable structure and preferential pathways caused the early breakthrough of Br in the leachate of these columns. The convection–dispersion equation (CDE), mobile–immobile water (MIM), and dual-permeability (DP) models were fitted to observed data using the program HYDRUS-1D. The equilibrium transport model (CDE) was not as successful as non-equilibrium (MIM and DP) models in describing the Br transport in prismatic and granular soil columns, although it was able to describe the Br transport in single-grain column well. Overall, the results demonstrated the importance of soil structure in pollutant transport through soils.  相似文献   

8.
ABSTRACT

Contamination of ground water as a consequence of soil leaching processes is an issue of major concern. In this context, a simulation of the soil leaching process was designed. A sequential injection (SI) method to monitor the soil leaching of iron complexes with in-line rain simulation for leachate production is described. The developed methodology comprises the SI determination of both iron(III) and 3-hydroxy-4-pyridinones iron(III) complexes, coupled to a mini soil column (mSC) for displaying in-line rain simulations. The described SI method enabled iron(III) determination within the range 2.0–35 µmol L?1, with a detection limit of 0.42 µmol L?1, and determination of iron(III) complexes in the range 1.0–45 µmol L?1. It was successfully applied to leachates from laboratory scale soil columns (LSSC), with good precision for both iron(III) and iron complexes determinations: calculated relative standard deviation (RSD) of 5% and 6%, respectively. A step further in automation and miniaturization was attained with the incorporation of a mini soil column for the in-line leachate production. The system enabled the soil leachate production and assessment in less than 5 min, including determinations in triplicate.  相似文献   

9.
Citrus production in Florida accounts for ≈ 60% of national production in USA. The sandy soil characteristic (> 95% sand) makes water and nutrient management extremely difficult, raising concerns about environmental sustainability as a result of nutrient inputs in citrus producing regions where sandy soils dominate. Thus, laboratory column and field experiments were conducted to better understand the leaching patterns of and ions in Florida's sandy soils. The soil columns were first saturated from the bottom with two pore volumes of simulated Florida rain followed by pumping a pulse of fertilizer mixture at a steady Darcy flux of 14 cm h?1. Nitrate and Cl? appeared earlier in the effluent than in the A and Bh horizons, due to cation exchange of . Essentially identical breakthrough curves (BTCs) for and were observed in the E‐horizon, due to very low sorption of . The convective and dispersive equilibrium (CDE) model simulations were in good agreement with measured breakthrough curves (BTCs) for , , and Cl?. However, the sorption coefficient (KD) values used in the CDE model to simulate the BTCs for were about 10 times less than the batch isotherm KD values. This was attributed to differences in pH, cation composition, and ionic strength between batch (static) and dynamic (leaching) systems. The field experiment showed that under unsaturated flow, improved short‐pulse fertigation systems (drip and microsprinkler) limited and transport beyond the root zone (top 30 cm), which might have promoted nutrient and water uptake in citrus. The column study revealed that under extreme weather events such as hurricanes or storm surge in Florida, saturated soil conditions can trigger N mobility below the root zone to surficial or groundwater aquifers. In the field experiment, the use of judicious, minimal and split applications and accurate placement of N‐fertilizers reduced leaching of N especially during heavy storms in the summer rainy months of Florida. The field experiment demonstrated that it is possible to manage inorganic N forms for optimal residence time for uptake and minimal leaching concerns.  相似文献   

10.
To what extent might a crop with increased plant N uptake efficiency and/or N demand increase plant biomass and soil carbon storage, decrease N leaching, and reduce the need for N fertilisation? This was assessed for a fertilised sandy loam site in central Sweden cultivated with spring barley for a four year period using a process based crop and soil simulation model (SOILN) calibrated to fit observations of field experiments with non-modified crops. Crop properties were changed in accordance with previous model applications to other crops with higher N uptake and utilisation efficiencies, to resemble potential effects of breeding. For the modified crops a doubling of daily uptake efficiency of soil mineral N and/or increase of radiation use efficiency by 30%, increased plant biomass by 3%–30%, decreased N leaching by 1%–30% and increased soil organic carbon (SOC) content by 1–12?g?C?m?2 year?1. The larger changes were mainly due to increased uptake efficiency. Fertilisation of the modified spring barley crop could be reduced while still producing the same plant biomass as the non-modified crop. The plant biomass to N leaching ratio of the modified crops increased. The simulated changes in plant biomass and SOC were sensitive to weather conditions suggesting that in situ experiments would need to cover a large range of weather conditions to evaluate the performance of new crop traits under climatic variability. The study suggests a strong need that field experiments are accompanied with model applications, when exploring the potential of the modified crops under variable conditions.  相似文献   

11.
李文娟  颜永毫  郑纪勇    张兴昌    李世清   《水土保持研究》2013,20(5):60-63,68
为了解生物炭在抑制黄土高原农田土壤可溶态养分淋失方面的功效,通过人工模拟实验,研究土壤中添加生物炭后对硝态氮运移的影响,为黄土高原地区农田非点源污染防治及氮循环研究等提供科学依据。选择黄土高原地区三种不同质地土壤类型(风砂土、黄绵土、塿土),通过室内土柱模拟研究方法,用连续流动分析仪(SKALAR-SAN++)测定出流液的硝态氮浓度,通过硝态氮的穿透曲线分析在稳态条件下,生物炭添加及不同添加量对土壤中硝态氮运移的影响。结果表明:对于质地较粗黄绵土和风沙土,生物炭输入能够降低硝态氮的淋失,随添加量增加,其阻滞作用越强。对于质地较为粘细的土,添加生物炭反而促进了硝态氮淋失,随添加量增加,其促进作用越强。稳态条件下,三种土壤的硝态氮穿透过程均符合对流弥散方程。研究表明加入生物炭对不同质地土壤中可溶态养分的影响不同,可以促进质地较粗土壤的保肥能力,却不利于质地较为粘细土壤硝态氮养分的保持。  相似文献   

12.
Laboratory studies were conducted on a mixture of surface soils from the Nile Delta (Egypt). Twenty-two soil columns, initially saturated both with respect to their water-holding capacity and to their base exchange capacity with calcium, contained 0.0, 0.25, 0.5, 1.0 and 2.0 per cent solid gypsum in the total weight of the solid material in the column. Three particle sizes of gypsum (>0.5, 0.5–1 and 1–2 mm) were mixed either with the top layer or with the whole soil column. The result of leaching these columns with saline water (36 meq 1?1 NaCl+4 meq 1?1 CaCl2) at 0.1 cm h?1 was compared with a mathematical model based on thermodynamic equilibria. The three different particle sizes gave the same experimental results. Applying a given amount of gypsum to the surface soil was more effective in reducing the exchangeable sodium percentage (ESP) than mixing the same quantity through the soil. The mathematical model adequately predicted the changes in the soil column.  相似文献   

13.
酸雨中的SO4^2-和NO3^-等阴离子在土壤中迁移时会引起大量的盐基离子淋溶,导致土壤退化。用室内土柱模拟SO4^2-和NO3^-在红壤旱地各土层中的垂直穿透状况,并用Hydrus-1D模型对试验结果进行了拟合和预测。结果表明,N05在红壤各层中的穿透速度较快,其中在耕作层的穿透曲线峰值最高,C/C0达到0.39,峰值高低顺序依次为:耕作层〉母质层〉淋溶层〉犁底层。SO4^2-在土柱中的穿透速度远低于NO3^-,穿透曲线有明显的拖尾现象。其在各土层的穿透时间依次为:母质层〉犁底层〉淋溶层〉耕作层;而其峰值高低顺序依次为:耕作层〉淋溶层〉母质层〉犁底层,最高点耕作层的顶点C/C0仅为0.22。用Hydrus-1D模型对试验结果进行模拟,所得的SO4^2-和NO3^-穿透土壤的浓度模拟值与其实测值均呈极显著的正相关关系。利用数学模拟获得了饱和导水率和垂直扩散率等溶质运移参数,并预测了研究区酸雨后SO4^2-和NO3^-在红壤耕层的迁移状况,表明SO4^2-会在酸雨结束后持续淋溶,从而影响土壤中Ca、Mg等盐基离子的淋失。  相似文献   

14.
Simple models describing nitrogen processes are required both to estimate nitrogen mineralization in field conditions and to predict nitrate leaching at large scales. We have evaluated such a model called LIXIM, which allows calculation of nitrogen mineralization and leaching from bare soils, assuming that these are the dominant processes affecting N in bare soil. LIXIM is a layered, functional model, with a 1-day time step. Input data consist of frequent measurements of water and mineral N contents in soil cores, standard meteorological data and simple soil characteristics. The nitrate transport is simulated using the ‘mixing-cells’ approach. The variations in N mineralization with temperature and moisture are accounted for, providing calculation of the ‘normalized time’. An optimization routine is used to estimate the actual evaporation and the N mineralization rates that provide the best fit between observed and simulated values of water and nitrate contents in all measured soil layers. The model was evaluated in two field experiments (on loamy and chalky soils) including treatments, lasting 9–20 months. The water and nitrate contents in soil were satisfactorily simulated in both sites, and all treatments, including a 15N tracer experiment performed in the loamy soil. In the chalky soil, the calculated water balance agreed well with drainage results obtained in lysimeters and independent estimates of evaporation. At both sites, N mineralization was reduced by the incorporation of crop residues (wheat or oilseed rape straw); the amounts of nitrogen immobilized varied between 20 and 35 kg N ha?1. In the treatments without crop residues, the mineralization rate followed first-order kinetics (against normalized time) in the loamy soil, and zero-order kinetics in the chalky soil. In the latter soil, the mineralization kinetics calculated in situ were close to the kinetics measured in laboratory conditions when both were expressed against normalized time.  相似文献   

15.
Retardation of tritium migration in the Chinese loess media was studied through column experiments by comparison of the migration velocity with other three ??non-adsorptive?? tracers of Br?, 99Tc, and 131I. Results showed that the transport peak of Br? was 1.25 times earlier than that of tritium when the tracers were simultaneously injected into the column, and the migration of 99Tc was even 1.60 times faster than 3H when the tracers were simultaneously injected. For iodine, it was only 1.02 times faster than that of tritium, but it should not be ignored. It reflected that the transport of 3H, compared to that of Br?, 99Tc, or 131I in the loess media, was retarded. In order to validate the adsorption behavior of tritium on loess, batch tests were carried out using Chinese loess soil. The experimental results indicated that the adsorption of tritium was actual existence, and the distribution coefficient of tritium is influenced by initial activity of tritium, pH, water/solid ratio, and the content of humic and fulvic acids.  相似文献   

16.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

17.
伴随阴离子对马铃薯种植冲击土中钾素固持与淋溶的影响   总被引:1,自引:0,他引:1  
V. SHARMA  K. N. SHARMA 《土壤圈》2013,23(4):464-471
A column study was carried out to assess the influence of accompanying anions on potassium (K) leaching at potato growing sites with different soil textures (sandy loam and clay loam) in northwestern India. Potassium was applied in the top 15 cm layer of soil column at 30 and 60 mg K kg-1 through different sources having different accompanying anions (Cl-, SO42-, NO3- and H2PO4-). Maximum K was retained in the top 0--15 cm layer with a sharp decrease in K content occurring in 15--30 cm layer of the soil column. The trend was similar for both levels of applied K as well as frequency of leaching and soil type. The decrease of K content in soil column after four leaching events was maximum in case of Khanaura sandy loam, while only minor decrease was observed in Hundowal clay loam when K was applied at 60 mg K kg-1, indicating higher potential of clay rich soil to adsorb K. In general, the K leaching in presence of the accompanying anions followed the order of SO42- ≤ H2PO42- < NO3- = Cl-. Highest 1 mol L-1 CH3COONH4-extractable K was retained when K was applied along with SO42- and H2PO4- anions, and the least was retained when accompanying anion was Cl-1. The influence of anions was more pronounced in the light textured soil and at high amounts of K application. Higher levels of K application resulted in higher losses of K, especially in sandy loam soil as observed from the leachate concentration. Among the different K sources, the maximum amount of K leaching was noticed in the soil column amended with KCl. After four leachings, the maximum amount of K leached out was 6.40 mg L-1 in Hundowal clay loam and 9.29 mg L-1 in Khanaura sandy loam at 60 mg K kg-1 of soil application through KCl. These concentrations were lower than the recommended guideline of the World Health Organisation (12.00 mg L-1).  相似文献   

18.
The mineralization of native soil organic matter and the simultaneous diffusion of zero NH+4 and NO?3 to a solution sink of zero N concentration was analysed experimentally and theoretically for a fine sandy loam soil. Experimentally, the NH4 and NO3 ions produced in an incubated unsaturated soil column were allowed to diffuse through a sintered glass plate into a stirred solution sink. The distribution of NH+4 and NO?3 in the soil column was measured after various incubation times. The rate of ammonification was measured directly during incubation and the rate of nitrification modelled from nitrifier growth kinetics. A Freundlich equation was used to describe the equilibrium between soluble and exchangeable NH+4 in the soil. Terms for the microbial transformation of N and the adsorption-desorption of NH+4 were combined with diffusion equations which were solved numerically using finite difference methods. The model constructed was used to predict the NH+4 and NO?3 con-centration distributions in the soil column, and good agreement was obtained between the experimental and predicted concentration profiles. The use of the model for predicting the diffusive flux of mineral N to the outer surfaces of soil peds, where it is vulnerable to leaching, was demonstrated.  相似文献   

19.
紫色土坡耕地土壤大孔隙流的定量评价   总被引:4,自引:0,他引:4  
为阐明大孔隙丰富且孔径呈两极分化的紫色土坡耕地土壤大孔隙流的运移规律,通过室内土柱试验获取耕作层0~20 cm、非耕作层20~40 cm原状土柱和填装土柱的穿透曲线,分析饱和条件下土壤大孔隙流发生规律,并采用解析法CXTFIT软件拟合了水分优先运移参数,PFSP指标(大孔隙流引起的穿透曲线延展量与水动力弥散作用及两区作用引起的延展量的比值)定量评价土壤大孔隙流的贡献率。研究结果表明:1)以填装土柱水流为平衡基质流计算,耕作层0~20 cm原状土柱中大孔隙流的导水贡献率为66.2%~68.5%,而Br-累积淋出量占总淋出量的62.3%~66.1%。对于非耕作层20~40 cm,土壤大孔隙流导水贡献率为0.2%~1.7%,而Br-随大孔隙流运移的比例却达14.5%~20.5%。说明耕作层土壤中大孔隙流现象远比在非耕作层土壤中更为显著;2)PFSP值结果表明大孔隙流作用对穿透曲线延展量的贡献率最大,两区交换运移作用次之,水动力弥散作用的最小。即PFSP值越大,大孔隙流对总水流通量的贡献率越大。  相似文献   

20.
Purpose

The purpose of this study is to study the major sources, concentrations, and distributions of polycyclic aromatic hydrocarbons (PAHs) in three different types of green space in Shanghai. In addition, we will quantitatively assess the burden of PAHs in the soil, as well as the potential carcinogenic risk of PAHs in humans. These results will provide valuable information for soil remediation and human health risk management.

Materials and methods

A total of 166 surface soil samples were collected in parks, greenbelts, and woodlands. Soils were extracted using accelerated solvent extraction (ASE). PAHs were analyzed by gas chromatography-mass spectrometry (GC-MS). The positive matrix factorization (PMF) model was used to identify major PAH emission sources and quantitatively assess their contributions to PAHs. The incremental lifetime cancer risk (ILCR) was used to quantify the potential health risk of PAHs.

Results and discussion

The average concentrations of ∑15 PAHs are 227?±?95 ng g?1, 1632?±?251 ng g?1, and 1888?±?552 ng g?1 in the woodland, park, and greenbelt soils, respectively. The PMF results show that biomass (33%), coal (21%), vehicles (17%), natural gas (14%), oil (9%), and coke (7%) are the dominant sources of PAHs in the park soils. Diesel (40%), tire debris (30%), biomass (15%), gasoline (9%), and oil (5%) are the main sources in the greenbelt soils. Biomass (48%), vehicles (37%), and coal (15%) are the main sources in the woodland soils. The ILCRs of adults and children who are exposed to PAHs in soils range from 9.53?×?10?8~1.42?×?10?5.

Conclusion

In three types of green space in Shanghai, the dominant PAHs are high–molecular weight (HMW) compounds (≥?4 rings). This may be due to the proximity of the sampling site to emission sources. In addition, low–molecular weight (LMW) PAHs (with 2–3 rings) are relatively unstable, and these compounds are prone to volatilization and degradation. Source identification indicates that biomass combustion is the most dominant PAH source in the park and woodland soils, while vehicles are the dominant PAH source in the greenbelt soils. The ILCRs of adults and children indicate potential health risks, and children have a greater health risk than adults.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号