首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Plants with limited transpiration rate (TR) under high vapor pressure deficit (VPD) offer the potential to conserve soil water and thus decrease the occurrence of soil water deficit. Genetic variability in TR response to VPD has been observed in the greenhouse for soybean (Glycine max (L.) Merr.) genotypes related to PI416937, but these differences have yet to be measured in the field. The objective of this study was to observe under field conditions leaf gas exchange properties of PI416937 in comparison to nine other genotypes to determine if it expressed limited TR at high VPD. Genotypic differences in stomatal conductance measurements (a proxy for TR) matched those obtained under controlled environment conditions. Genotypes varied from no stomatal response to VPD, to strong negative responses resulting in full stomata closure at ∼4 kPa. There was a greater proportional genetic variability in stomatal conductance in the field (75% at high VPD) than was observed in the greenhouse, but this variation was correlated with greenhouse TR. However, photosynthesis was considerably limited in genotypes that had a stomatal response to VPD. Although field differences in photosynthetic capacity among genotypes were not correlated with greenhouse measurements, there was sufficient genetic variation to allow the possibility of selection of high photosynthetic capacity to overcome about a 34% decrease in stomatal conductance. Thus, a targeted breeding program to combine the water conserving TR-VPD response with increased photosynthetic capacity has the potential to increase soybean yields in field water-deficit environments.  相似文献   

2.
Simulation studies have demonstrated that limited maximum transpiration rate (TR) at high air vapor pressure deficit (VPD) in water-limited environments could result in significant increases in sorghum yield. However, such a restriction on TR at high VPD has not been documented in sorghum. The objective of this study was to search within sorghum germplasm for the possibility of restricted TR at high VPD. Twenty six genotypes were selected for measurement of VPD response based on field observations including yield, leaf temperature, and the stay-green phenotype. These genotypes were grown in a greenhouse for about 24-d growth, and then placed into individual chambers in which VPD was varied and TR measured. The results of this study showed marked variation among sorghum genotypes in TR response to VPD. Seventeen genotypes were identified as exhibiting a breakpoint in their VPD response in the range from 1.6 to 2.7 kPa, above which there was little or no further increase in TR. Therefore, these genotypes with a breakpoint have the possibility of soil water conservation when VPD during the midday cycle exceeds the breakpoint VPD. This trait would be desirable in less humid environments for increasing yields in water-deficit seasons. The observed range in the value of the BP among genotypes offers the possibility of developing genotypes with BP appropriate for specific environments.  相似文献   

3.
Peanut (Arachis Hypogeae L.) is commonly grown on sandy soil and in environments with intermittent rainfall, both of which can lead to soil water-deficit. Limited transpiration (LT) under elevated vapor pressure deficit (VPD) can result in water conservation, allowing sustained physiological activity later in the season during reproductive development. The objective of this study was to expand the number of progeny lines phenotyped for expression of the LT trait from the mating of Tifrunner (LT trait not expressed) × NC 3033 (LT trait expressed) to allow a preliminary examination of inheritance. Half of the 24 phenotyped lines expressed LT with their VPD threshold ranging from 2.16 to 3.38 kPa. Six of the 12 genotypes expressing LT had a threshold at 2.65 kPa or less, which is the range likely to be relevant in most peanut environments. These results, indicating epistatic inheritance, are supportive of LT expression in progeny lines at a reasonable frequency for relevant use in cultivar development for water-deficit conditions.  相似文献   

4.
Sorghum shoot fly (Atherigona soccata) is a serious pest that destabilizes the performance of sorghum cultivars and ultimately reduces sorghum production in many parts of the world. Identifying sorghum genotypes with stable resistance to shoot fly is important as it helps to reduce the cost of cultivation and stabilizes yields. In the present study, our objective was to identify stable shoot fly resistant genotypes among 385 recombinant inbred lines (RILs) of a cross between a susceptible parent and a resistant parent. We evaluated this set of RILs in eight environments over three years (2006-2008) for shoot fly resistance and component traits. Non-significant genotype-environment (G × E) linear component and significant pooled deviation for deadheart percentage indicated that the performance of genotypes was unpredictable over the environments. However, five lines had deadheart percentages much less than the population mean with regression coefficient (bi) values close to unity, and non-significant deviation from regression, indicating that they have stable shoot fly resistance and are well adapted to all the environments. Additive main effect and multiplicative interaction (AMMI) analysis partitioned main effects into genotype, environment and G × E interacts with all the components showing highly significant effects (p < 0.001). Environment had the greatest effect (69.2%) followed by G × E interactions (24.6%) and genotype (6.2%). Low heritability and high environmental influence for deadheart percentage suggested that shoot fly resistance is a highly complex character, emphasizing the need for marker assisted selection. We observed transgressive variation in the RIL population for all the traits indicating the contribution of alleles for resistance from both resistant and susceptible parents. Since the alleles for shoot fly resistance are contributed by both resistant and susceptible parents, efforts should be made to capture favourable alleles from resistant and susceptible genotypes.  相似文献   

5.
利用重组自交系分析水稻稻曲病抗性位点及效应   总被引:1,自引:0,他引:1  
利用157个家系组成的大关稻/IR28重组自交系群体,采用高效引发稻曲病人工接种方法,以病情指数作为稻曲病的表型值,鉴定了亲本及157个重组自交系群体对水稻稻曲病的抗性。利用QTL Cartographer 软件,对水稻稻曲病抗性基因进行检测分析。检测到qFsr1、qFsr4、qFsr10、qFsr11和qFsr12共 5个QTL位点,分别位于第1、4、10、11和12染色体上,贡献率为9.8%~22.5%。根据抗性位点加性效应方向,在qFsr1、qFsr10、qFsr11和qFsr12位点上,亲本IR28存在抗稻曲病的增效等位基因,大关稻具有减效等位基因;而qFsr4位点抗性效应来源于大关稻。  相似文献   

6.
Soybean rust, caused by Phakopsora pachyrhizi Sydow, is a severe foliar disease of soybean [Glycine max (L.) Merr.] that occurs throughout most soybean producing regions of the world. The objective of this research was to evaluate selected soybean genotypes for resistance to soybean rust in Vietnam. Five field experiments in Vietnam were completed from 2006 to 2009. The area-under-the-disease-progress-curve (AUDPC) was calculated for each soybean genotype based on four disease assessments taken during the reproductive growth stages. AUDPC units among soybean genotypes in each experiment differed (P < 0.05). Over the five experiments, the resistant check DT 2000 was most often the genotype with the lowest AUDPC units while the sources of rust resistance (Rpp1-5) did not always have low AUDPC units in each experiment, although PI 230970 (Rpp2) appeared to be more stable. A few genotypes with non-characterized genes for resistance, such as PI 398998, PI 437323, and PI 549017, had the lowest AUDPC units in at least one of the experiments. These genetic resources may be useful for host plant resistance studies and breeding soybeans for rust resistance in Vietnam and other locations like Brazil and the United States that have more recently been inundated with soybean rust. A significant (P < 0.001) experiment × genotype interaction was found when the AUDPC data of 14 soybean genotypes tested in Experiments 1, 2, and 3 were combined and analyzed. This result indicates the potential importance of changing fungal races and/or biotypes that occur in the rust population.  相似文献   

7.
Transpiration efficiency (TE) has been recognized as an important source of yield variation under drought stress in groundnut. Here the variation for TE is evaluated in a set of 318 recombinant inbred lines (RILs) of groundnut at F8 generation, derived from a cross between a high TE (ICGV 86031) and a low TE (TAG 24) parent, and the value of specific leaf area (SLA), SPAD chlorophyll meter readings (SCMR) and carbon isotope discrimination (Δ13C) as surrogates of TE are measured. Transpiration efficiency was measured gravimetrically in the 318 RILs and parents under progressive soil drying in a pot culture in two post-rainy seasons. Large and consistent variation for TE existed among the RILs across years. The overall distribution of TE among the RILs indicated that TE was governed by dominant and additive genes. Surrogates SLA and SCMR, were measured prior, during and after completion of the drought period, whereas Δ13C was measured on the dried tissue after harvest. Transpiration efficiency was negatively associated with SLA after the completion of stress treatment (r2 = 0.15) and Δ13C in leaves (r2 = 0.13) and positively associated with SCMR during stress (r2 = 0.17). These associations, all fairly weak, were significant only in 2004. None of these relationships was found in 2005. Although the heritability of SCMR during 2005 was relatively higher than that of TE, and although SCMR has previously been used to identify contrasting germplasm for TE, the stress-dependence of the relationship with TE, and the poor regression coefficients (r2) with that RIL population, do not confer that these surrogates are adequately robust enough in that population. Though more time consuming, a direct gravimetric evaluation for TE appeared to be more reliable.  相似文献   

8.
为利用CIMMYT资源创制小麦抗病、农艺性状优良的新材料,以CIMMYT新培育的RL6077与西农979、周麦27等骨干品种进行冬春性杂交和(或)回交,构建RIL群体和有限回交群体;以CIMMYT材料Wheatear与豫农982进行冬春性杂交构建F2:7RIL群体。应用特异性分子标记对这些群体材料进行分子检测,同时进行田间抗病性鉴定和农艺性状选择。结果表明,RL6077后代群体的众多性状都介于两个亲本之间,很好地遗传了双亲的农艺特征;其RIL群体中更易检测到抗病基因,回交群体后代更易选出农艺性状优良的品系,可根据育种目标选用合适的群体;本研究选育出冬性、农艺性状优良且具有抗病基因(抗Ug99)的储备性新品系6份。Wheatear/豫农982的F2:7RIL群体中,1BL/1RS易位系的千粒重和叶宽显著高于非易位系;7DL·7Ag易位对穗下节长和穗粒数具有正向作用;双易位系则综合了上述特性;经田间抗病性鉴定,易位系具有良好的综合抗病性;从此群体中选育出冬性、双易位且农艺性状优良的新品系4份。  相似文献   

9.
The generation of banana triploids from tetraploid-diploid crosses requires knowledge on the influence of the parents on black Sigatoka resistance and agronomic traits to the triploid progenies. The objective of this investigation was to determine the influence of tetraploid and diploid parents on black Sigatoka resistance and agronomic traits in the triploid progenies generated from tetraploid-diploid crosses. The mating scheme was designed as a 4 × 5 North Carolina II mating design. Due to problems in seed set and germination, progenies from 2 male parents with 4 female parents were evaluated at two sites in Uganda. The results showed that the male-parent triploid progeny heritability estimate for the number of leaves at harvest was greater than the female parent estimate. The diploid parents had higher correlation coefficients for the total leaves at harvest with the triploid progenies than tetraploid parents with triploid progenies. Disease development over time took more days in diploid parents than in the tetraploid parents with the triploid progenies as intermediates. These results suggested that diploids transferred black Sigatoka resistance to the triploid progenies as measured by the number of standing leaves and disease development overtime. There was a positive correlation (P < 0.05) between tetraploid female parents and triploid progenies for plant height and bunch weight. The triploid progeny-tetraploid female parent heritability estimates for plant height (0.92) and bunch weight (0.72) were highly significant. These results indicated that the female synthetic tetraploids influenced plant height and bunch weight in the triploid progenies. Therefore, it is important to select the tetraploids with heavy bunches to effectively improve yield in triploid progenies generated by tetraploid-diploid crosses. The tetraploid-diploid progenies had a significant (P < 0.05) family-by-site interaction for bunch weight indicating that new banana genotypes need to be tested across different environments to select stable genotypes to promote to end-users.  相似文献   

10.
Bread wheat (Triticum aestivum L.) quality is a key trait for baking industry exigencies and broad consumer preferences. The main goal of this study was to undertake quantitative trait loci (QTL) analyses for bread wheat quality in a set of 79 recombinant inbred lines (RILs) derived from a soft × hard bread wheat cross. Field trials were conducted over two years, utilizing a randomized complete block design. Dough quality was evaluated by sedimentation test, mixograph and alveograph analysis. Protein content was measured by near-infrared reflectance analysis and grain hardness was determined by the single kernel characterization system (SKCS).  相似文献   

11.
《Plant Production Science》2013,16(2):184-191
Abstract

In the afternoon when air humidity decreases, leaf photosynthetic rate (Pn) often declines in rice grown under irrigated conditions. To clarify the genotypic difference of Pn in response to humidity, we measured Pn and stomatal conductance (gs) for nine rice varieties with diverse genetic backgrounds, at various vapor pressure differences (VPD) and developmental stages. Pn and gs of all the varieties decreased with VPD increase from 1.0 to 2.3 kPa of VPD. The variety with high gs at low VPD exhibited a greater decline of gs with VPD increase than the variety with low gs, but cv. Takanari showed the highest gs under altered VPD conditions. Significant logarithmic relations were found between the decreased Pn and gs at the respective developmental stages, suggesting that gs is the dominant factor determining Pn and its response to VPD change. To explicate the effect of decreased gs on Pn, we analyzed the relations by using the model that accurately estimated the genotypic difference in Pn at a low VPD with gs and leaf nitrogen content per unit leaf area in the previous study. The model assuming that leaf internal conductance (gw) remains unchanged well explained the decreased Pn at high VPDs by gs change alone. The analysis also suggested the constancy of gw and carboxylation capacity at high VPD. It is concluded that the genotypic difference in the decrease of Pn at a high VPD is brought mainly by that in decreased gs, and the varieties with a high gs always exhibit a high Pn owing to their relatively high gs at either high or low VPD environments.  相似文献   

12.
Soybean [Glycine max (L.) Merr.] genotype PI 471938 expresses a slow-wilting phenotype in the field, and the progeny of this genotype have shown to have high yield under water deficit conditions. However, the physiological basis for the slow-wilting trait in PI 471938 remains unclear, and failure to understand the causal mechanism may limit future breeding efforts. This study investigated three primary hypotheses for trait expression that could explain slow-wilting trait in PI 471938: (1) a low osmotic potential in the leaves allowing greater water retention, (2) high elastic modulus of leaves resulting in delayed development of wilting, and (3) high hydraulic conductance allowing rapid water redistribution in the plants. Experiments included three other soybean genotypes as references for the results obtained with PI 471938. Surprisingly, the results for PI 471938 did not prove to be unique as compared to the other three tested genotypes for any of the three hypotheses. These negative results indicate that a hypothesis outside the usual candidates describing plant water transport, possibly anatomical features related to specific water transport properties, is required to explain slow-wilting in PI 471938.  相似文献   

13.
Abstract

Genetic variation is the basis for meaningful selection; thus, the use of locations that discriminate or result in greater variation among genotypes, for a trait or trait package should promote accurate selection of superior genotypes. The objectives of this study were to quantify the gains by selection in discriminating locations using superior parents for single or multiple-trait populations. GGEbiplot software was used to identify two levels (high and low) of discriminating locations for each of three distinct populations of cotton (Gossypium hirsutum L.). Populations were obtained by crossing parents recommended by a least squares means analysis for each population criteria, which included parents/populations selected for: (a) lint yield; (b) fiber micronaire, length, strength, uniformity, and elongation; and (c) lint yield, lint percent, fiber micronaire, length, and strength. F2 plants in 2003 and F2:3 plants in 2004 were planted in the high and low discriminating locations for each selection criteria. Heritability estimates (h2) were calculated by regressing the F2:3 plants on their F2 parents. Genotypic variance was greater among F2:3 progeny in discriminating environments compared with non-discriminating environments, regardless of population criteria. Heritability was greater in the population containing fiber traits compared with yield. The results of this study suggest that using discriminating locations during the selection phase of a breeding program can increase genotypic variance and enhance selection accuracy.  相似文献   

14.
The association of specific target traits for drought resistance (early flowering, high accumulation of stem water soluble carbohydrate (WSC) reserves, presence of awns and high green flag-leaf area persistence) with yield performance under late-season drought was analyzed utilizing two doubled-haploid (DH) populations derived from crosses between Beaver × Soissons and Rialto × Spark in two seasons 2000/2001 and 2001/2002. The aim was to quantify associations between target traits and yield responses to drought, and to prioritize traits for drought resistance. Flowering time variation had a neutral effect on the absolute yield loss under drought, suggesting there may be a trade-off between water-saving behaviour in the shorter pre-flowering period with early flowering and a reduced capacity to access water associated with a smaller rooting system. The presence of awns also had a neutral effect on yield loss under drought amongst lines of the Beaver × Soissons population. The potential advantages of awns for increasing water-use efficiency and sensible heat transfer responsible for a cooler canopy appeared to be of less significance under moderate droughts in the UK than under severe droughts in other regions worldwide. The value of large stem soluble carbohydrate reserves for drought environments alone could not be confirmed in the UK environment. Stem WSC was positively associated with grain yield under both irrigation and drought. The genetic trait which showed the clearest correlation with the ability to maintain yield under drought was green flag-leaf area persistence. Averaged across years, the positive phenotypic correlation of this trait with yield under drought amongst DH lines of the Beaver × Soissons population (r = 0.49; p ≤ 0.001) indicated the potential use of this trait as a selection criterion for yield under drought. It is suggested that screens for this trait including marker-assisted selection would have value in future breeding programmes aimed at improving yields in high yielding, rainfed environments, but where drought can also be a problem, such as the UK.  相似文献   

15.
Water stress during the vegetative development normally is not detrimental and sometimes actually increases yield of peanut (Arachis hypogaea L.). Root growth might play an important role in response to early season drought in peanut and might result in an increase in yield. Information on the response of root characters of diverse peanut genotypes to these conditions will provide useful information for explaining mechanisms and improving peanut genotypes for exploiting positive interaction for pod yield under pre-flowering drought. The aim of this study, therefore, was to investigate the root dry weight and root length density of peanut genotypes with different yield responses to pre-flowering drought stress and their relationships with pod yield. Field experiments were conducted at the Field Crop Research Station of Khon Kaen University, Khon Kaen, Thailand during February to July 2007 and during February to July 2009. A split-plot experiment in a randomized complete block design was used. Two water management treatments were assigned as the main plots, i.e. field capacity and pre-flowering stress, and six peanut genotypes as the sub-plots. Total crop dry matter, root dry weight and root length density were recorded at 25 DAE, R5 and R7. Top dry weight and pod yield were measured at harvest and pod harvest index (PHI) was computed using the data on pod yield and biomass. Peanut genotypes were categorized into three groups based on their responses to drought for pod yield, e.g. increasing, decreasing and non-responsive groups. The genotypes of each group showed a differential response for root quantity and distribution. The increasing pod yield group had more root dry weight and root length density in the deeper soil layers during pre-flowering stress compared to the non-stress treatment. The non-responsive group showed no root response under pre-flowering drought conditions compared to the non-stress treatment. A larger root system alone without considering distribution may not contribute much to pod yield but a higher RLD at deeper layers may allow plants to mine more available water in the sub-soil. However, as yield is a complex trait, several mechanisms may be involved. The increasing pod yield group also had the ability to maintain a high PHI.  相似文献   

16.
Relationship between foliage temperature and water stress in potatoes   总被引:1,自引:0,他引:1  
Field studies were conducted in southern Idaho to evaluate the possibility of using thermal infrared measurements of potato foliage to detect soil water deficits. Concurrent measurements of foliage-air temperature differences (Tf-Ta), leaf water potential (gyleaf) and vapor pressure deficit (VPD) were obtained from differentially-irrigated Russet Burbank and Kennebec potatoes during the 1982 and 1983 growing seasons. Foliageair temperature differences for well-watered potatoes were linearly related to VPD. Differences in Tf-Ta values between stressed and well-watered potatoes were relatively small in the early morning when evaporative demand was low. However, severe soil water deficits caused afternoon Tf-Ta values to rise as much as 8.0 C above non-stressed levels under conditions of high VPD. Foliage-air temperature differences and VPD data were used to construct a plant water stress index (PWSI) which reflected the rise in Tf-Ta above non-stressed levels at a given VPD. The PWSI was linearly related to depressions in gyleaf caused by moderate to severe soil water deficits. However, the PWSI did not increase significantly above non-stressed values unless the soil matric potential gysoil fell below -70 kPa (centibars). Since potatoes are normally irrigated before gysoil falls below ?60 kPa, it appears that foliage temperature measurements cannot be used to effectively schedule irrigation for this crop.  相似文献   

17.
大豆苗期固氮相关性状的QTL分析   总被引:1,自引:1,他引:0  
大豆与根瘤菌共生固氮是大豆生长发育所需氮素的主要来源.由于根瘤菌与大豆两者基因型的不同,接种根瘤菌后大豆固氮能力也不同.以合丰25×固新野生大豆杂交组合的重组自交系(RIL)群体F11的104个株系为材料,在严格控菌条件下,用固氮菌株2178进行结瘤匹配鉴定,测定RIL群体及其亲本的固氮酶活性、结瘤数目、侧根数目、根瘤鲜重、茎干重5个指标,对所得数据进行正态分布检验,结合SSR分子数据利用复合区间作图法对其QTL定位分析.结果表明:RIL群体各性状均表现超亲分离,均值介于双亲之间,其偏度和峰度均较小,符合正态分布.这表明所考察性状均为数量性状遗传.应用复合区间作图法进行固氮性状的QTL定位,在Al、L、O、D1b、D2、C2、I连锁群,检测控制固氮的QTL有8个,解释表型变异的7.65%~15.05%,这些QTL及分子标记位点可用于大豆固氮性状的分子标记选择.  相似文献   

18.
Despite large variation among crop genotypes in response to Fe fertilization, there is no reliable indicator for identifying Fe-deficiency tolerant wheat genotypes with high grain yield. The aim of this investigation was to compare the grain yield response of 20 spring and 30 winter bread wheat genotypes to Fe fertilization under field conditions and to select high grain yield Fe-deficiency tolerant genotypes using a stress tolerance indicator (STI). Two individual trials, each one consisting two field plot experiments, were conducted during 2006–2007 and 2007–2008 growing seasons. Spring wheat genotypes (Trial l) and winter wheat genotypes (Trial 2) were planted at two different locations. Two Fe rates (0 and 20 kg Fe ha−1 as Fe-EDTA) were applied. Spring and winter wheat genotypes differed significantly (P < 0.01) in the grain yield both with and without added Fe treatments. Application of Fe fertilizer increased grain yield of spring wheat genotypes by an average of 211 and 551 kg ha−1 in Karaj and Isfahan locations, respectively. By Fe application, the mean grain yield of winter wheat genotypes increased 532 and 798 kg ha−1 in Karaj and Isfahan sites, respectively. Iron efficiency (Fe-EF) significantly differed among wheat genotypes and ranged from 65% to 113% for spring wheat and from 69% to 125% for winter wheat genotypes. No significant correlation was found between Fe-EF and grain yield of spring wheat genotypes under Fe deficient conditions. For winter wheat genotypes grown in Mashhad, Fe-efficiency was not significantly correlated with the grain yield produced without added Fe treatment. The STI was significantly (P < 0.01) varied among spring and winter wheat genotypes. The interaction between location and genotype had no significant effect on the STI. According to these results, the STI should be considered as an effective criterion for screening programs, if a high potential grain yield together with more stable response to Fe fertilization in different environments is desired.  相似文献   

19.
为了解人工合成六倍体小麦(Synthetic hexapliod wheats,SHW)导入对普通小麦品质的影响及其潜在利用价值,2004~2005年,对重组近交系群体(人工合成六倍体小麦Syn-CD780×普通小麦品种CY12)的主要品质指标进行了检测.结果表明,籽粒硬度、籽粒蛋白质含量、降落值、湿面筋含量、吸水率、形成时间和稳定时间等7个品质参数的群体平均值都介于两个亲本之间,只有降落值和面团稳定时间2个参数的群体平均值高于Syn-CD780.在131个株系中,有15个株系的综合品质指标较为突出.非遮雨处理的籽粒硬度和吸水率显著低于遮雨处理,而籽粒蛋白质含量、降落值、湿面筋含量和稳定时间等4个品质指标则相反,表明遮雨与否对小麦品质参数的影响较大.Syn-CD780在小麦品质改良上有一定的潜在利用价值.  相似文献   

20.
Bean fly (Ophiomyia spp.) is a major field pest limiting common bean production in eastern Africa. The genetic enhancement of beans for resistance to insect pests is essential for minimizing yield losses arising from crop damage. The objectives of this study were to (1) assess combining ability for bean fly resistance and seed yield accumulation in common bean and (2) estimate genetic parameters associated with resistance for formulating further breeding strategy. Four parents with known reaction to bean fly were crossed with four locally adapted genotypes in an 8 × 8 half diallel mating design. Parents and F2 progenies were grown in an alpha-lattice design replicated twice in an open-field and subjected to natural populations of bean fly for two cropping seasons under semi-arid conditions. Similarly, two resistant and two susceptible parents were selected and crossed to produce populations for generation means and variances components analysis. Results revealed that both general combining ability (GCA) and specific combining ability (SCA) mean squares were significant (p ≤ 0.05) for all four traits studied except SCA for stem damage during one cropping season. Among the parents, GBK 047858 was the best general combiner for all the traits studied across seasons except for stem damage during long rains (LR) 2009. Besides, genotypes GBK 047821 and Kat × 69 (a locally adapted variety) were generally good general combiners for resistance traits as well as seed yield. General predictability ratio (GPR) values ranging from 0.63 to 0.90 were obtained for plant mortality, stem damage, pupae in stem and seed yield across cropping seasons. These results established the predominance of additive gene effects (fixable variation) over the non-additive effects in controlling the traits. Low to moderate narrow sense heritability values ranging from 0.22 to 0.45 were obtained for pupae in stem. Such heritability estimates indicate that although additive gene components were critical in the inheritance of resistance for the trait, non-additive gene action were also important in addition to the environmental effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号