首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 977 毫秒
1.
川西退耕还林地苦竹林碳密度、碳贮量及其空间分布   总被引:1,自引:0,他引:1  
利用标准样方法研究了退耕还林地苦竹林碳素密度和碳贮量及其空间分布。结果表明:苦竹不同器官碳素密度波动在0.348 498~0.518 63gC0/g,按碳素密度高低排列依次为竹秆>竹蔸>竹鞭>竹枝>竹根>竹叶;枯落物碳素含量为0.341 655 gC0/g,土壤碳素密度由上至下呈下降趋势。碳贮量在苦竹不同器官中的分配以竹秆所占比例最大,为53.06%,其次为竹叶,占13.83%,占比例最小的是竹根,仅占3.14%;苦竹林生态系统中碳总贮量为135.808 110 t/hm2,其中乔木层为46.032 420 t/hm2,占33.9%,林下及其枯落物层为2.60 068 t/hm2,占1.91%。土壤层0~60 cm总计为87.175 0 t/hm2,占64.19%;退耕还林地苦竹林乔木层年固碳量约为8.142 t/(hm2.a)。  相似文献   

2.
采用Komiyama红树林异速生长模型,对海南文昌清澜港海莲-黄槿生态系统的植被生物量、碳密度及其空间分布特征进行研究。研究结果表明:海莲-黄槿植被层总生物量为389.57±12.73 t/hm2,其中,乔木层生物量为387.75±12.01 t/hm2,占林分植被层总碳密度的99.5%;海莲-黄槿生态系统总有机碳库密度为688.51±45.69 t/hm2,其中,群落植被层单位面积的碳贮量为184.5 t/hm2,占总碳贮量的26.6%;0~105 cm土壤有机碳单位面积的贮量为504.01±39.69 t/hm2,占生态系统总碳密度的73.2%;林下植被层和现存凋落物层仅占0.2%。  相似文献   

3.
灰木莲人工林碳贮量及其分配特征   总被引:1,自引:0,他引:1  
对广西南宁市高峰林场46年生灰木莲人工林生态系统碳素贮量及其分配格局进行系统研究。结果表明,灰木莲各组分碳素含量变化范围为476.8~532.5 g/kg,各器官碳素含量为树干>树根>树枝>树皮>树叶,土壤层(0~80 cm)碳素含量为10.36 g/kg,不同土层碳素含量随土壤深度增加而降低。灰木莲人工林生态系统总碳贮量为236.70 t/hm2,其中乔木层碳贮量(118.03 t/hm2)最大,占生态系统总碳贮量的49.86%;灌木层碳贮量为2.00 t/hm2,占0.84%;草本层碳贮量为1.18 t/hm2,占0.50%;现存凋落物碳贮量为3.48 t/hm2,占1.47%;土壤层有机碳贮量为111.71 t/hm2,占47.19%。灰木莲人工林生态系统乔木层碳素年净固定量为3.72 t/(hm2·a),各组分碳素年净固定量大小依次为:树干>树叶>树根>树枝>树皮。  相似文献   

4.
豫南35年生马尾松林生态系统碳库特征及其分配   总被引:2,自引:0,他引:2  
对豫南35年生马尾松林生态系统的生物量、碳贮量及其空间分布特征进行研究。采用分层切割法和相对生长方程计算乔木层生物量和林下植被生物量,C、N元素分析仪测定碳含量。研究结果表明:35年生马尾松林生态系统的总生物量平均为228.6 t.hm-2,其中乔木层生物量占88.9%,灌木层占7.7%,草本层占0.1%,凋落物层占2.7%;马尾松林生态系统总碳库为218.11 t.hm-2,其中植被总碳贮量为127.69 t.hm-2,土壤有机碳库为90.42 t.hm-2;乔木层碳库(115.52 t.hm-2)占生态系统碳库的52.96%,灌木层占3.80%,草本层占0.28%,现存凋落物层占1.50%,矿质土壤层碳库占生态系统碳库的41.46%。  相似文献   

5.
利用湖南2014年森林资源清查样地资料,采用系统抽样理论,综合运用回归模型方法对长株潭地区绿地植被(乔、灌、草)碳贮量与碳密度进行了研究,为建立碳汇计量监测体系提供可靠数据,以期为科学评价区域植被在碳平衡中的作用提供依据。研究结果表明:长株潭地区植被总碳贮量为47.31 Tg(1Tg=10~(12)g),森林植被碳贮量为39.22 Tg,占植被总量的89.73%,其中乔木层碳贮量占71.7%、灌木层碳贮量占22.8%、草本层碳贮量占5.5%;植被平均碳密度为16.9 t/hm~2,森林植被平均碳密度为29.53 t/hm~2;自然地理因子与植被碳密度具有明显相关性。  相似文献   

6.
根据2017年湖南省森林资源清查资料和野外实地调查实测数据,对湖南省阔叶林生态系统碳储量、碳密度的动态特征进行了研究。结果表明:湖南省阔叶林森林生态系统总碳贮量为505.17 TgC,其中乔木层、灌草层、枯落物和土壤层层分别为113.75 TgC、9.92 TgC、9.64 TgC和377.86 TgC,分别占阔叶林生态系统碳贮量的22.52%、1.96%、1.91%和73.61%;湖南省阔叶林森林生态系统碳密度为154.51 t·hm^2,各层碳密度的大小顺序为土壤层(113.74 t·hm-2)>乔木层(34.79 t·hm-2)>灌草层(3.03 t·hm-2)>枯落物层(2.95 t·hm-2)。在3种类型阔叶林中,乡土阔叶林生态系统碳贮量为485.56 TgC,所占全省阔叶林生态系统碳贮量的96.12%;乡土阔叶林生态系统碳密度最大,为154.72 t·hm-2,杨树林生态系统碳密度最小,为149.59 t·hm-2。在阔叶林各龄组中,中、幼龄林约占湖南省阔叶林生态系统碳贮量的67.13%,是阔叶林的主要碳库且固碳潜力巨大;湖南省阔叶林碳密度幼龄林、中龄林、近熟林和成过熟林的碳密度分别介于24.60~55.51 t·hm-2之间,具体表现为成过熟林(55.51 t·hm-2)>近熟林(47.51 t·hm-2)>中龄林(44.68 t·hm-2)>幼龄林(24.60 t·hm-2)。全省阔叶林生态系统空间分布表现为碳贮量呈现明显的湘西、湘南,湘中较低特征,而碳密度整体表现出洞庭湖流域地区大于其他地区的趋势。  相似文献   

7.
根据野外实地调查数据和湖南省森林资源清查资料,洞庭湖流域生态血防林生态系统各组分的碳贮量、碳密度及其关联特征进行了分析。结果表明:血防林乔木层各器官的碳贮量和碳密度分配呈现出树干树枝树根树叶的规律,树干在乔木层的碳贮量和碳密度最大,为1.93 TgC和21.48 t·hm~(-2),占整个乔木层的68.76%,而树叶最小,为0.08 TgC和0.84 t·hm~(-2),仅占整个乔木层的2.70%。血防林生态系统碳贮量和碳密度分别为23.42 TgC和260.70 t·hm~(-2),其中土壤层碳密度、乔木层、林下植被和枯落物分别占整个血防林生态系统碳密度的87.59%、11.98%、0.28%和0.15%。血防林乔木层树干、树枝、树叶、乔木地上部分、乔木层地下部分(树根)的碳密度存在极显著相关性(P0.01),乔木层、林下植被和枯落物碳密度存在显著性相关(P0.05),树叶与林下植被存在显著性相关。生态血防林的立木蓄积量与乔木层碳密度存在极显著的线性关系(P0.001),与林下植被的碳密度拟合曲线系数降低且呈极显著性负相关(P0.01),与枯落物碳密度的拟合度达到极显著水平(P0.01)。  相似文献   

8.
更新期橡胶人工林生态系统碳贮量及分布   总被引:1,自引:1,他引:0       下载免费PDF全文
对处于更新期30 年橡胶人工林含碳量、生物量、碳贮量及其空间分布进行研究。结果表明:橡胶树组分的含碳量在29.94%~52.90 %之间,大小表现为:树叶>树干>树根>树枝>树皮>胶乳,相同器官的含碳量枯样的要比鲜样的高。凋落物层含碳量平均为51.90 %,林下植物为46.09 %。土壤含碳量平均为0.54%,随着土层深度的增加,各层次土壤含碳量逐渐减少,相邻土层差异不显著。橡胶林生态系统现存碳贮量为219.68 t·hm-2,其中乔木层为140.21 t·hm-2,占整个生态系统碳贮量的63.82 %,凋落物层和林下植被层为3.99 t·hm-2,仅占1.82 %,土壤(0~100 cm)的碳贮量为75.48 t·hm-2,占34.36 %。橡胶树各器官的碳贮量与其生物量成正比关系。树干的生物量最大,其碳贮量也最高,占乔木层碳贮量的55.67%。  相似文献   

9.
桤木人工林的碳密度、碳库及碳吸存特征   总被引:4,自引:0,他引:4  
对不同年龄阶段桤木人工林生态系统碳密度、碳库和碳吸存的研究结果表明:桤木各器官的碳密度算术平均值随年龄的增长而增加,5,8和14年生的分别为478.8,485.7和495.8g·kg-1,变异系数在0.25%~9.58%之间,不同器官碳密度由高至低排序大致为:树干树枝树叶树根树皮,林下植被各组分和死地被物的碳密度随着林龄的变化规律不明显,土壤层(0~60cm)平均碳密度也随着林龄的增长逐渐增加,且在垂直分布上随着土层深度的增加而逐渐下降。不同器官的碳贮量与其生物量成正比例关系,随着林龄增长,乔木层碳贮量的优势逐渐增强,从5年生的25.88t·hm-2增加到14年生的49.63t·hm-2。桤木人工林生态系统的碳库主要由植被层、死地被物层和土壤层组成,按其碳库大小顺序排列为:土壤层植被层死地被物层,5,8和14年生桤木林生态系统中的碳库分别为95.89,122.12和130.75t·hm-2,土壤碳贮量占整个生态系统碳库的59.42%以上,且随着林龄增长,地上部分与地下部分碳贮量之比有逐渐下降的趋势,5,8和14年生桤木年净固定碳量分别6.51,6.26和7.82t·hm-2a-1。湖南省现有桤木林植被碳库为2.8034×106t,为其潜在碳库的47.51%。  相似文献   

10.
毛竹林的碳密度和碳贮量及其空间分布   总被引:47,自引:8,他引:47  
利用标准样方法研究毛竹林碳密度和碳贮量以及空间分布。结果表明 :毛竹不同器官碳密度波动在0 4 6 83~ 0 5 2 10g·g- 1 ,按碳密度高低排列依次为竹根 >竹秆 >竹蔸 >竹枝 >竹鞭 >竹叶 ;碳贮量在毛竹不同器官中的分配以竹秆占比例最大 ,为 5 0 97% ,其次为竹根 ,占 19 79% ,占比例最小的是竹叶 ,仅占 4 87% ;毛竹林生态系统中碳总贮量为 10 6 36 2t·hm- 2 ,其中植被层 34 2 31t·hm- 2 ,占了 32 18% ,枯落物和土壤层 (0~ 6 0cm) 72 131t·hm- 2 ,占了 6 7 82 % ;毛竹林乔木层碳素年固定量为 5 0 97t·hm- 2 a- 1 ,与粗放经营竹林相比 ,毛竹集约经营 10年后 ,竹林生态系统中碳贮量减少了 8 133t·hm- 2 ,但乔木层年净固定碳量增加了 0 5 89t·hm- 2 a- 1 。  相似文献   

11.
对11 a 生香梓楠(Michelia hedyosperma)人工林生态系统的碳素含量、碳储量及其空间分配特征进行了研究。结果表明:(1)香梓楠各植物器官碳素平均含量的变化范围在450.98~514.45 g/kg 之间,各器官碳含量的排列次序为:干材>根蔸>粗根>枝>中根>细根>叶>皮。(2)香梓楠人工林生态系统总碳储量为182.32 t/hm2,其中土壤层所占比例最高,达77.62%,灌草层所占比例最少,仅占0.30%,各生物层次碳储量总体表现为:土壤层>乔木层>凋落物层>灌草层。(3)香梓楠人工林生态系统总生物量为81.68 t/hm2,乔木层、灌草层和凋落物层分别占95.68%、1.45%和2.87%,表现为乔木层>凋落物层>灌草层。(4)香梓楠人工林分乔木层年净生产力和净固碳量分别为7.10和3.56 t/(hm2· a),具有较高的碳汇潜力。  相似文献   

12.
连栽杨树人工林碳储量变化   总被引:1,自引:0,他引:1  
为研究连栽杨树人工林林木和土壤碳储量变化规律,了解杨树人工林碳汇能力,笔者对江汉平原1代和2代杨树人工林的林木生物量和碳储量、土壤碳含量和碳储量进行了测定,结果表明:1代和2代杨树人工林林木碳储量分别为30.83 t/hm2和24.63 t/hm2;土壤碳储量(0~20 cm)分别为39.29 t/hm2和29.09 ...  相似文献   

13.
森林碳汇是指森林利用光合作用吸收大气中的CO2并以生物量的形式贮存在植物体内和土壤中的能力。近年来,随着人口的增长和经济的发展,人类排放温室气体持续增加,导致地球气候不断变暖,而森林所固有的吸收和固定CO2的功能即森林碳汇功能,能够有效地减少大气中的CO2浓度,起到减缓气候变暖的作用。本研究以安徽省宜秀区人工杨树林为研究对象,设置面积为0.24 hm2的样地一块,采取相邻格子法将其区划为20 m×30 m的乔木样方4块。在样方内进行每木检尺,每块样地选取平均标准木一株,供乔木层生物量测定,林分乔木层总生物量按转换系数进行计算。结果表明:研究地林分径级分布集中在18 cm~28 cm之间,林龄为10 a;无论在单木还是林分中,干生物量都占绝对主体地位;研究地10 a生人工杨树林乔木层每公顷碳储量为196.0016 t。  相似文献   

14.
刘化桐 《福建林业科技》2013,40(1):26-28,98
对20年生北美鹅掌楸人工林生产力及碳氮积累研究表明:北美鹅掌楸福建北部生长潜力较大,树高达15.61~24.54m,胸径为21.37~33.31 cm,单株材积为0.259~0.990 m3。北美鹅掌楸对立地条件敏感,Ⅰ类地树高、胸径、材积生长分别比Ⅲ类地增加63.62%、55.90%、281.91%;全树总生物量可达580.27 t.hm-2,各生长器官的生物量大小顺序为树干>树枝>树根>树皮>树叶,分别占到总生物量的58.80%、20.61%、11.94%、5.58%和3.07%;树干、树叶、树皮、树枝、树根碳含量分别为52.13%、50.61%、49.20%、46.85%、45.34%,氮含量分别为0.72%、0.91%、0.96%、0.88%、0.83%;全树碳总积累量可达290.26 t.hm-2,树干、树枝、树根、树皮、树叶分别为177.86、56.02、31.43、15.92、9.03 t.hm-2;全树氮总积累量可达4.56 t.hm-2,大小顺序依次为树干>树枝>树根>树皮>树叶。  相似文献   

15.
沙地杨树人工林生物量特征研究   总被引:1,自引:0,他引:1  
以科尔沁沙地杨树人工林为研究对象,实地测定了造林5年、8年、18年杨树人工林的树木生物量、枯落物生物量、草本生物量和根系生物量,并分析其特征。结果表明:5年人工林地上总生物量和0—60cm土层根系生物量分别为725kg/667m^2和260.66kg/667m^2;8年的分别为1086.62kg/667m^2和147.27kg/667m^2;18年的分别为1690.70kg/667m^2和297.75kg/667m^2。同时,随着林龄的增长,树木生物量、枯落物生物量逐渐增加,而草本生物量和根系生物量占林木总生物量的比例有所下降。  相似文献   

16.
[目的]为了探讨恢复模式对森林生态系统碳库的影响,[方法]利用定位研究方法,对比分析了湖南会同杉木人工林皆伐后2种恢复模式(自然恢复和人工恢复)20年时森林生态系统碳储量及其空间分布。[结果]表明:(1)自然恢复植被层碳储量明显大于人工恢复,自然恢复的乔木层碳储量比人工恢复的高22.56%。自然恢复的乔木层各器官碳储量的分配比为干﹥枝﹥根﹥叶﹥皮,而人工恢复为干﹥根﹥枝﹥皮﹥叶。林下植被层和凋落物层碳储量所占比例非常小,自然恢复的灌木层、草本层和凋落物层碳储量分别为人工恢复的3.99、5.94、1.14倍。(2)自然恢复的土壤层碳储量比人工恢复的小;自然恢复表层(0 10 cm)土壤碳含量和碳储量均比人工恢复的大,但其它土层则相反;2种恢复模式的土壤碳含量、碳储量均随土层深度的增加而减少,不同恢复土壤各层碳储量所占分配比差异明显。(3)自然恢复各组分碳储量为乔木层﹥土壤层﹥凋落物层﹥灌木层﹥草本层,而人工恢复为土壤层﹥乔木层﹥凋落物层﹥灌木层﹥草本层。[结论]自然恢复模式更有利于伐后林地植被层碳储量的恢复,而人工恢复模式更有利于伐后林地土壤层碳储量的恢复。从整个森林生态系统看,杉木人工林皆伐后林地自然恢复模式固碳能力高于人工恢复模式,恢复模式对碳储量在生态系统各组分的分配也产生了一些影响。  相似文献   

17.
相对准确地计量地带性森林碳库大小是估算区域森林碳汇潜力的前提。根据全市不同森林类型设置样地900个,运用样地清查法估算广州市森林生态系统碳储量和碳密度。结果表明:广州市森林生态系统碳储量为52.16 Tg C。其中,植被层和土壤层碳储量分别为21.97 Tg C和27.16 Tg C。碳储量空间分布主要集中在从化区和增城区;总碳储量的组成中,土壤层碳库比例最大(58%),其次为乔木层碳库比例(40%),而灌木层、草本层、凋落物层和细根(≤ 2.0 mm)的生物量比例大多在1%~2%;天然林碳储量与人工林接近,但是碳密度显著大于人工林(p < 0.05);不同林龄从小到大排序为:幼龄林、中龄林、近熟林、过熟林、成熟林;天然林以阔叶混和它软阔的碳储量最高,阔叶混和黎蒴的碳密度最高。人工林不同林型从大到小排序为:南洋楹 > 黎蒴 > 木荷 > 木麻黄 > 它软阔 > 阔叶混 > 湿地松。森林生态系统碳密度为178.03 t C hm-2,其中,植被层和土壤层碳密度分别为79.61 t C hm-2和98.42 t C hm-2。本研究全面计量了广州市森林生态系统碳库现状,这对评估该地区森林固碳潜力和指导碳汇林经营管理具有重要参考价值。  相似文献   

18.
为桉树人工林的土壤质量评价提供科学依据,研究了不同林龄(1a、2a、3a、5a、7a)尾巨桉林地0~60cm土壤和枯落物的碳含量及碳储量,测算了不同林龄桉树林地叶面积指数,乔木层、灌木层、草本层和枯落物层生物量。结果表明:土壤有机碳含量随土层深度增加而呈降低趋势,不同林龄0~20 cm土层有机碳含量差异显著,不同林龄相同土层之间土壤有机碳储量差异不显著;枯落物碳储量差异显著,大小顺序为:5 a (4.83 t·hm-2)>7 a (3.89 t·hm-2)>3 a (2.66 t·hm-2)>2 a (2.43 t·hm-2)>1 a (1.56 t·hm-2);0~60 cm土层土壤碳储量与叶面积指数呈负相关关系,与林龄、乔木层生物量、灌木层生物量、草本层生物量、枯落物层生物量之间呈正相关性,但相关性都不显著。  相似文献   

19.
分析了南亚热带中山区的铁坚油杉天然林乔木层、灌木层、草本层和凋落物层的生物量和碳储量以及分配格局,为提高该地区碳储量提供参考依据。在天然铁坚油杉林内设定标准样地,采用标准样方收获法和标准木法测定生态系统的生物量和碳储量。(1)铁坚油杉天然林生态系统总生物量为239.61 t/hm~2,乔木层为237.65 t/hm~2,灌草层为0.18 t/hm~2,凋落物层为1.78 t/hm~2,生物量主要集中在乔木层。(2)植被层各组分有机碳含量相差不大,为介于465.22~512.17 g/kg之间;各组份间的碳含量无显著性差异,0~20 cm层土壤层碳含量高达12.55 g/kg,土壤层碳含量随着土壤深度增加而逐渐降低,随着深度增加碳含量降低程度变小。(3)生态系统总碳为134.55 t/hm~2,其中植被层为68.45 t/hm~2,乔木层为67.54t/hm~2,碳储量相对高,植被层的碳储量主要集中在乔木层,所占比例高达98.70%;土壤层碳储量为66.10 t/hm~2,该生态系统碳储量集中在土壤层和乔木层,且两者所占比例接近,分别为50.20%、49.13%。铁坚油杉天然林生态系统生物量和碳储量相对较高,土壤固碳能力较强,应进行合理保护利用。  相似文献   

20.
通过对国营雷州林业局30个5年生桉树无性系人工林的调查、试验,旨在阐明不同桉树无性系人工林碳储量的变化规律及营建桉树碳汇林的合理措施.结果表明:30个桉树无性系人工林生态系统平均碳储量为148.743 t·hm-2,高于之前学者研究的桉树人工林碳储量,其中,乔木层和土壤层分别占34.39%、61.88%;乔木层平均碳储量达51.948 t·hm-2,不同无性系间差异极显著(p<0.01),其中,23(101-1)、25(179-1)、4(BU1)、26(184-1)号无性系表现最优;土壤层的平均碳储量为92.033 t·hm-2,不同无性系土壤层碳储量差异不明显;灌木层、草本层、凋落物层碳储量分别是2.430、0.731、1.592 t·hm-2,占比例较小.营建桉树碳汇林关键在于无性系的正确选择.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号