首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
Abstract

We tested the hypothesis that the fungivorous nematodes Aphelenchoides spp. and Aphelenchus avenae can suppress damping-off caused by Rhizoctonia solani in cauliflower seedlings, and enhance the disease-suppressive effect of compost. In greenhouse experiments, we used two different composts mixed with peat (20% + 80%) and pure peat as growth substrates in growing pots. In each substrate, treatments were: (A) with R. solani and nematodes, (B) with R. solani, (C) with nematodes, (D) control without R. solani or nematodes. Treatment effects were measured as percentage of healthy seedlings 7, 10 and 14 days after start of the experiment. We conducted two different experiments with the treatments A–D; one with Aphelenchoides spp. and one with Aphelenchus avenae. Aphelenchoides spp.+R. solani (treatment A) had 85% healthy plants (= control without addition of fungi (D)) compared with 45% in R. solani without nematodes (B). Aphelenchus avenae suppressed damping-off significantly in all substrates, from almost 100% dead plants in peat with R. solani to 65% healthy plants in R. solani+A. avenae. One compost mixture had an intrinsic suppressive effect on damping-off, while plant health in the other compost mixture was not better than in 100% peat as growing substrate. There were no additive suppressive effects (enhancement) between nematode effects and the suppressive compost. The results demonstrate the ability of fungivorous nematodes to suppress plant diseases. The effects of fungivorous nematodes in combination with compost and other control measures on disease suppression need further attention. The usefulness of fungivorous nematodes in agriculture and horticulture is discussed.  相似文献   

2.
The objective of this research was to evaluate a variety of stability and maturity indices for yard trimmings compost produced in the Puget Sound region of western Washington State. Compost samples were collected periodically during a 133-d composting cycle at a commercial composting facility, showing that indices of compost respiration rate were sensitive indicators of compost quality. All respiration rate indices identified a period of high respiration rates during active composting (first 27 d), and a period of relatively stable respiration rates during the latter part of curing (70 to 133 d). Chemical tests of compost solids showed less promise as maturity indicators, but provided valuable information on final compost quality. Mature yard trimmings compost had a C:N of 12, an NH4-N to NO3-N ratio of less than 4, a cation exchange capacity (CEC) of 400 cmol per kg of compost-C, and a pH between 6.5 and Seed germination tests and sensory tests (color and odor) were of limited value in assessing compost maturity. Fully-cured compost produced with forced aeration had a Solvita CO2 test value of 6 to 7 and a respiration rate via the alkaline trap method of 2 mg CO2-C g compost-C?1 d?1. It reheated less than 2°C in an insulated Dewar flask in a 7 d incubation. Further evaluation and calibration of respiration test protocols for compost quality assurance testing programs are recommended.  相似文献   

3.
Compost amended soil has been found to be suppressive against plant diseases in various cropping systems. The level and reproducibility of disease suppressive properties of compost might be increased by the addition of antagonists. In the present study, the establishment and suppressive activity of two fungal antagonists of soil-borne diseases was evaluated after their inoculation in potting soil and in compost produced from different types of organic waste and at different maturation stages. The fungal antagonists Verticillium biguttatum, a mycoparasite of Rhizoctonia solani, and a non-pathogenic isolate of Fusarium oxysporum antagonistic to fusarium wilt, survived at high levels (103–105 CFU g–1) after 3 months incubation at room temperature in green waste compost and in potting soil. Their populations faded out in the organic household waste compost, especially in the matured product. In bioassays with R. solani on sugar beet and potato, the disease suppressiveness of compost increased or was similar after enrichment with V. biguttatum. The largest effects, however, were present in potting soil, which was very conducive for the disease as well as the antagonist. Similar results were found in the bioassay with F. oxysporum in carnation where enrichment with the antagonistic F. oxysporum had a positive or neutral effect. We foresee great potential for the application of antagonists in agriculture and horticulture through enrichment of compost or potting soil with antagonists or other beneficial micro-organisms.  相似文献   

4.
Compost is often reported as a substrate that is able to suppress soilborne plant pathogens, but suppression varies according to the type of compost and pathosystem. Reports often deal with a single pathogen while in reality crops are attacked by multiple plant pathogens. The goal of the present study was to evaluate the disease suppression ability of a wide range of composts for a range of plant pathogens. This study was conducted by a consortium of researchers from several European countries. Composts originated from different countries and source materials including green and yard waste, straw, bark, biowaste and municipal sewage. Suppressiveness of compost-amended (20% vol./vol.) peat-based potting soil was determined against Verticillium dahliae on eggplant, Rhizoctonia solani on cauliflower, Phytophthora nicotianae on tomato, Phytophthora cinnamomi on lupin and Cylindrocladium spathiphylli on Spathiphyllum sp., and of compost-amended loamy soil (20% vol./vol.) against R. solani on Pinus sylvestris and Fusarium oxysporum f. sp. lini on flax. From the 120 bioassays involving 18 composts and 7 pathosystems, significant disease suppression was found in 54% of the cases while only 3% of the cases showed significant disease enhancement. Pathogens were affected differently by the composts. In general, prediction of disease suppression was better when parameters derived from the compost mixes were used rather than those derived from the pure composts. Regression analyses of disease suppression of the individual pathogens with parameters of compost-amended peat-based mixes revealed the following groupings: (1) competition-sensitive: F. oxysporum and R. solani/cauliflower; (2) rhizosphere-affected: V. dahliae; (3) pH-related: P. nicotianae; and (4) specific/unknown: R. solani/pine, P. cinnamomi and C. spathiphylli. It was concluded that application of compost has in general a positive or no effect on disease suppression, and only rarely a disease stimulating effect.  相似文献   

5.
Quantity and quality of readily degradable carbon influences the composting process especially for compost mixture high in lignocellulotic material. Effects of carbon source on stability and maturity of compost from in-vessel systems are poorly understood. Research was conducted to investigate the effects of carbon composition of feedstock on the evolution of stability indices and reliability of maturity tests for accelerated vessel composting systems. Rice straw, sugarcane bagasse, and coffee hulls were composted in a modified rotary in-vessel composter amended with either cattle or sheep manure. Distinct evolution patterns were observed across carbon sources for temperature, with the sugarcane compost never attaining thermophilic temperatures. Time to peak temperature and return to ambient were significantly different between the rice and coffee compost. Comparatively, organic matter degradation followed a similar pattern for all carbon sources, although rice straw showed the faster degradative rate and coffee hulls the greatest overall loss. Both pH and electrical conductivity were inappropriate stability indices across carbon sources, while the NH4+/NO3? ratio was lower than the threshold from week 1. The Solvita® maturity test was the best suited quality indicator and was related to compost respiration. The rice compost at week 12 was the only mature compost with an index value of 7. However, the coffee compost was in the curing stage with a value of 6. In vitro phytotoxicity assays on hot pepper contrasted the Sovita® interpretation for rice compost, which showed the lowest germination index. All compost had a stimulatory effect on cucumber seeds. In vivo seeding assays corroborated in vitro results with rice compost showing the greatest negative effect, augmented at 100% compost inclusion. Carbon source significantly influenced compost stability and maturity indices, which suggests that greater attention should be directed to quality indices in relation to feedstock composition.  相似文献   

6.
Rhizoctonia solani AG-8 is a major root pathogen in wheat (Triticum aestivum L.) systems worldwide and while natural disease suppression can develop under continuous cropping, this is not always the case. The main aim of our work was to elucidate the rhizosphere microbial community underlying a Rhizoctonia suppressive soil (Avon, South Australia) and to investigate how this community may develop in agricultural soils conducive to disease and of different soil type (Galong and Harden, New South Wales). The Avon suppressive soil community included Asaia spp. and Paenibacillus borealis, which were absent from a paired non-suppressive site. At Galong, soil taken from inside and outside disease patches showed no evidence of suppression, and disease suppression could not be transferred from the suppressive soil to the conducive soil from a different soil type and climatic area. 16S rRNA microarray analysis revealed Pseudomonas spp. were significantly more abundant inside than outside three disease patches at Galong. However, a survey of 32 patches across a range of stubble and tillage treatments at a nearby site showed no correlation between Pseudomonas and disease incidence. R. solani levels were significantly lower when stubble was retained rather than burnt or when nutrients (N, P and S) were incorporated with stubble during the non-crop period. Our results suggest soil type is an important factor for suppressive capability and that where specific disease suppression is absent, agronomic practice to increase soil carbon can encourage a non-specific microbial response that limits disease severity.  相似文献   

7.
Disease complex of carrot (Daucus carota L.) involving root knot nematode Meloidogyne incognita and two fungi Alternaria dauci and Rhizoctonia solani were studied in three soil types. More plant growth, chlorophyll, carotenoid and proline contents were found in carrot grown in fly ash mix soil than plants grown in sand mix soil and loamy soil. Inoculation of M. incognita, R. solani, and A. dauci reduced plant growth, chlorophyll and carotenoid but increased proline contents. Inoculation of M. incognita 20 days prior to a fungal pathogen caused a greater reduction in plant growth, chlorophyll and carotenoid than fungal pathogen was inoculated prior. Inoculation of A. dauci prior to R. solani or vice versa had a similar effect on plant growth, chlorophyll, and carotenoid. Nematode multiplication and galling was higher in plants grown in sand mix soil followed by loamy soil and fly ash mix soil. Both fungi had adverse effects on galling and nematode multiplication. Blight disease index caused by A. dauci was 3 and crown rot index by R. solani was also recorded 3. These disease indices were 5 when pathogens were inoculated in combinations.  相似文献   

8.
ABSTRACT

Microbial fortified organic amendment in chili cultivation may affect plant development and disease suppression. Microbial infused rice straw compost, commercial rice straw compost, and fungicide Benomyl for chili (Capsicum annum L.) cultivation and control of Sclerotium foot rot were studied under glass house condition. Chili seed cv. Kulai were sown in the Sclerotium rolfsii infested and non-infested soil. After two weeks, five healthy seedlings were transplanted into planting bags. Growth performance and development of disease symptoms associated with S. rolfsii foot rot infection were assessed. Applying microbial infused rice straw compost increased seed germination and plant growth, and suppressed development of foot rot compared to using commercial rice straw compost and the Benomyl. A higher disease reduction (84.6%) occurred with 15 Mg · ha?1 microbial infused rice straw compost (62.7%), followed by Benomyl (53.8%), and 15 Mg · ha?1 commercial rice straw compost (46.2%). Application of microbial infused rice straw compost at 15 Mg · ha?1 yielded optimum seed germination and seedling establishment, plant growth, and disease suppression. Microbial infused rice straw compost is a good alternative to chemical fungicide in controlling Sclerotial disease in chili.  相似文献   

9.
Prolonged curing of compost reduces risks of phytotoxicity but may also have an undesirable effect on suppressiveness against soil-borne diseases. In a previous study, this effect was demonstrated for a compost produced from a mixture of yard waste and biosolids, against Sclerotium rolfsii. The aim of the present study was to demonstrate that similar effects of prolonged curing may be exhibited by additional types of composts and pathosystems. Therefore, we investigated the effect of curing of three types of composts against S. rolfsii and Pythium aphanidermatum. These plant pathogens are subjected to different suppression mechanisms. The prolonged curing was characterized and validated by measurements of a range of chemical and spectroscopic parameters. All three composts were suppressive against both diseases before curing. At high inoculum levels, suppression against P. aphanidermatum was lost for the cured biosolids and straw and manure based compost. Loss of suppression was associated with a decrease in basal and substrate induced respiration. For S. rolfsii suppression was lost with curing for all three composts and was associated with a decrease in dissolved organic carbon and NH4+ concentration, a decrease in pH and an increase in NO3? concentration.  相似文献   

10.
Pythium damping-off and root-rot are among the most important soilborne diseases of greenhouse plants and seedlings grown in container media. It has been shown previously that composts may be conducive, suppressive or partially suppressive to Pythium diseases. The major goal of this work was to investigate rapid, practical and reliable methods for determining of the degree of suppressiveness of container media to Pythium damping-off. Several inoculation methods were tested in greenhouse bioassays, survival of propagules in suppressive versus conducive media was studied under laboratory conditions. Although both greenhouse and laboratory tests could indicate disease suppression, a bioassay with cucumber seedlings is suggested to be the most simple, effective and comprehensive method for testing suppression of Pythium diseases in compost amended container media.  相似文献   

11.
Biowaste can be converted into compost by composting or by a combination of anaerobic digestion and composting. Currently, waste management systems are primarily focused on the increase of the turnover rate of waste streams whereas optimisation of product quality receives less attention. This results in low quality composts that can only be sold on bulk markets at low prices. A new market for quality compost could be potting mixes for horticultural container-grown crops to partially replace non-renewable peat and increase the disease suppressiveness of potting mixes. We report here on the effect of wetsieving biowaste prior to composting on compost quality and on disease suppressiveness against the plant pathogen Pythium ultimum of peat mixes amended with this compost. The increased organic matter and decreased salt content of the compost allow for significantly higher substitution rates of peat by compost. In this study up to 60% v/v compost peat replacement did not affect cucumber growth. However, disease suppressiveness of the potting mixes strongly increased from 31 to 94% when the compost amendment rate was increased from 20 to 60%. It was shown that general disease suppression for P. ultimum can only be effective when the basal respiration rate is sufficiently high to support microbial activity. In addition, organic matter of the compost should reach a sufficient stability level to turn from disease conducive to disease suppressive. Increasing the compost addition from 20 to 60% did not significantly affect plant yield, yield variation were due to differences in nutrient levels. It can be concluded that compost from wetsieved biowaste has high potential to replace peat in growing media for the professional market.  相似文献   

12.
In this study, respiration rate was found to be a useful tool for assessing the relative stability of compostable materials. Internal windrow temperature and/or reheating potential were compared to respiration rate, and therefore, to the degree of compost stability. Parameters that evaluate biological activity, such as respiration rate and reheating potential, exhibited an ability to indicate compost stability.

There are no federal regulations and only a limited number of state regulations regarding compost stability or end use. Minnesota, New York, Florida and a few other states have developed classifications for maturity or end use. These regulations generally define mature or stable compost as having achieved 60 percent decomposition or having been in active decomposition for at least 180 days. Reheating potential or declining windrow temperatures have been used as qualitative measures of maturity.  相似文献   

13.
On-farm composting is an efficient, environmentally safe and cost-effective process for recycle vegetable residues into productive cycles. Benefits of these composts could include their ability to mediate soil-borne plant pathogen suppression with a significant impact on eco-friendly crop management. In this work, on-farm composts were assayed for ability to control, both in vitro and in vivo, damping-off causing pathogens Rhizoctonia solani and Sclerotinia minor. Tomato and escarole-derived compost was the most suppressive and, furthermore, together with that derived from artichoke wastes, exhibited multi-suppressive activity. Compost communities, characterized at metabolic and global levels by Biolog system, microbial counting, CO2-release and FDA hydrolysis rate, play a major role in compost-based biological control. The complete biotic inactivation by autoclaving composts, has, in fact, reduced or eliminated their ability in pathogen suppression. Solid state 13C CPMAS-NMR spectroscopy revealed that spectral areas typical for phenolic C, as well as methoxyl C, may be associated to suppressivity mechanism(s). These evidences suggested that the ecological relationships between organic carbon molecular distribution and microbial structure may contribute to discriminate suppressive composts from null and conducive ones. Nutritional microniches in compost may then have profound effects on the community functions, including those linked to the suppressiveness.  相似文献   

14.
We studied nine composts derived from wastes and by-products of the olive oil, wine, and Agaricus mushroom agro-industries. They were mixed with peat at 1:3 w w −1 ratios and comparatively evaluated in pot experiments to assess suppressiveness against soil-borne and foliar pathogens of tomato. All compost amendments demonstrated high levels of suppressiveness against Phytophthora nicotianae Breda de Haan in tomato, when they were applied directly after curing (T0) indicating the occurrence of a “general suppression phenomenon” (81–100% decrease in plant disease incidence). They were, however, relatively less effective when applied 9 months after curing (T1, 55–100% disease decrease). Suppressiveness against Fusarium oxysporum f.sp. radicis-lycopersici Jarvis & Shoemaker was relatively lower and varied widely among composts (8–95% and 22–87% decrease in plant disease incidence for T0 and T1, respectively). Three of the composts conferred induced systemic resistance against the foliar pathogen Septoria lycopersici Speg. Biotic properties were determined, including respiration, fluorescein diacetate hydrolysis, and β-glucosidase activity of composts. The comparative evaluation of the nine composts revealed no shared critical biotic or abiotic characteristics indicative of their suppressive effects on the soil-borne and foliar pathogens. The complex origin of compost suppressiveness is discussed and the implementation of individual evaluation of each compost product for a specific use is advocated.  相似文献   

15.
Disease suppressiveness against Rhizoctonia solani AG 2-1 in cauliflower was studied in two marine clay soils with a sandy loam texture. The soils had a different cropping history. One soil had a long-term (40 years) cauliflower history and was suppressive, the other soil was conducive and came from a pear orchard not having a cauliflower crop for at least 40 years. These two soils were subjected to five successive cropping cycles with cauliflower or remaining fallow in a greenhouse experiment. Soils were inoculated with R. solani AG 2-1 only once or before every crop. Disease decline occurred in all treatments cropped with cauliflower, either because of a decreased pathogen population or increased suppressiveness of the soil. Disease suppressiveness tests indicated that the conducive soil became suppressive after five subsequent cauliflower crops inoculated each cycle with R. solani AG 2-1. Suppressiveness of all treatments was measured in a seed germination test (pre-emergence damping-off) as well as by measuring the spread of R. solani symptoms in young plants (post-emergence damping-off). Results showed that suppressiveness was significantly stimulated by the successive R. solani inoculations; presence of the cauliflower crop had less effect. Suppressiveness was of biological origin, since it disappeared after sterilization of the soil. Moreover, suppressiveness could be translocated by adding 10% suppressive soil into sterilized soil. The suppressive soil contained higher numbers of culturable filamentous actinomycetes than the conducive soil, but treatments enhancing suppressiveness did not show an increased actinomycetes population. The suppressiveness of the soil samples did also not correlate with the number of pseudomonads. Moreover, no correlation was found with the presence of different mycoparasitic fungi, i.e. Volutella spp., Gliocladium roseum, Verticillium biguttatum and Trichoderma spp. The suppressive soil contained a high percentage of bacteria with a strong in vitro inhibition of R. solani. These bacteria were identified as Lysobacter (56%), Streptomyces (23%) and Pseudomonas (21%) spp. A potential role of Lysobacter in soil suppressiveness was confirmed by quantitative PCR detection (TaqMan), since a larger Lysobacter population was present in suppressive cauliflower soil than in conducive pear orchard soil. Our experiments showed that successive cauliflower plantings can cause a decline of the damage caused by R. solani AG 2-1, and that natural disease suppressiveness was most pronounced after subsequent inoculations with the pathogen. The mode of action of the decline is not yet understood, but antagonistic Lysobacter spp. are potential key organisms.  相似文献   

16.
One of the key issues in compost research is to assess when the compost has reached a mature stage. The maturity status of the compost determines the quality of the final soil amendment product. The nematode community occurring in a Controlled Microbial Composting (CMC) process was analyzed with the objective of assessing whether the species composition could be used as a bio-indicator of the compost maturity status. The results obtained here describe the major shifts in species composition that occur during the composting process. Compared to terrestrial ecosystems, nematode succession in compost differs mainly in the absence of K-strategists and numerical importance of diplogastrids. At the beginning of the composting process (thermophilic phase), immediately after the heat peak, the nematode population is primarily built by bacterial feeding enrichment opportunists (cp-1) (Rhabditidae, Panagrolaimidae, Diplogastridae) followed by the bacterial-feeding general opportunists (cp-2) (Cephalobidae) and the fungal-feeding general opportunists (Aphelenchoididae). Thereafter, during the cooling and maturation stage, the bacterial-feeding-predator opportunistic nematodes (Mononchoides sp.) became dominant. Finally, at the most mature stage, the fungal-feeding Anguinidae (mainly Ditylenchus filimus) were most present. Both, the Maturity Index (MI) and the fungivorous/bacterivorous ratio (f/b ratio), increase as the compost becomes more mature (ranging, respectively, from 1 to 1.86 and from 0 to 11.90). Based on these results, both indices are suggested as potential suitable tools to assess compost maturity.  相似文献   

17.
Improved predictive relationships between compost maturity and nitrogen (N) availability are needed. A total of 13 compost samples were collected from a single windrow over a 91 d period. Compost stability and maturity were assessed using both standard chemical analyses (total C and N, mineral N, total volatile solids) and other methods (CO2 evolution, commercial maturity kits, and neutral detergent fiber, and lignin). Compost N and carbon (C) were evaluated during a 130 d aerobic incubation in a sandy loam soil after each compost was applied at 200 mg total kg?1 soil. The effect of compost maturity on plant growth was evaluated by growing two ryegrass (Lolium perenne L.) crops and one barley (Hordeum vulgare L.) crop in succession in compost-amended soil under greenhouse conditions. Potential phytotoxicity from compost was assessed by growing tomato (Lypersicum esculentum L.) seedlings in compost-amended soil. Regression and correlation analyses were used to evaluate the relationship between compost maturity parameters, the rate and extent of net N and C mineralization, plant yield and N uptake, and phytotoxicity. Commonly used maturity parameters like total C, total N, and C:N ratio were poorly correlated with the rate and extent of mineralization, and with plant growth parameters. The N mineralization rate during the first 48 d of aerobic incubation was strongly correlated (r= ?0.82 to ?0.86) to compost fiber and lignin concentration, and to the Maturity Index (r=0.85). Trends in C mineralization were similar. There were few differences in C mineralization between composts after 48 d of aerobic incubation in soil. Ryegrass harvested 35 and 70 d after compost application was not strongly affected by compost maturity, and relatively immature composts were phytotoxic to tomato seedlings. Methods of characterizing compost maturity and stability that more realistically reflect the composting process are better predictors of N release and potential plant inhibition after incorporation into soil.  相似文献   

18.
Cocomposting of poultry litter with municipal solid waste compost (MSW) was evaluated as a means to stabilize nitrogen and phosphorus in poultry litter and to produce a stable organic soil amendment. Four passively aerated compost piles were established by mixing fixed weight ratios of MSW and composted poultry litter (21:1, 6:1, 3:1, 1:1); moisture was adjusted to 50 percent by weight at pile establishment. These ratios represented a range of initial C:N (26-12) and C:P (150-50) ratios. Composting process parameters monitored over eight months included temperature, oxygen and moisture contents, pH, electrical conductivity, C:N:P ratios, microbial respiration and diversity. Initial feedstock ratios had no significant effect on temperature in the thermophilic phase of composting. After one year of composting, microbial respiration in 21:1 and 6:1 mixtures was high relative to 3:1 and 1:1 mixtures suggesting slow maturation in piles with high MSW content. Salmonella sp. and coliform organisms were detectable for up to 47 days. Results suggest that MSW has potential as a carbon feedstock for poultry litter composting when used in moderate amounts.  相似文献   

19.
? Composts have the potential to provide biological control of plant diseases. Foliar as well as root pathogens may be affected. Many factors control these effects. Heat exposure during composting kills or inactivates pathogens if the process is monitored properly. Unfortunately, most biocontrol agents also are killed by this heat treatment. Thus, biocontrol agents must recolonize composts after peak heating. The raw feedstock, the environment in which the compost is produced, as well as conditions during curing and utilization determine the potential for recolonization by this microflora and disease suppression. Controlled inoculation of compost with biocontrol agents has proved necessary to induce consistent levels of suppression on a commercial scale. The decomposition level (stability) of composts also affects suppressiveness. Immature composts serve as food for pathogens and increase disease even when biocontrol agents are present. On the other hand, excessively stabilized organic matter does not support the activity of biocontrol agents. Composts also may induce detrimental effects. For example, chemical factors may negate suppressiveness. Salinity and the concentration of nitrogen in composts are principal chemical factors to be considered.  相似文献   

20.
Compost can have a disease suppressive effect, but compost research is constrained by the fact that repetition of experiments with a similar batch of compost is impossible, since storage affects the organic material including the microbial communities. The objective of this study was to test the hypothesis that differential changes in microbial community structure and associated microbial activities after various storage methods (drying, freezing and cooling) lead to differential changes in the disease suppressive ability of compost material with respect to Fusarium oxysporum f. sp. lini induced by mixes of composts with peat substrate (20/80%, vol./vol.). A significant (P<0.0001) storage method × compost interaction was found with respect to suppression of Fusarium wilt of flax, indicating that the effect of storage type on disease suppression is compost-dependent. For seven composts storage had no (13 cases) or a significantly positive effect (eight cases) on disease suppression and for 1 compost there was a significant negative effect of storage on disease suppression. Significant changes in microbial activity and 16S-rDNA DGGE banding patterns of the composts were observed as a result of all tested ways of storage and these changes could be related to changes in disease suppression: relatively strong changes in microbial activity and bacterial composition due to storage had a relatively strong effect on disease suppression. The cool storage treatment (4 °C) resulted in the least deviation in disease suppression from the fresh compost, although the freezing treatment gave the most reliable results with the lowest standard deviation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号