首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper focuses on the reflectance prediction of colored (unicolored) fabrics considering relationship between fractional reflectance values and cover factors of fabrics woven from polyester yarns. A novel equation for the calculation of relation between fractional reflectance and cover factor was proposed and usage of the equation was assessed by reflectance measurements. 48 dyed polyester fabrics having different constructional parameters were used and fabrics differed from each other by their cover factors. Warp yarn type and count, warp density and warp yarn twist were the same but weft yarn count, weft yarn fiber count and weft density were different for the fabrics in experimental sub-groups. The reflectance measurements were conducted on the dyed fabric samples as well as on the individual yarn systems (warp and weft) of the same fabrics. The proposed equation was tested according to different fabric constructional parameters and reasonable results with the experimental data were obtained. The possibilities of general use of derived mathematical relations between theoretical and measured reflectance values were researched. The relation obtained was used to explain the effects of different constructional parameters on reflectance behavior of fabric surfaces.  相似文献   

2.
The effects of fabric balance and fabric cover on surface roughness values of textured polyester woven fabrics with different constructional parameters were investigated. The warp yarn properties (type, count and warp density) were kept constant while the effect of variation in weft yarn density and weave pattern were studied. Measurements were conducted on pre-treated white fabric samples and the results assessed in relation to their constructional properties. A general overview of the results showed that surface roughness values of polyester fabrics affected by fabric balance and fabric cover and the effects were related to fabric thickness, yarn densities, yarn crimp, positioning of yarns in fabric structure. A change in weave pattern from sateen to plain increased the fabric balance and fabric cover, but decreased the surface roughness. Similarly, an increase in weft density increased the fabric balance and fabric cover, but decreased surface roughness. In order to produce fabrics with smooth surface properties yarn density should be increased, yarn float lengths decreased, cover of fabrics increased and fabric balance improved.  相似文献   

3.
The effects of some yarn properties (i.e. type, count, twist level, ply number, unevenness and crimp) and fabric constructional properties (i.e. cover, thickness and balance) on surface roughness values of cotton woven fabrics were investigated. A general overview of the results showed that surface roughness values of fabrics were affected from yarn and fabric properties and the effects were related to fabric balance, fabric cover (not cover factor), fabric thickness and crimp values of yarns in fabric structures. Surface roughness values of fabrics decreased as yarn fineness and yarn twist levels increased but as yarn ply number decreased. Also, surface roughness values gradually decreased from open-end yarn constituting fabrics to combed yarn constituting fabrics. Results showed that different properties of yarns caused changes in yarn crimps in fabric structure and also governed the changes in fabric balance, as well as changes in roughness of fabric surfaces. The changing properties of yarns and impact of these properties on fabric construction affected the formation of cotton fabric surfaces from smooth to coarse.  相似文献   

4.
This paper assesses the color difference and color strength values (K/S) obtained for eight disperse-dyed polyester fabric samples with different fabric construction parameters (weft yarn type, weft yarn count, weft density and fabric weave) after four sets of abrasion cycles. Warp yarn type and count, warp density, and warp yarn twist are the same for all fabrics. Fabric samples are dyed in a commercial red disperse dye (C.I. Disperse Red 74:1) and four different abrasion cycles (2500, 5000, 7500, 10000) are used. TheK/S values of the abraided fabrics and color difference values between the control fabric (dyed but not abraided) and abraded fabrics are calculated. The main differences in theK/S and color difference values are observed between 0–2500 abrasion cycles. The high tenacity of the polyester fibers and continuous polyester yarns causes some fuzz but no pilling formation on the fabric surface that lead to increasedK/S values and color differences. Fiber dullness, yarn thickness, yarn density and fabric weave are concluded to have different effects on the appearance after abrasion.  相似文献   

5.
The woven fabric graphics designed with available computer aided design (CAD) systems using different colored warp and weft yarns look quite different from the appearance of their actual fabrics. To enhance the visual effects of designed woven fabric graphics, this paper reports a modified CAD woven fabric system, which allows users to design a fabric using parameters including fabric weaves, yarn number, yarn material, fabric count, crimp shape of interwoven yarns, and illumination. This enhanced system can design both yarns and fabrics, and consider the transitional color effect around interweaving points of warp and weft yarns. Its simulation image quality of woven fabrics has been greatly improved, and several textile mills and universities are currently using this woven fabric design system.  相似文献   

6.
Peirce’s fabric model has been widely used to predict the structural behavior of various plain woven fabrics. The structure of plain woven fabric can be defined in terms of the warp yarn number, weft yarn number, warp fabric density, weft fabric density, warp crimp, and weft crimp. The warp and weft yarn diameters are calculated from the warp and weft yarn numbers, and the effective coefficient of the yarn diameter is defined by using this model. We have investigated structural properties, such as the effective coefficient of the yarn diameter, yarn crimp, and fabric thickness for two different fabrics in which the constituent yarns are assumed to be either incompressible or compressible. This model is also applied to various plain fabrics woven from cotton, rayon, wool, linen, nylon, acetate, polyester, and silk yarns.  相似文献   

7.
The creasing characteristic of fabrics is affected by many factors like yarn twist, fabric density, fabric constructions, fabric thickness apart from the fiber type. In the first part of this study, the effect of yarn fineness, yarn twist, fabric tightness and weave construction factors on crease recovery was studied. In the second part of the study, in order to improve the creasing recovery of the fabrics, shape memory alloy (SMA) wires were used and the effect of shape memory alloy (SMA) wire on the crease recovery of cotton fabrics produced with different types of weave constructions were determined. Due to the high cost of SMA wire and the weaving operation adversity the two experimental plans were designed according to Taguchi design of experiment (TDOE). From the analysis of the first part, it was found that the yarn linear density had the greatest effect on fabric crease recovery compare to others. Twist coefficient was the second, weft density was third and the weave construction had the least significant effect on the crease recovery. The fabrics produced with coarser and low twisted yarns with high tightness and longer floats in the weave construction have higher crease recovery property. In the second part of the study, the application of the SMA wire significantly increased the crease recovery angle of the fabrics. The thickness of the SMA wire is very important and the effect depends on the wire thickness. The increase of the SMA wire thickness increases the crease recovery significantly. However it must be appropriate with the yarn and fabric properties. The distance between the SMA wire distances was expected to increase the crease recovery however the effect was found not significant. The fabrics produced with coarser yarns with longer floats in the weave construction have higher crease recovery property. However, statistically the effects of these parameters were found not significant due to the dominant effect of the wire thickness.  相似文献   

8.
This paper reports an investigation on the predictability of bending property of woven fabrics from their constructional parameters using artificial neural network (ANN) approach. Number of cotton grey fabrics made of plain and satin weave designs were desized, scoured, and relaxed. The fabrics were then conditioned and tested for bending properties. Thread density in fabric, yarn linear density, twist in yarn, and weave design were accounted as input parameters for the model whereas bending rigidity in warp and weft directions of fabric formed the outputs. Gradient descent with momentum and an adaptive learning rate back-propagation was employed as learning algorithm to train the network. A sensitivity analysis was carried out to study the robustness of the model.  相似文献   

9.
Theoretical weavability limit relationships of fabrics from regular warp yarns and fancy filling yarns with thickness variation in shuttleless weaving are reviewed. The relationships correlate maximum warp and filling cover factors, warp and filling yarn characteristics, the distribution of thick and thin places of filling yarn over the fabric surface, and the warp and filling weave factor. The research considers single filling feeder and multiple feeders cases. Additionally, comparisons between the weavability limit of regular yarns and fancy yarns in shuttle and shuttleless weaving are given.  相似文献   

10.
The tensile properties of air-entangled textured polyester single and multiple yarn ends before and after weaving were analyzed. The effects of weaving process considering fabric unit cell interlacement and number of yarn ends were evaluated by regression model. For this purpose, plain, ribs and satin woven fabrics were produced. The yarns were raveled from fabrics, and the tensile tests were applied to these yarns. The developed regression model showed that the number of interlacement and crimp ratio on the warp and weft yarns influence their tensile strength. Tensile strength of raveled yarns decreased compared to that of the bobbin yarn due to the effect of weaving process. This property degradation on the ravel yarns considered process degradation. Generally, when the number of warp and weft yarn ends increases, the warp and weft yarn tensile strengths for each fabric type decrease, whereas the warp and weft yarn tensile elongations slightly increase. The results from regression model were compared with the measured values. This study confirmed that the method in the study can be a viable and reliable tool. The research finding could be useful those who work on preform fabrication.  相似文献   

11.
A detailed study of electromagnetic shielding effectiveness (EMSE) of woven fabrics made of polyester and stainless steel/polyester blended conductive yarn was presented in this research work. Fabrics with different structures were analyzed and their shielding behavior was reported under different frequencies. Shielding efficiency of fabric was analyzed by vector network analyzer in the frequency range of 300 kHz to 1.5 GHz using coaxial transmission line holder. The effects of different fabric parameters such as weft density, proportion of conductive weft yarn, proportion of stainless steel content, grid openness, weave pattern and number of fabric layers on EMSE of fabrics were studied. The EMSE of fabric was found to be increased with increase in proportion of conductive yarn in the weft way. With increase in overall stainless-steel content in the fabric, the EMSE of fabric was increased. As such weave is considered, it did not have significant effect on EMSE of fabrics. But fabric with lower openness and aperture ratio showed better conducting network, hence better shielding. With increase in number of layers of fabric and ply yarns, EMSE of fabric was increased.  相似文献   

12.
This study was aimed at developing statistical models for the prediction of tensile strength of warp and weft yarns required for attaining a pre-defined strength of PET/Cotton blended woven fabrics. The models were developed based on the empirical data obtained from carefully developed 234 fabric samples with different constructions using 15, 20, and 25 tex yarns in warp and weft directions. The prediction ability and accuracy of the developed models were assessed by correlation analyses of the predicted and actual warp and weft yarn strength values of another set of 36 fabric samples. The analyses showed a very strong ability and accuracy of the developed statistical prediction models.  相似文献   

13.
Inside a woven fabric structure, warp and weft yarns acquire crimp as a result of yarns interlacing according to the weave pattern. Since warp and weft yarns are oriented in two perpendicular directions, applying tensile load in one direction causes extension in the load side and fabric contraction in the opposite direction. This process was investigated in this study by using an image processing procedure and it was found that fabric’s extension is in coincidence with yarn’s de-crimping process in the same direction. After the de-crimping stage, yarns in the load direction will be extended and at the same time crimp in the other direction will be increased, until jamming phenomenon happens in the fabric structure. The crimp interchange between warp and weft yarns follows a three-order polynomial function with a turning point in which the yarns in the load direction have no crimp.  相似文献   

14.
This work aims to design woven fabrics with desired quality at optimum manufacturing cost by choice of suitable weaving parameters such as count, crimp and thread spacing of warp and weft yarns. To fulfill this goal, we endeavor to devise search based non-traditional optimization methods such as genetic algorithm, particle swarm optimization and simulated annealing for efficiently finding the appropriate combination of weave parameters. The quick response capability of the non-traditional optimization methods would benefit the fabric manufacturers for efficient determination of the required weaving parameters to produce the engineered fabrics. The experimental validation confirms that the particle swarm optimization is most suitable technique for engineering design of woven fabrics.  相似文献   

15.
Hybrid yarn was produced by twisting silk with nylon covered lycra yarn. Silk of 20 D in warp and hybrid yarn in weft was woven to develop lustrous woven stretch fabrics for sari blouse. Silk and hybrid yarn fabrics were produced in three different weaves namely plain, crepe and sateen. An in-depth study was carried out to understand the effect of weave on thermal comfort; low stress mechanical properties, total hand value and stretch properties. Nine blouses (3 samples× 3 figures) were constructed from three different woven stretch materials for fit assessment and objective pressure comfort test. The effect of fabric weave, low stress mechanical properties, total hand value and stretch properties on fit and pressure comfort of silk/hybrid yarn stretch fabrics were analyzed. Sateen weave silk/hybrid yarn stretch fabric shows higher total hand value, stretch properties and better thermal comfort properties. Sateen and crepe weave stretch fabrics provided good fit. Sateen weave fabric exerted lower clothing pressure value in the range of 3-12 mmHg at all body locations in standing position and in different postures.  相似文献   

16.
A new production method for figured fabric has been developed. The figured fabric generated in this study is a plain weave piled fabric and it shows the same figure on both sides unlike those fabrics woven on dobby or jacquard looms. It is woven by a specialty yarn called the chenille yarn which is obtained by separating each warp of a base fabric woven in leno structure. The base fabric is woven by inserting different colored weft each time in a certain sequence arranged according to the target figure image. A CAD software and a computerized controller have been developed to control all the motions of a conventional rapier loom and to handle the numerous weft insertion schedule efficiently.  相似文献   

17.
Aesthetic properties of fabrics have been considered as the most important fabric attribute for years. However, recently there has been a paradigm shift in the domain of textile material applications and consequently more emphasis is now being given on the mechanical and functional properties of fabrics rather than its aesthetic appeal. Moreover, in certain woven fabrics used for technical applications, strength is a decisive quality parameter. In this work, tensile strength of plain woven fabrics has been predicted by using two empirical modelling methods namely artificial neural network (ANN) and linear regression. Warp yarn strength, warp yarn elongation, ends per inch (EPI), picks per inch (PPI) and weft count (Ne) were used as input parameters. Both the models were able to predict the fabric strength with reasonably good precision although ANN model demonstrated higher prediction accuracy and generalization ability than the regression model. The warp yarn strength and EPI were found to be the two most significant factors influencing fabric strength in warp direction.  相似文献   

18.
The purpose of the research is to investigate the fabric structure (with gripping yarns) in influencing ballistic performance aiming to improve the ballistic performance of the currently used body armour materials. Thirteen different fabrics having gripping yarn were designed along fabric warp and/or weft directions. Their ballistic performance in terms of energy absorption has been studied and comparisons made among the single layered fabrics and between the two double layered fabrics, as well as to the conventional used a plain woven fabric for both cases. It was found that fabrics with gripping yarns have improved fabric ballistic performance. The inter-jointed two-layer fabric performed better than the un-jointed two-layer fabric, and it showed a 16.6 % increase in the energy absorption. The implication of the research is that body armour can be made lighter without reducing ballistic impact performance by using gripping yarns.  相似文献   

19.
The structural properties of a plain fabric were considered using the lenticular model. The structure of a plain woven fabric can be defined in terms of warp yarn number, weft yarn number, warp fabric density, weft fabric density, warp crimp, and weft crimp. Many structural variables of the plain fabric could be calculated by the lenticular model using these terms. Also, this model can be used to explain the geometry of the flattened yarns that occur during the weaving process. Flattening factors of threads for various types of fibers were calculated, compared, and explained with the number of yarn twist. Flattening factors were found to affect the structural variables of the fabric such as fabric thickness, air permeability, and yarn crimp. Yarn crimp was also studied with variation of the structural variables of the fabric.  相似文献   

20.
This study examined the mechanical properties of worsted fabrics woven using various rapier weaving looms. For this purpose, the warp and weft yarn tensions during weaving were measured on the three types of rapier looms, and the fabric mechanical property changes due to the warp and weft tension differences were measured and analyzed according to the fabric position and particular rapier loom using the KES-FB system. The warp tension variation along the loom width direction in P-GTX loom showed the lowest value compared to FAST and THEMA looms. The warp tensions on the central part of the three types of looms were much higher than those on the left and right sides of the looms. The extensibility and bending rigidity of the fabric woven by P-GTX rapier loom showed lower values than those of FAST and THEMA looms, which appears to have originated from the low warp and weft weaving tensions of P-GTX rapier loom. On the other hand, the compressional property and shear modulus showed compromised results due to lateral deformation by compression and constraint deformation of the warp and weft by shear. The friction coefficient of the fabric surface woven by FAST loom showed the lowest value due to the flatter surface by the high warp tension. The mechanical properties of the fabric loaded by a high warp tension on the central part of the loom were also affected by the high weft yarn crimp due to the wider spacing between warp yarns by the higher warp tension during weaving, which makes the surface of the central part of the fabric flatter and smoother than the edge part of the fabric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号