首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
田间冬小麦抽穗期长势分析——基于可见-近红外光   总被引:1,自引:0,他引:1  
为了快速估测大田冬小麦叶绿素含量指标,指导冬小麦抽穗期追肥管理,基于光谱分析技术在可见光和近红外波段(325~1 075 nm)处,对陕西省杨凌区揉谷镇粮食基地的冬小麦进行长势检测、分析。试验在1 000 m×600 m区域内划分为30个采样区进行数据采集,使用ASD Field Spec Hand Held光谱辐射仪(Analytical Spectral Devices.,USA)采集冬小麦的冠层光谱反射率数据,使用SPAD-5 0 2 Plus便携式叶绿素仪测量小麦倒一叶和倒二叶的叶绿素指标(SPAD值),使用G738 CM型手持式GPS记录采样点的位置信息。分别进行冠层光谱反射率小麦倒一叶和倒二叶的预处理,结果表明:冠层反射光谱倒二叶的SPAD值相关系数高于倒一叶。基于相关性分析,选取4个敏感波段538、661、740、850 nm分别与预处理前后的光谱数据进行多元线性回归分析,结果表明:预处理后的模型精度较高,建模精度R2=0.8 3,验证建模精度R2=0.7。同时,绘制了大田作物长势分布图,可为冬小麦抽穗期追肥提供支持。  相似文献   

2.
开展冬小麦冠层SPAD值监测,建立“三边”参数与SPAD值之间的高光谱估算模型,以期为高光谱诊断冬小麦冠层SPAD值提供理论依据和技术支持.以冬小麦冠层反射率与冠层SPAD值的相关关系为基础,构建基于“三边”参数的冬小麦冠层SPAD值的一元线性回归模型和主成分回归模型.结果表明:拔节期、抽穗期、灌浆期和全生育期分别以红谷位置、(SDr-SDb)/(SDr+SDb)、红谷幅值、(SDr-SDy)/(SDr+SDy)的相关系数最高,且均具有统计学意义(P<0.01);采用主成分方法构建的光谱模型在拔节期、抽穗期、灌浆期和全生育期相较于同期一元线性回归模型,决定系数R2分别提高49.6%,54.3%,14.3%和8.6%,均方根误差RMSE与相对误差RE均分别减少9.0%,12.4%,13.5%和13.6%,因此采用综合光谱信息构建主成分回归模型,在各生育时段及全生育时段对冬小麦冠层SPAD值均有较高的估算精度,可为冬小麦SPAD值的监测与诊断提供依据.  相似文献   

3.
基于高分一号卫星数据的冬小麦叶片SPAD值遥感估算   总被引:13,自引:0,他引:13  
以陕西省关中地区冬小麦不同生育期冠层高光谱反射率为数据源,模拟国产高分辨率卫星高分一号(GF-1)的光谱反射率,提取18种对叶绿素敏感的宽波段光谱指数,构建了基于遥感光谱指数的冬小麦叶片叶绿素相对含量(SPAD)遥感监测模型,并利用返青期的GF-1卫星数据对研究区的冬小麦叶片SPAD值进行了估算和验证。结果表明:返青期、孕穗期和全生育期SPAD值均与TGI指数相关性最高,相关系数分别为-0.742、-0.740和-0.483。拔节期和灌浆期SPAD值分别与SIPI指数和GNDVI指数相关性最高,相关系数分别为0.788和0.745。GNDVI、GRVI和TGI植被指数在各个生育期都和冬小麦叶片SPAD含量在0.01水平下呈显著相关。基于此3类植被指数构建的冬小麦叶片SPAD值回归模型精度较高,其中基于随机森林回归算法的估算模型效果最优,各类模型均在冬小麦拔节期的预测效果最佳。GF-1号卫星数据结合SPAD-RFR模型对研究区冬小麦叶片SPAD的估算结果最为理想,可用于大面积空间尺度的冬小麦叶片SPAD值遥感监测。  相似文献   

4.
基于无人机成像光谱仪数据的棉花叶绿素含量反演   总被引:14,自引:0,他引:14  
以棉花为目标作物,使用低空无人机平台的成像光谱仪获取地表农作物高光谱影像,利用无人机影像光谱分辨率高的特点,提取27个光谱参数,构建棉花叶片叶绿素相对含量(SPAD)的反演模型,并制作棉花叶片SPAD分布图。结果表明:在影像上,不同叶片SPAD的棉花冠层反射率有显著差异。光谱参数中,与SPAD相关性最高的为DR526、DR578、SDy和Db,相关系数绝对值都在0.8以上。在各光谱参数参与建立的SPAD反演模型中,使用多元逐步回归和偏最小二乘回归方法的模型精度最高。对高光谱影像结合各模型制作的SPAD分布图进行精度分析,结果表明,使用SPAD-PLSR模型得到的分布图具有最佳预测效果,可以作为棉花叶片SPAD遥感监测的技术手段。  相似文献   

5.
为研究水稻叶片叶绿素相对含量(SPAD)在3种水分处理和5种施氮处理下的变化规律,探讨无人机多光谱遥感技术反演水稻SPAD的可行性,本研究利用大疆精灵4多光谱无人机,采集了水稻拔节孕穗期、抽穗开花期和乳熟期的冠层多光谱遥感影像,并同步测定水稻SPAD值,基于25个光谱变量(5个波段反射率和20个植被指数),采用多元线性逐步回归、岭回归和套索回归3种方法构建了水稻SPAD的反演模型。结果表明:水稻3个生育期的SPAD最佳反演模型均是采用套索回归方法构建的,其中乳熟期建立的SPAD最佳反演模型在3个生育期中的反演精度最高,决定系数为0.782,均方根误差为1.217 7,相对误差为6.611 3%。因此,该研究可对水稻叶片SPAD进行遥感监测,并为水稻精准灌溉和施肥提供科学依据和数据支撑。  相似文献   

6.
冬小麦生育早期冠层叶片光谱的特征与应用   总被引:1,自引:1,他引:0  
利用不同测试方法对冬小麦返青期和拔节期的冠层叶片反射光谱进行了测量,分析了反射光谱与叶绿素质量浓度之间的相关关系。分析结果表明:处于返青期的小麦由于生长较为稀疏,冠层叶片反射光谱受到裸露地面等外界因素的影响,反射率和NDVI值与叶绿素的相关性差。拔节期由于地表覆盖率提高,反射率和NDVI值与叶绿素之间的相关性较好。返青期和拔节期冠层叶片反射光谱曲线的"红边"位置与叶绿素之间的相关性,可以较好地反映其叶绿素的质量浓度。通过实验分析两者之间的相关性,分别建立了返青期和拔节期叶绿素质量浓度线性预测模型和二项式模型,结果显示模型可用于冬小麦冠层叶片叶绿素质量浓度的无损检测预测。比较了植被指数NDVI值的不同获取方法,提出了不同生长阶段测试方法的选择方案,为冠层叶片叶绿素检测以及精细追肥提供技术支持。  相似文献   

7.
番茄冠层不同垂直位置叶绿素含量的精确预测是及时防控番茄病虫害、精准施肥、灌溉等田间管理的重要基础,无人机可灵活高效地获取中小区域农作物冠层光谱信息,为农业生产提供便利。基于无人机搭载多光谱传感器获取的多光谱影像数据,建立感兴趣区域,提取各波段反射率数据,计算9种植被指数参数与实测番茄3个生育期的冠层上、中、下层及冠层整体的SPAD值,进行相关性与敏感度分析,筛选植被指数最优变量,采用偏最小二乘、支持向量机、BP神经网络模型进行冠层不同位置SPAD值的预测建模及验证。结果表明,开花坐果期,番茄冠层上层叶片的SPAD值高于中层和下层叶片,结果初期和结果晚期,番茄中层叶片的SPAD值高于上层和下层叶片;冠层上层叶片SPAD值与植被指数相关性程度及线性敏感程度优于冠层中层和下层叶片;基于番茄冠层上、中、下层及整个冠层SPAD值建立的支持向量机预测模型的R~2高于偏最小二乘和BP神经网络预测模型。因此,支持向量机预测模型可为番茄精准管理提供理论依据。  相似文献   

8.
冬小麦生育早期长势反演模型通用性研究   总被引:1,自引:0,他引:1  
分析了生育早期(返青期、拔节前期、拔节后期)各阶段的冠层叶片光谱特性与叶绿素含量的关系,基于单波段反射率构建了一元预测模型,同样基于植被指数构建了多元叶绿素含量的反演模型,对两类建模方法构建的叶绿素含量预测模型进行了同生长阶段预测(SPV)和后续生长阶段的交叉预测(CPV),比较了模型的预测效果,得出了构建冬小麦生育早期冠层叶片叶绿素含量的通用预测模型的建模策略。研究结果表明:以返青期冠层叶片单波段反射率构建的一元反演模型,具有一定的模型通用性,能够较为准确的预测拔节前期的叶片叶绿素含量。利用偏最小二乘原理构建多元反演模型具有良好的通用性和较强的鲁棒性,能够较好地反演冬小麦生育早期冠层叶片叶绿素含量。而以MPRI、NDVI、RVI为组合构建的多元模型兼具通用性和简练性,可以作为多元预测模型构建的参考组合。  相似文献   

9.
无人机多光谱遥感反演花蕾期棉花光合参数研究   总被引:3,自引:0,他引:3  
光合作用对作物的生长发育、干物质的积累以及产量的形成起着至关重要的作用。为探讨遥感技术反演作物冠层光合参数的可行性,以无人机作为遥感平台,搭载6波段多光谱相机,通过采集棉花花蕾期不同时刻(09:00、11:00、13:00、15:00、17:00)冠层多光谱遥感图像,提取其冠层光谱反射率信息,并同步测定棉花冠层叶片的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间二氧化碳浓度(Ci)等光合参数。通过对4种光合参数和6波段光谱反射率进行相关性分析,并分别使用一元线性回归和主成分回归、岭回归、偏最小二乘回归等多元回归方法,建立不同光合参数在不同时刻的反演模型。结果表明:净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间二氧化碳浓度(Ci)的最优反演模型分别为13:00的基于蓝光波段反射率的一元线性模型,15:00的基于红光波段反射率的一元线性模型,15:00的岭回归模型和15:00的基于红光波段反射率的一元线性模型,模型的决定系数R2均在0.5以上,验证相对误差RE均小于9%。该研究可为大范围监测作物的光合作用提供一定的参考。  相似文献   

10.
【目的】快速准确获取大面积果园冠层叶片全氮含量(LNC ,Leaf Nitrogen Content)是实现现代精准农业的基本要求。【方法】本试验通过无人机高光谱成像仪(391.9nm ~ 1006.2nm)采集了甘肃省静宁县两个典型果园的果树冠层光谱图像,包括人工灌溉的苹果示范园与自然降雨的苹果园,综合比较两区共160份冠层叶片样本的原始光谱反射率(OD)、倒数光谱(RT)、对数光谱(LF)、一阶微分光谱(FD),构建任意两个光谱波段集组合的差值植被指数(Difference spectral index,DSI )、土壤调节植被指数(Soil Adjusted Vegetation Index ,SAVI)、归一化光谱指数(Normalized Different Spectral Index, NDSI),分析三种光谱指数与叶片氮含量的相关性,利用一元线性回归模型与光谱指数构建两区最佳苹果冠层LNC估测模型。【结果】研究表明:人工灌溉区的FD-SAVI(825,536)、自然降雨区的LF-SAVI(854,392)与LNC的相关性最强,并基于FD-SAVI、LF-SAVI构建一元线性回归模型。人工灌溉区构建的FD-SAVI-ULRM估测模型精度最高,验证集R2和RMSE为0.6601和0.0678;自然降雨区构建的LF-SAVI-ULRM估测模型精度最高,验证集R2和RMSE为0.6746和0.0665。本试验采用LNC模型绘制出两个试验区的苹果树冠层叶片LNC估测图,实现对果园叶片全氮含量的精准掌握及精细化管理。  相似文献   

11.
基于红边参数的冬小麦SPAD高光谱遥感监测   总被引:1,自引:0,他引:1  
在2010年度与2011年度冬小麦生长季,通过大田小区实验,实测了冬小麦冠层的高光谱反射率与叶绿素含量(SPAD)。分析了冬小麦红边特征对不同SPAD的响应及不同生育期冬小麦红边特征与SPAD的相关性,建立了基于红边位置、红边峰度的不同生育期冬小麦SPAD估算模型。结果表明:SPAD越高,冬小麦的红边振幅、红边面积增大,红边位置"红移";叶绿素含量越低,规律则相反。传统红边参数红边位置及新红边参数红边峰度与SPAD在不同生育期均具有较好的相关性。相比以红边位置为自变量的冬小麦SPAD估算模型,基于红边峰度的估算模型可以提高冬小麦SPAD的估算精度。  相似文献   

12.
为了探索大田冬小麦冠层叶片叶绿素指标的快速检测方法,基于车载式多光谱成像系统进行了大田冬小麦叶绿素含量指标的快速无损诊断研究,并分析了不同车速条件下车载式多光谱成像系统的工作性能。系统以福田欧豹4040型拖拉机为车载平台,搭载了2-CCD多光谱图像智能感知系统。田间试验分别设置了4种行进速度(分别为S1(0.54 m/s)、S2(0.83 m/s)、S3(1.04 m/s)、S4(1.72 m/s)),采集了冬小麦冠层可见-近红外图像,同步获得了车载GPS轨迹坐标信息,并测量了样本叶绿素含量指标SPAD值。图像经滤波和冠层分割预处理后,提取了 R、G、B 、NIR 4个波段平均灰度,并计算了RVI、NDVI等4种常见植被指数、 H 分量的灰度平均值和覆盖度 C ,共10个图像检测参数。分析了各图像检测参数与叶绿素含量指标SPAD值之间的相关关系,结果表明,S1、S2和S3速度下,各图像检测参数与SPAD值相关性高于S4速度。同时,S1、S2、S3速度下,NDVI、NDGI、RVI与SPAD值的相关系数绝对值均达到0.50以上。分别建立了S1~S3不同车速下叶绿素含量指标诊断MLR模型,模型精度满足作物生长空间分布图制图的要求。为了进一步提高车载式大田作物生长参数移动诊断效率,将不同车速下的数据合并,选取NDVI、NDGI、RVI参数建立叶绿素指标MLR模型,结果表明模型具有通用性。该研究可为车载式大田作物生长快速诊断提供支持。  相似文献   

13.
棉叶螨是影响棉花产量和品质的主要虫害之一。为快速、准确、有效地监测棉叶螨发生情况,利用无人机搭载数码相机获取数码影像,并计算多种可见光植被指数作为初选特征因子,然后采用ReliefF-Pearson特征降维方法选取最佳建模特征,分别构建偏最小二乘回归(PLSR)、BP神经网络(BPNN)、随机森林(RF)的棉花冠层叶片叶绿素相对含量(SPAD)值遥感估测模型和棉叶螨严重度遥感估测模型。结果表明,棉叶螨严重度与棉花冠层叶片SPAD值呈显著负相关关系。经过精度评价,确定RF模型具有最佳性能,模型验证的决定系数和均方根误差为0.74、2.13。该研究结果表明利用棉花冠层叶片SPAD值遥感估测模型可准确估测棉叶螨为害情况,为棉叶螨的无损监测和病虫害防治提供参考依据。  相似文献   

14.
叶绿素是一种反映植物生长水平和健康状况的重要生理生化指标,为快速、无损地大规模获取柑橘冠层的叶绿素含量以精确指导果园管理,利用多旋翼无人机搭载多光谱传感器获取多波段反射率数据,使用多光谱阴影指数对冠层阴影和土壤背景进行剔除,计算得到植被指数与纹理特征,将地面实测的叶绿素含量作为验证,综合对比了全子集回归、偏最小二乘回归和深层神经网络的反演精度以选取最优模型。结果表明,植被指数与叶绿素含量的相关性良好;将仅使用植被指数与仅使用纹理特征的建模结果进行对比,仅使用纹理特征的模型在全子集回归和偏最小二乘回归的反演精度均有明显提升;结合植被指数与纹理特征共同建模后,全子集回归和偏最小二乘回归的反演精度相比仅使用纹理特征的模型均能获得提升;深层神经网络因其良好的非线性拟合能力,获得了最高的反演精度,R2、MAE、RMSE分别为0.665、7.69 mg/m2、9.49 mg/m2,成为本文最优模型。本研究利用无人机多光谱影像反演得到柑橘冠层叶绿素含量,为实现柑橘生长监测提供指导作用。  相似文献   

15.
无人机多光谱遥感用于冬小麦产量预测中捕获的数据准确性不高,为指导田块尺度下冬小麦产量的精准预测,需构建高精度的冬小麦产量估算模型。本研究利用校正后的近地面高光谱数据(Field-Spec 3型野外光谱仪获取)验证低空无人机多光谱遥感数据(大疆精灵4型多光谱相机获取),将通过无人机多光谱影像计算的植被指数与经验统计方法结合,采用一元回归和多元线性回归分别对抽穗期、开花期和灌浆期冬小麦进行基于单一植被指数和多植被指数组合的产量估算,其中多植被指数包括归一化差异植被指数(NDVI)、优化的土壤调节植被指数(OSAVI)、绿色归一化差值植被指数(GNDVI)、叶片叶绿素指数(LCI)和归一化差异红色边缘指数(NDRE)。结果表明,基于单一植被指数的冬小麦估产模型,一元二次回归模型精度最高,而基于5种植被指数的多元线性回归模型在3个生育时期的拟合效果均优于单植被指数模型。一元或多元回归模型在抽穗期的拟合效果最好。冬小麦基于GNDVI指数的一元二次回归估产模型建模集的决定系数(R2)、均方根误差(RMSE)分别为0.69、428.91 kg/hm2,验证...  相似文献   

16.
小麦氮素无损监测仪敏感波长的最佳波段宽度研究   总被引:1,自引:0,他引:1  
为研究不同核心波长时波段宽度对小麦冠层叶片氮素营养监测精度的影响,以作物氮素营养无损监测仪的最佳光谱指数NDSI(R860,R720)和RSI(R990,R720)为例,分析核心波长的反射率、光谱指数及基于光谱指数的冠层叶片氮积累量监测模型随波段宽度的变化规律.结果显示,随波段宽度的增加,核心波长为720 nm时反射率...  相似文献   

17.
为了实现作物生长过程中叶绿素的动态在线监测,设计开发了一款叶绿素在线检测传感器系统。应用可见-近红外(660、880 nm)波段光谱检测植物叶绿素含量的体积小、功耗低的模块,通过AD转换电路、数字滤波电路得到叶片反射光数字信号,利用灰度板对反射光信号进行反射率校准,660 nm和880 nm波段的反射率校正模型的R~2分别为0. 999 6和0. 999 5;取10个不同等级叶绿素溶液样本共80个,使用国标法检测叶绿素含量后将溶液倒入无纺布开展叶绿素梯度仿真测量。叶绿素检测模块测量双波长反射率后,分别计算归一化差值植被指数(NDVI)和叶绿素指标SPAD指数值。建立相应的叶绿素含量检测数学模型,其决定系数R~2分别为0. 955 7、0. 958 7。开展活体植株叶绿素检测验证试验,叶片原位光谱测量后,再将叶片剪碎,使用国标法测量叶绿素真实值,检测样本与真实值的相关系数分别为0. 888 7、0. 874 5。进而开展在线动态监测试验,实时监测水肥胁迫组和正常水肥管理对照组玉米幼苗植株,监测90 h内的叶绿素含量变化,可知,相同管理条件下植株叶绿素含量变化规律大致相同,受水肥胁迫的影响,水肥胁迫组的叶绿素浓度呈下降趋势。证明了传感器系统在线监测作物叶绿素动态的可行性,可为农作物生长与胁迫动态监测提供技术支持。  相似文献   

18.
基于正交变换与SPXY样本划分的冬小麦叶绿素诊断   总被引:1,自引:0,他引:1  
冬小麦叶绿素含量的准确预测,可为冬小麦田间精细化管理提供依据。采集冬小麦冠层400~900nm范围反射光谱,经一阶微分预处理后,为了抑制由于连续波长自变量多重共线性对叶绿素含量诊断模型的干扰,利用Gram-Schmidt正交变换算法初步提取叶绿素敏感波长特征参数为848、620、677nm。在定量模型的建立过程中,对比了传统随机样本集划分与以空间中样本间距离远近为指导的SPXY样本集划分方法,并讨论了大田冠层反射光谱对叶绿素浓度诊断的最优精度,研究结果表明,以620nm和677nm两个敏感波长结合SPXY样本划分方法建立的多元线性回归模型预测精度较高,且叶绿素质量浓度为0.3mg/L分辨间隔时,建模决定系数和验证决定系数分别达0.730和0.739,可为无损检测冬小麦拔节期叶绿素含量提供技术支持。  相似文献   

19.
基于无人机多光谱遥感的夏玉米冠层叶绿素含量估计   总被引:1,自引:0,他引:1  
为探讨利用无人机多光谱遥感影像监测夏玉米冠层叶绿素含量的可行性,基于2019年不同施氮水平下(0,105,210,315 kg·N/hm2)夏玉米多光谱遥感影像和田间实测冠层叶绿素含量数据,分析了不同施氮水平下夏玉米冠层叶绿素含量的变化规律,同时选取10种常用光谱植被指数与实测冠层叶绿素含量进行相关性分析,采用与实测叶绿素含量极显著相关的9种植被指数,构建了基于遥感光谱指数的夏玉米冠层叶绿素含量遥感监测模型,并通过精度检验确定最优估测模型.结果表明,施用氮肥能够提高夏玉米冠层叶绿素含量,过量氮肥不能持续提高叶绿素含量,同一施氮水平下不同追肥处理之间叶绿素含量没有明显差异.绿色归一化植被指数与叶绿素含量的相关性系数最高,达到了0.892.采用逐步回归分析方法建立的模型表现最优,决定系数为0.87,均方根误差及相对误差分别为0.15和2.68%.因此,无人机多光谱遥感结合逐步回归模型可以实现田间尺度的夏玉米冠层叶绿素含量的实时监测.  相似文献   

20.
为了快速准确获取田间作物生长营养水平信息,设计了作物冠层营养诊断光谱检测仪,并进行了小麦大田测试。系统由光学传感器,信号采集驱动模块和控制器组成。光学传感器可测量300~1 100 nm范围内连续光谱,信号采集驱动模块用于提供稳定电压以及数据的A/D转换。开发了光谱采集控制软件安装于控制器,主要功能包括接收、处理、显示和存储采集到的数据。应用该仪器进行了标定试验,并针对大田冬小麦开展了大田试验,试验结果表明该仪器所测反射率与美国ASD FieldSpec HandHeld 2光谱辐射仪所测的反射率之间具有较高的相关性,相关系数最低为0.991 8。分析了冬小麦叶绿素含量指标SPAD值与仪器所测反射率之间的相关性。选出相关性较高的550~900 nm波段进行主成分分析建立叶绿素预测模型,建模 R 2 C 为0.575,模型检验 R 2 V 为0.595。结果表明利用研发的便携式光谱检测仪能有效评估小麦营养叶绿素含量,为小麦的精细栽培提供理论与技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号