首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR), and the ATP-activated (P2XnR) receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+), whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl and/or HCO3). In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers) of ion channel functions to treat or to alleviate a specific ion channel-linked disease (e.g., channelopaties).  相似文献   

2.
The formation of cross-links between pectin molecules via Ca2+ in the potato tuber cell wall is a determinant factor on processing properties of potato and the quality of its products such as French fries. Thus, in this study, potato tubers varying significantly in their calcium concentrations were analyzed to investigate whether an increased absorption of calcium by a potato tuber led to an increase in the calcium concentration in the cell wall and how the calcium concentration in the cell wall influenced on the formation of cross-links between pectin molecules via Ca2+. Correlation analysis revealed that calcium absorbed by a potato tuber was bound to the cell wall as a water insoluble form 99 days after planting or later. Furthermore, with an increase in the calcium concentration in the cell wall, the content of chelator soluble pectin increased throughout tuber bulking and maturation stages. However, the degree of methylation was not a limiting factor in the formation of cross-links between pectin chains via Ca2+. Atomic force microscopy images of parenchyma cell walls prepared from mature potato tubers indicated an increase in the amount of calcium cross-linked pectin molecules with an increase in the calcium concentration in the cell wall. The present study demonstrated that the calcium concentration of the cell wall of potato tubers significantly affected the formation of cross-linkages between pectin molecules and, consequently, contributed to an enhanced formation of pectin-calcium networks in the cell wall.  相似文献   

3.
The neuronal voltage-gated N-type calcium channel (Cav2.2) is a validated target for the treatment of neuropathic pain. A small library of anthranilamide-derived ω-Conotoxin GVIA mimetics bearing the diphenylmethylpiperazine moiety were prepared and tested using three experimental measures of calcium channel blockade. These consisted of a 125I-ω-conotoxin GVIA displacement assay, a fluorescence-based calcium response assay with SH-SY5Y neuroblastoma cells, and a whole-cell patch clamp electrophysiology assay with HEK293 cells stably expressing human Cav2.2 channels. A subset of compounds were active in all three assays. This is the first time that compounds designed to be mimics of ω-conotoxin GVIA and found to be active in the 125I-ω-conotoxin GVIA displacement assay have also been shown to block functional ion channels in a dose-dependent manner.  相似文献   

4.
Our previous studies demonstrated that tentacle extract (TE) from the jellyfish, Cyanea capillata, could cause a dose-dependent increase of systolic blood pressure, which seemed to be the result of direct constriction of vascular smooth muscle (VSM). The aim of this study is to investigate whether TE could induce vasoconstriction in vitro and to explore its potential mechanism. Using isolated aorta rings, a direct contractile response of TE was verified, which showed that TE could induce concentration-dependent contractile responses in both endothelium-intact and -denuded aortas. Interestingly, the amplitude of contraction in the endothelium-denuded aorta was much stronger than that in the endothelium-intact one, implying that TE might also bring a weak functional relaxation in addition to vasoconstriction. Further drug intervention experiments indicated that the functional vasodilation might be mediated by nitric oxide, and that TE-induced vasoconstriction could be attributed to calcium influx via voltage-operated calcium channels (VOCCs) from the extracellular space, as well as sarcoplasmic reticulum (SR) Ca2+ release via the inositol 1,4,5-trisphosphate receptor (IP3R), leading to an increase in [Ca2+]c, instead of activation of the PLC/DAG/PKC pathway or the sympathetic nerve system.  相似文献   

5.
Novel secondary metabolites from marine macroorganisms and marine-derived microorganisms have been intensively investigated in the last few decades. Several classes of compounds, especially indole alkaloids, have been a target for evaluating biological and pharmacological activities. As one of the most promising classes of compounds, indole alkaloids possess not only intriguing structural features but also a wide range of biological/pharmacological activities including antimicrobial, anti-inflammatory, anticancer, antidiabetic, and antiparasitic activities. This review reports the indole alkaloids isolated during the period of 2016–2021 and their relevant biological/pharmacological activities. The marine-derived indole alkaloids reported from 2016 to 2021 were collected from various scientific databases. A total of 186 indole alkaloids from various marine organisms including fungi, bacteria, sponges, bryozoans, mangroves, and algae, are described. Despite the described bioactivities, further evaluation including their mechanisms of action and biological targets is needed to determine which of these indole alkaloids are worth studying to obtain lead compounds for the development of new drugs.  相似文献   

6.
Nowadays, the use of marine by-products as precursor materials has gained great interest in the extraction and production of chemical compounds with suitable properties and possible pharmaceutical applications. The present paper presents the development of a new immediate release tablet containing calcium lactate obtained from Black Sea mussel shells. Compared with other calcium salts, calcium lactate has good solubility and bioavailability. In the pharmaceutical preparations, calcium lactate was extensively utilized as a calcium source for preventing and treating calcium deficiencies. The physical and chemical characteristics of synthesized calcium lactate were evaluated using Fourier Transform Infrared Spectroscopy, X-ray diffraction analysis and thermal analysis. Further, the various pharmacotechnical properties of the calcium lactate obtained from mussel shells were determined in comparison with an industrial used direct compressible Calcium lactate DC (PURACAL®). The obtained results suggest that mussel shell by-products are suitable for the development of chemical compounds with potential applications in the pharmaceutical domain.  相似文献   

7.
In our ongoing search for bioactive substances from marine organisms, novel alkaloids have been isolated. Pinnatoxins and pinnamine, potent shellfish poisons, were purified from the Okinawan bivalve Pinna muricata. Pinnatoxins activate Ca2+ channels. Halichlorine was isolated from the marine sponge Halichondria okadai. This compound inhibits the induction of VCAM-1. Drugs that block VCAM-1 may be useful for treating coronary artery diseases, angina, and noncardiovascular inflammatory diseases. Pinnaic acids, which are cPLA2 inhibitors, were also obtained from P. muricata. Interestingly, the structures of pinnaic acids are closely related to that of halichlorine. Norzoanthamine hydrochloride, isolated from the colonial zoanthid Zoanthus sp., suppresses decreases in bone weight and strength in ovariectomized mice, and could be a good candidate for an osteoporotic drug. Ircinamine, purified from the marine sponge Ircinia sp., has a reactive thioester. Aburatubolactams, inhibitors of superoxide anion generation, were isolated from Streptomyces sp. This article covers the bioactive marine alkaloids that have been recently isolated by this research group.  相似文献   

8.
Due to taxonomic positions and special living environments, marine organisms produce secondary metabolites that possess unique structures and biological activities. This review is devoted to recently isolated and/or earlier described marine compounds with potential or established cancer preventive activities, their biological sources, molecular mechanisms of their action, and their associations with human health and nutrition. The review covers literature published in 2003–2013 years and focuses on findings of the last 2 years.  相似文献   

9.
Nucleosides are glycosylamines that structurally form part of nucleotide molecules, the building block of DNA and RNA. Both nucleosides and nucleotides are vital components of all living cells and involved in several key biological processes. Some of these nucleosides have been obtained from a variety of marine resources. Because of the biological importance of these compounds, this review covers 68 marine originated nucleosides and their synthetic analogs published up to June 2014. The review will focus on the structures, bioactivities, synthesis and biosynthetic processes of these compounds.  相似文献   

10.
In this work, we investigated the spasmolytic effect of caulerpine, a bisindole alkaloid isolated from marine algae of the Caulerpa genus, on guinea pig ileum. Our findings indicated that caulerpine inhibited phasic contractions induced by carbachol (IC50 = 7.0 ± 1.9 × 10−5 M), histamine (IC50 = 1.3 ± 0.3 × 10−4 M) and serotonin (IC50 = 8.0 ± 1.4 × 10−5 M) in a non-selective manner. Furthermore, caulerpine concentration-dependently inhibited serotonin-induced cumulative contractions (pD′2 = 4.48 ± 0.08), shifting the curves to the right with Emax reduction and slope of 2.44 ± 0.21, suggesting a noncompetitive antagonism pseudo-irreversible. The alkaloid also relaxed the ileum pre-contracted by KCl (EC50 = 9.0 ± 0.9 × 10−5 M) and carbachol (EC50 = 4.6 ± 0.7 × 10−5 M) in a concentration-dependent manner. This effect was probably due to inhibition of Ca2+ influx through voltage-gated calcium channels (CaV), since caulerpine slightly inhibited the CaCl2-induced contractions in depolarizing medium without Ca2+, shifting the curves to the right and with Emax reduction. According to these results, the spasmolytic effect of caulerpine on guinea pig ileum seems to involve inhibition of Ca2+ influx through CaV. However, other mechanisms are not discarded.  相似文献   

11.
This review discusses the isolation, structural elucidation, and biological activities of halogenated indole alkaloids obtained from marine invertebrates. Meridianins and related compounds (variolins, psammopemmins, and aplicyanins), as well as aplysinopsins and leptoclinidamines, are focused on. A compilation of the 13C-NMR spectral data of these selected natural indole alkaloids is also provided.  相似文献   

12.
Dolastatin 10 (Dol-10), a leading marine pentapeptide isolated from the Indian Ocean mollusk Dolabella auricularia, contains three unique amino acid residues. Dol-10 can effectively induce apoptosis of lung cancer cells and other tumor cells at nanomolar concentration, and it has been developed into commercial drugs for treating some specific lymphomas, so it has received wide attention in recent years. In vitro experiments showed that Dol-10 and its derivatives were highly lethal to common tumor cells, such as L1210 leukemia cells (IC50 = 0.03 nM), small cell lung cancer NCI-H69 cells (IC50 = 0.059 nM), and human prostate cancer DU-145 cells (IC50 = 0.5 nM), etc. With the rise of antibody-drug conjugates (ADCs), milestone progress was made in clinical research based on Dol-10. A variety of ADCs constructed by combining MMAE or MMAF (Dol-10 derivatives) with a specific antibody not only ensured the antitumor activity of the drugs themself but also improved their tumor targeting and reduced the systemic toxicity. They are currently undergoing clinical trials or have been approved for marketing, such as Adcetris®, which had been approved for the treatment of anaplastic large T-cell systemic malignant lymphoma and Hodgkin lymphoma. Dol-10, as one of the most medically valuable natural compounds discovered up to now, has brought unprecedented hope for tumor treatment. It is particularly noteworthy that, by modifying the chemical structure of Dol-10 and combining with the application of ADCs technology, Dol-10 as a new drug candidate still has great potential for development. In this review, the biological activity and chemical work of Dol-10 in the advance of antitumor drugs in the last 35 years will be summarized, which will provide the support for pharmaceutical researchers interested in leading exploration of antitumor marine peptides.  相似文献   

13.
Fucoidan compounds may increase immune activity and are known to have cancer inhibitory effects in vitro and in vivo. In this study, we aimed to investigate the effect of fucoidan compounds on ex vivo human peripheral blood mononuclear cells (PBMCs), and to determine their cancer cell killing activity both solely, and in combination with an immune-checkpoint inhibitor drug, Nivolumab. Proliferation of PBMCs and interferon gamma (IFNγ) release were assessed in the presence of fucoidan compounds extracted from Fucus vesiculosus, Undaria pinnatifida and Macrocystis pyrifera. Total cell numbers and cell killing activity were assessed using a hormone resistant prostate cancer cell line, PC3. All fucoidan compounds activated PBMCs, and increased the effects of Nivolumab. All fucoidan compounds had significant direct cytostatic effects on PC3 cells, reducing cancer cell numbers, and PBMCs exhibited cell killing activity as measured by apoptosis. However, there was no fucoidan mediated increase in the cell killing activity. In conclusion, fucoidan compounds promoted proliferation and activity of PBMCs and added to the effects of Nivolumab. Fucoidan compounds all had a direct cytostatic effect on PC3 cells, as shown through their proliferation reduction, while their killing was not increased.  相似文献   

14.
Marine organisms and their associated microbes are rich in diverse chemical leads. With the development of marine biotechnology, a considerable number of research activities are focused on marine bacteria and fungi-derived bioactive compounds. Marine bacteria and fungi are ranked on the top of the hierarchy of all organisms, as they are responsible for producing a wide range of bioactive secondary metabolites with possible pharmaceutical applications. Thus, they have the potential to provide future drugs against challenging diseases, such as cancer, a range of viral diseases, malaria, and inflammation. This review aims at describing the literature on secondary metabolites that have been obtained from Scleractinian-associated organisms including bacteria, fungi, and zooxanthellae, with full coverage of the period from 1982 to 2020, as well as illustrating their biological activities and structure activity relationship (SAR). Moreover, all these compounds were filtered based on ADME analysis to determine their physicochemical properties, and 15 compounds were selected. The selected compounds were virtually investigated for potential inhibition for SARS-CoV-2 targets using molecular docking studies. Promising potential results against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and methyltransferase (nsp16) are presented.  相似文献   

15.
Summary Liquid scintillation counting (LSC) was used to screen six potato cultivars (Alpha, Bintje, Green Mountain, Kennebec, Russet Burbank, and Shepody) and two wild species(S. microdontum andS. kurtzianum) for ability to take up the tracer45Ca2+ from treatment solutions containing high (15 mM) or low (5 mM) Ca2+ levels. In vitro potato micropropagation, microtuberization, and tissue calcium content, determined by flame atomic absorption spectrophotometry (FAAS), were compared for the six cultivars when Murashige-Skoog basal medium Ca2+ level was increased from 3, to 5 or 15 mM. All aspects of growth were improved when medium Ca2+ level was 15 mM. Microtuber induction occurred earlier, leading to improved yield (19–31%), and microtuber tissue Ca2+ concentration was greater (38–226%). Cv. Bintje was the most efficient genotype at accumulating Ca2+ from treatment solutions or growth media containing high or low Ca2+ levels. It could be identified as a calcium-packer using either LSC or FAAS screening.  相似文献   

16.
2,5-Diketopiperazines (2,5-DKPs) are an important category of structurally diverse cyclic dipeptides with prominent biological properties. These 2,5-DKPs have been obtained from a variety of natural resources, including marine organisms. Because of the increasing numbers and biological importance of these compounds, this review covers 90 marine originated 2,5-DKPs that were reported from 2009 to the first half-year of 2014. The review will focus on the structure characterizations, biological properties and proposed biosynthetic processes of these compounds.  相似文献   

17.
Summary Calcium uptake into potato plants was examined using test solutions containing 5% safranin dye (C20H19N4C1 mw 350.85) and the radiotracer45CaCl2. When minitubers were suspended in test solutions for up to 5 days, safranin moved into the outer pith tissues while45Ca2+ was located throughout the pith. Ca2+ is apparently taken up directly from the tubersphere by a slow diffusion process. Plantlets with one microtuber were used to investigate calcium uptake via basal roots.45Ca2+ was well ahead of the safranin dye front in all plantlet stems.45Ca2+ in shoot tips was significantly greater than in microtubers and no safranin entered the microtubers. Greenhouse-grown ex vitro plantlets with minitubers attached were used to determine the relative uptake by basal and stolon roots. Basal root feeding contributed significantly more45Ca2+ to shoot tips and tubers than stolon root feeding while combined feeding gave the greatest shoot tip and tuber45Ca2+ levels.  相似文献   

18.
Summary Calcium levels in the periderm of tubers (cv. Sebago) growing in irrigated sands were influenced by the stem position at which the tuber grew, but the effect was not consistent over two seasons. Calcium levels were increased at all tuber positions by addition of calcium to soil; combined treatments of gypsum (1400 kg Ca2+/ha) pre-plant and calcium nitrate (37 kg Ca2+/ha) side dressings gave the greatest response. Percentage incidence of soft rot lesions caused byErwinia chrysanthemi pv.zeae was not influenced by periderm calcium content. The severity of infection (weight of tissue macerated within 48 h at 30°C) was significantly reduced only by the pre-plant gypsum treatment, but there was no correlation with calcium content of the periderm. Calcium levels in periderm tissue (60–208 mg Ca2+/100g) are within the range of published data for other cultivars and results support previous reports that the correlation between tuber susceptibility toErwinia spp. and periderm calcium content is inconsistent.  相似文献   

19.
Diketopiperazines are potential structures with extensive biological functions, which have attracted much attention of natural product researchers for a long time. These compounds possess a stable six-membered ring, which is an important pharmacophore. The marine organisms have especially been proven to be a wide source for discovering diketopiperazine derivatives. In recent years, more and more interesting bioactive diketopiperazines had been found from various marine habitats. This review article is focused on the new 2,5-diketopiperazines derived from marine organisms (sponges and microorganisms) reported from the secondary half-year of 2014 to the first half of the year of 2021. We will comment their chemical structures, biological activities and sources. The objective is to assess the merit of these compounds for further study in the field of drug discovery.  相似文献   

20.
Insoluble fiber fractions from raw and extruded oat, rice and wheat brans were isolated and phytate removed. In vitro mineral binding studies were performed utilizing copper (Cu2+), calcium (Ca2+) and zinc (Zn2+) ions, which were added individually to enzymatically treated (Prosky et al., 1985), acid washed insoluble fiber residues from oat, rice and wheat brans. The enzymatic digestion step with alpha-amylase, protease and amyloglucosidase served to remove protein and starch from the samples. Mineral binding studies were performed on the insoluble fiber residue. Mineral content was determined by flame atomic absorption spectroscopy. Raw brans served as controls. A twin-screw extruder Model DNDG-62/20D, manufactured by Bühlerag (CH-9240, Uzwil, Switzerland) was utilized. The objectives of the study were to determine the total Cu2+, Ca2+ and Zn2+binding capacity of the dephytinized insoluble fiber from each bran; and to determine if extrusion screw speed affected the brans' insoluble fiber mineral binding capacity. Although dephytinized, the brans' insoluble fiber fraction bound Cu2+, Ca2+ and Zn2+ions. Oat bran bound more Cu2+, Ca2+ and Zn2+ than wheat bran, which bound more than rice bran. Extrusion processing did not affect the brans' insoluble fiber binding capacity to bind Cu2+. However, it increased the binding capacity of Ca2+ and Zn2+ of the insoluble fiber fraction from rice and oat brans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号