首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Marine protected areas (MPAs) are often promoted as tools for biodiversity conservation as well as for fisheries management. Despite increasing evidence of their usefulness, questions remain regarding the optimal design of MPAs, in particular concerning their function as fisheries management tools, for which empirical studies are still lacking. Using 28 data sets from seven MPAs in Southern Europe, we developed a meta‐analytical approach to investigate the effects of protection on adjacent fisheries and asking how these effects are influenced by MPA size and age. Southern European MPAs showed clear effects on the surrounding fisheries, on the ‘catch per unit effort’ (CPUE) of target species, but especially on the CPUE of the marketable catch. These effects depended on the time of protection and on the size of the no‐take area. CPUE of both target species and the marketable catch increased gradually by 2–4% per year over a long time period (at least 30 years). The influence of the size of the no‐take area appeared to be more complex. The catch rates of the entire fishery in and around the MPA were higher when the no‐take areas were smaller. Conversely, catch rates of selected fisheries that were expected to benefit most from protection increased when the no‐take area was larger. Our results emphasize the importance of MPA size on its export functions and suggest that an adequate, often extended, time frame be used for the management and the evaluation of effectiveness of MPAs.  相似文献   

3.
The establishment of marine protected areas (MPAs), particularly of no‐take areas, is often viewed as a conflict between conservation and fishing. Partially protected areas (PPAs) that restrict some extractive uses are often regarded as a balance between biodiversity conservation and socio‐economic viability. Few attempts have been made to generalize the ecological effects of PPAs. We synthesized the results of empirical studies that compared PPAs to (i) no‐take reserves (NTRs) and (ii) to open access (Open) areas, to assess the potential benefits of different levels of protection for fish populations. Response to protection was examined in relation to MPA parameters and the exploitation status of fish. Our syntheses suggest that while PPAs significantly enhance density and biomass of fish relative to Open areas, NTRs yielded significantly higher biomass of fish within their boundaries relative to PPAs. The positive response to protection was primarily driven by target species. There was a large degree of variability in the magnitude of response to protection, although the size of the PPA explained some of this variability. The protection regime within the PPA provided useful insights into the effectiveness of partial MPAs. We conclude that MPAs with partial protection confer advantages, such as enhanced density and biomass of fish, compared to areas with no restrictions, although the strongest responses occurred for areas with total exclusion. Thus, MPAs with a combination of protection levels are a valuable spatial management tool particularly in areas where exclusion of all activities is not a socio‐economically and politically viable option.  相似文献   

4.
5.
  • 1. Marine protected areas (MPAs) range from multiple‐use areas (MUA) to absolute no‐take reserves (NTR). Despite their importance for fisheries management, there are few long‐term studies comparing benefits from different types of MPAs within the same region.
  • 2. Fish assemblages were monitored for five years (2001–2005) in the largest coral reefs in the South Atlantic (Abrolhos Bank, Brazil). Monitoring included one community‐based MUA, two NTRs (one established in 1983 and another in 2001), and one unprotected area. Benthic assemblages at these areas, as well as fish assemblages on unprotected deeper reefs (25–35 m), were monitored from 2003 onwards.
  • 3. Habitat characteristics strongly influenced fish assemblages' structure. This, together with the lack of data from before establishment of the MPAs, did not allow an unequivocal analysis of the effects of the MPAs.
  • 4. Biomass of commercially important fish, particularly small carnivores, was higher in the older NTR. Biomass of black grouper Mycteroperca bonaci increased by 30‐fold inside NTRs during the study period, while remaining consistently low elsewhere.
  • 5. A single herbivore species, the parrotfish Scarus trispinosus, dominated fish assemblages (28.3% of total biomass). Biomass of this species increased in 2002 on the younger NTR and on the MUA, soon after establishment of the former and banning of the parrotfish fishery in the latter. This increase was followed by a decline from 2003 onwards, after increased poaching and reopening of the parrotfish fishery.
  • 6. Fish biomass increased in 2002 across the entire region. This increase was stronger in sites closer to deeper reefs, where fish biomass was up to 30‐times higher than shallow reefs: movement of fish from deeper to shallower areas may have played a role.
  • 7. The effective use of MPAs in the Abrolhos Bank is still dependent on adequate enforcement and the protection of critical habitats such as deep reefs and mangroves.
Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The Gulf of Beibu, recognized as one of the traditional fishing grounds, is a center of rich biodiversity in the northern South China Sea. Based on the Beibu Gulf ecosystem constructed by the Ecopath and Ecosim model (in the late 1990s), we used Ecospace to evaluate the existing fishery management system and assess the potential of marine protected areas (MPAs) in the Beibu Gulf over a short (5-year), medium (10-year), and long-term (20-year) scenario. The results suggest that the current trawl closure and the midsummer moratorium system used in the Gulf fishery management approach appear to offer minimal benefits for stock recovery because of the high implementation and administrative costs; also, the biomass of valuable groups would decrease drastically with simulation time, and the large predator groups, such as the large demersal and pelagic fishes, would even be reduced to depletion in the long-term (20-year) simulation.Simulations of MPAs indicate that outcomes beneficial to all are possible but not guaranteed. Both ‘no-take’ MPAs, inshore closures (<30-m isobath) and offshore closures (common fishing zone) can drastically reduce fishing effort (between 20% and 30% reduction from 1999 levels), achieving much to avert the collapse of the fishery sector, especially for large-sized, high-value species. The magnitude of the biomass and the catches would obviously increase with simulation time. In a 20-year simulation, the total catches of all fishing gears would be doubled in the inshore closure simulation compared with that of offshore closure simulation with biomass recovery. The results suggest that, for purposes of fishery management in the Gulf, the inshore area within the 30-m isobath should be considered as ‘no-take’ MPAs; this may be an effective management tactic to conserve the ecosystem and to stop the decline in fisheries resources. Considering the complexity of ecosystem-based fishery management, an extension of the current work will incorporate the costs associated with restoration and monitoring efforts as well.  相似文献   

7.
8.
Marine reserves are valued for their ecological role: protecting fish populations from overharvesting while, at the same time, potentially maintaining fisheries yields via recruitment effects (net export of pelagic eggs and larvae) and spillover (net export of post‐settled juveniles and mature fish) across reserve borders. Focussing on the spillover effect, we argue that when fitness of the protected individuals depends on the relative size of their home ranges compared to the reserve size, and home range size is a property of the individuals, rapid local adaptation might occur in favour of individuals with smaller home ranges. Individuals that avoid fishing mortality by spending most of the time inside the reserve limits (i.e. with smaller home ranges) will experience a fitness advantage, whereas individuals that move beyond boundaries (i.e. with larger home ranges) will increase their risk of being harvested by spillover fisheries. We use empirical data on Atlantic cod (Gadus morhua) home ranges within and around a coastal marine reserve in south Norway as a case to illustrate our idea. Broadly, we highlight how protection‐induced selection and contemporary evolution could fundamentally alter our perspective of marine reserve functioning and recommend quantifying behavioural variability and behavioural consistency of protected populations.  相似文献   

9.
This paper summarizes research on the uses of marine reserves for fisheries management. Examples emphasize temperate marine reserves. Marine reserves commonly support higher densities and larger sizes of heavily fished species than are found outside reserves. ‘Spillover’ of individuals across reserve borders is likely to augment local catches. There are good reasons to expect such spillover, and there is limited direct evidence for it. However, the magnitude of any resulting increase in local catches will be difficult to predict. ‘Larval export’ from reserves has potential to augment recruitment over large regions, but its success will depend upon many factors that are difficult to predict. No studies have clearly tested the effects of larval export. To design more effective marine reserves, studies are needed of the movement patterns and habitat requirements of all life stages (larval, settlement, juvenile, adult, feeding, and breeding) of targeted species. To determine clearly the effects of marine reserves on fisheries requires replicated before/after studies.  相似文献   

10.
  • 1. This study describes spatial patterns in the biodiversity (species, assemblages) of rocky reef fishes at a spatial scale relevant to management, and compared the outcomes for this biodiversity from alternative procedures for selecting marine protected areas (MPAs) and from the selection of MPAs for fisheries‐related objectives.
  • 2. The study area included 104 species in two assemblage types; 36 species and 14 species occurred only in one or two locations respectively.
  • 3. MPAs selected by hotspot richness, greedy richness complementarity, and summed irreplaceability included similar percentages of species and significantly more species than randomly selected MPAs. A combined species‐assemblage selection ensured representation of assemblage diversity. Representation of all species and assemblage types required 92% of locations.
  • 4. MPAs chosen using density of all fishes or density of exploitable fishes as selection criteria included fewer species (than MPAs selected using species identity) and the percentage of species accumulated did not differ from a random selection.
  • 5. Use of an established MPA as the seed for an expanded network was inefficient, leading to additional locations being required and an accumulation of species that did not differ from a random selection.
  • 6. The smallest MPA network that fulfilled multiple management objectives (representation of assemblage diversity and majority of species, population viability, support for fisheries, connectivity) required 30% of the surveyed locations.
  • 7. This study concluded that: MPAs selected without the benefit of data on intra‐habitat variation in species assemblages will be unrepresentative; the upper range of currently promoted targets for MPA establishment (i.e. 30%) should be regarded as a minimum for biodiversity conservation; MPAs selected for fisheries‐related reasons may not provide expected benefits for the remainder of the fish assemblage.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Long‐term trends in Portuguese fisheries landing profiles of biodiversity, assemblage composition, trophic groups and marine trophic index (1950–2009) were studied to understand the evolution of the fisheries from an ecological viewpoint and evaluate the effects of fisheries on stocks. The number of species landed has increased considerably since the 1980s. This indicates an expansion of the fisheries and also a better use of the marine biodiversity for redistributing effort. Changes in the ecological composition of fisheries catches have occurred since the 1950s, with a significant shift in the middle 1980s (anchor point). Deep‐sea resources and higher trophic levels (cephalopods, large benthopelagics, flatfishes, demersal invertebrates, small‐medium and large rays, medium bathydemersal, shrimps, small benthopelagics large sharks) have increased while traditional commercial species captured by nearshore fisheries (medium and small pelagics) have decreased. Despite the decreasing trend in catches since 1988, the marine trophic index (MTI = 3.04) increased by approximately 0.2 units per decade (MTI in 2009 = 3.46). The number of collapsed, overexploited and fully exploited stocks has increased considerably over the last 20 years (>50%). Overall, the data indicate that redistributing fishing effort and targeting of deep‐sea resources may have been driven by depletion of inshore fishery stocks, which signals concern for the fishery. Marine biodiversity indexes and ecological structure of landings profiles should be considered by fishery managers when redefining new marine fisheries policy.  相似文献   

12.
  • 1. Marine protected areas (MPAs) are expected to function simultaneously as biological conservation and fisheries management tools, but empirical evidence linking biodiversity conservation with fisheries benefits is scarce. Around the Medes Islands marine reserve (Spain, NW Mediterranean) patterns of fish catch diversity, catch (CPUE) and income (IPUE) were assessed and the economic value of diversity for local fisheries was explored by combining a Geographic Information System (GIS) analysis with geostatistics.
  • 2. Catch data were derived from the trammel net fleet operating around the MPA to gain information on species diversity, functional diversity, functional redundancy, CPUE and IPUE.
  • 3. Results revealed significant impact of both the fishing prohibition in the MPA and the presence of seagrass beds on diversity metrics, catch and income. Clear differences in functional redundancy in fish assemblages were found within the study area, indicating greater resilience of the fish assemblage against fishing pressure or human impact close to the MPA (?2 km). In contrast, fish assemblages beyond 2 km of the MPA border are more vulnerable to disturbance. High values of diversity, CPUE and IPUE overlapped close to the MPA border and close to seagrass beds.
  • 4. The spatial approach developed suggests that, in addition to the more commonly studied effect of density‐dependent spillover of adult fish, increased levels of ecological diversity and economic diversity can also result in fisheries benefits of an MPA. Hence, the fishing regulations in and around the Medes Islands marine reserve have shown that biological conservation and fisheries benefits can be complementary in the long‐term, which should be considered in future policies for MPAs or MPA networks.
Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
14.
  • 1. An expansion of no‐take marine reserve zones of Australia's 348 000 km2 Great Barrier Reef (GBR) Marine Park from 4.6% to 33.4% of the park area is proposed in 2004. However, limited evidence currently exists that no‐take marine reserves on the GBR have increased abundance of reef fish targeted by fisheries. This study provides such evidence for inshore reefs of the GBR.
  • 2. Underwater visual surveys were used to estimate the effect of no‐take reserves on abundance of species targeted by hook‐and‐line fisheries around the Palm, Whitsunday and Keppel Islands, spanning 600 km of the length of the GBR. The reserves had been zoned ‘no fishing’ for 14 yr.
  • 3. Densities of Plectropomus spp. and Lutjanus carponotatus, both targeted by fisheries, were much higher in protected zones than fished zones in two of the three island groups. Plectropomus spp. were 3.6 and 2.3 times more abundant in protected than fished zones of the Palm and Whitsunday island groups. L. carponotatus were 2.3 and 2.2 times more abundant in protected zones than fished zones of the Whitsunday and Keppel island groups.
  • 4. The biomasses of Plectropomus spp. and L. carponotatus were significantly greater (3.9 and 2.6 times respectively) in the protected zones than fished zones at all three island groups.
  • 5. Legal minimum sizes of Plectropomus spp. and L. carponotatus are ?38 cm and 25 cm TL respectively. There were significantly higher densities and biomasses of Plectropomus spp. >35 cm TL (density: 3.8 times; biomass: 5.1 times) and L. carponotatus >25 cm TL (density: 4.2 times; biomass: 5.3 times) in protected zones than fished zones at all three island groups.
  • 6. No significant difference in abundance between protected and fished zones was found for two species not captured by fisheries (Siganus doliatus and Chaetodon aureofasciatus), and there were no significant differences in benthic characteristics between protected and fished zones.
  • 7. Results suggest that no‐take marine reserves have increased stock biomass of targeted fish species on inshore GBR reefs.
Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Artisanal coral reef fisheries provide food and employment to hundreds of millions of people in developing countries, making their sustainability a high priority. However, many of these fisheries are degraded and not yielding their maximum socioeconomic returns. We present a literature review that evaluates foci and trends in research effort on coral reef fisheries. We describe the types of data and categories of management recommendations presented in the 464 peer‐reviewed articles returned. Identified trends include a decline in articles reporting time‐series data, fish catch biomass and catch‐per‐unit effort, and an increase in articles containing bycatch and stakeholder interview data. Management implications were discussed in 80% of articles, with increasing frequency over time, but only 22% of articles made management recommendations based on the research presented in the article, as opposed to more general recommendations. Key future research priorities, which we deem underrepresented in the literature at present, are: (i) effectiveness of management approaches, (ii) ecological thresholds, trade‐offs and sustainable levels of extraction, (iii) effects of climate change, (iv) food security, (v) the role of aquaculture, (vi) access to and control of fishery resources, (vii) relationships between economic development and fishery exploitation, (viii) alternative livelihoods and (ix) integration of ecological and socioeconomic research.  相似文献   

16.
Marine protected areas (MPAs) have been increasingly proposed, evaluated and implemented as management tools for achieving both fisheries and conservation objectives in aquatic ecosystems. However, there is a challenge associated with the application of MPAs in marine resource management with respect to the consequences to traditional systems of monitoring and managing fisheries resources. The place‐based paradigm of MPAs can complicate the population‐based paradigm of most fisheries stock assessments. In this review, we identify the potential complications that could result from both existing and future MPAs to the science and management systems currently in place for meeting conventional fisheries management objectives. The intent is not to evaluate the effects of implementing MPAs on fisheries yields, or even to consider the extent to which MPAs may achieve conservation oriented objectives, but rather to evaluate the consequences of MPA implementation on the ability to monitor and assess fishery resources consistent with existing methods and legislative mandates. Although examples are drawn primarily from groundfish fisheries on the West Coast of the USA, the lessons are broadly applicable to management systems worldwide, particularly those in which there exists the institutional infrastructure for managing resources based on quantitative assessments of resource status and productivity.  相似文献   

17.
Worldwide, most sea cucumber fisheries are ineffectively managed, leading to declining stocks and potentially eroding the resilience of fisheries. We analyse trends in catches, fishery status, fishing participation and regulatory measures among 77 sea cucumber fisheries through data from recent fishery reports and fishery managers. Critical gaps in fisheries biology knowledge of even commonly targeted species undermine the expected success of management strategies. Most tropical fisheries are small‐scale, older and typified by numerous (>8) species, whereas temperate fisheries are often emerging, mono‐specific and industrialized. Fisher participation data indicated about 3 million sea cucumber fishers worldwide. Fisher participation rates were significantly related to the average annual yield. permanova analysis showed that over‐exploited and depleted fisheries employed different sets of measures than fisheries with healthier stocks, and a non‐metric multidimensional scaling ordination illustrated that a broad set of regulatory measures typified sustainable fisheries. SIMPER and regression tree analyses identified that the dissimilarity was most related to enforcement capacity, number of species harvested, fleet (vessel) controls, limited entry controls and rotational closures. The national Human Development Index was significantly lower in countries with over‐exploited and depleted fisheries. Where possible, managers should limit the number of fishers and vessel size and establish short lists of permissible commercial species in multispecies fisheries. Our findings emphasize an imperative to support the enforcement capacity in low‐income countries, in which risk of biodiversity loss is exceptionally high. Solutions for greater resilience of sea cucumber stocks must be embedded within those for poverty reduction and alternative livelihood options.  相似文献   

18.
The Convention on Biological Diversity calls for networks of ‘representative’ MPAs, the effectiveness of which requires that the protected ecosystems be independent of external anthropogenic pressures. One principal pressure, fishing, severely depletes the oldest age classes of the target fish even if optimally managed. As many fishery resource species had high natural abundance and large individual sizes, while most fish show indeterminate growth and ascend the trophic pyramid as they grow, elimination of older age classes equates to removal of once‐dominant top predators. Because archetypal resource species are also migratory, that loss is transported throughout the range of the exploited populations, including into MPAs, through a lack of large migrants. The ecological implications remain uncertain in marine ecosystems, which are typically under ‘bottom‐up’ control. ‘Top‐down’ effects, such as mesopredator release, species replacement and trophic cascades, have been observed, however, meaning that elimination of top predators may affect ecosystem structure. It follows that, while exceptions doubtless exist, in general ‘representative’ MPAs should not be expected to fulfil their declared purposes, unless they are made so large as to encompass the whole migratory circuits of principal resource species – implying indefinite closure of the fisheries affected. Some compromise may be possible if MPAs were combined with fishing mortality rates far below current ‘optimal’ levels or where fishing can be concentrated on younger adults, while older fish are protected from exploitation. In any case, societies must choose between seafood production and recovery of selected marine areas to near‐pristine conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号