首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The impact of ash dieback caused by Hymenoscyphus fraxineus on 17 provenances of Fraxinus excelsior and one provenance of Fraxinus angustifolia was studied in an extensive field trial established in the Czech Republic prior to the H. fraxineus invasion in 1999. A difference in the level of resistance to ash dieback between the species was found: F. angustifolia was significantly less affected by the disease than F. excelsior. Moreover, particular provenances of F. excelsior showed important differences in the level of resistance to H. fraxineus. A relationship between the impact of ash dieback and altitude was also discovered – the provenances from altitudes above 600 m a.s.l. were less affected by the pathogen than were the provenances from lower areas. No difference in the impact of the disease among provenances of F. excelsior from different ecotopes (ravine, calcareous ravine and alluvial) was found. Substantial among‐tree variability in resistance to H. fraxineus was observed throughout the trial – promising genotypes (with crown defoliation up to 5%) were identified in all 18 tested provenances. In regard to this finding, it appears that the main source of resistance to the pathogen is probably at the individual genotype level in the trial. A secondary but massive attack by Hylesinus fraxini was identified in the trees that had been greatly damaged by ash dieback, and the beetle caused their health to deteriorate significantly. A significant negative effect of the presence of collar necroses caused by H. fraxineus and browse damage was also identified.  相似文献   

2.
The occurrence of Chalara fraxinea, the fungus responsible for dieback of European ash (Fraxinus excelsior), was investigated in the current and previous seed years collected from symptomatic trees in Latvia and Sweden using molecular techniques (DNA extraction, ITS‐PCR, Sanger sequencing). Molecular analysis of seeds revealed the presence of 30 different fungal taxa. Chalara fraxinea was detected in 8.3% of seeds tested from the current year originating from Latvia. The presence of C. fraxinea in seeds of F. excelsior is of great concern to phytosanitary protection authorities in countries outside the current zone of infestation.  相似文献   

3.
In recent years, Common ash (Fraxinus excelsior) throughout Europe has been severely impacted by a leaf and twig dieback caused by the hyphomycete Chalara fraxinea. The reasons for its current devastating outbreak, however, still remain unclear. Here, we report the presence of four Phytophthora taxa in declining ash stands in Poland and Denmark. Phytophthora cactorum, Phytophthora plurivora, Phytophthora taxon salixsoil and Phytophthora gonapodyides were isolated from rhizosphere soil samples and necrotic bark lesions on stems and roots of mature declining ash trees in four stands. The first three species proved to be aggressive to abscised roots, twigs and leaves of F. excelsior in inoculation experiments. Soil infestation tests also confirmed their pathogenicity towards fine and feeder roots of ash seedlings. Our results provide first evidence for an involvement of Phytophthora species as a contributing factor in current decline phenomena of F. excelsior across Europe. Specifically, they may act as a predisposing factor for trees subsequently infected by C. fraxinea. Phytophthora species from ash stands also proved to be aggressive towards a wide range of tree and shrub species commonly associated with F. excelsior in mixed stands. Although damage varied considerably depending on the Phytophthora species/isolate–host plant combination, these results show that many woody species may be a potential source for survival and inoculum build‐up of soilborne Phytophthora spp. in ash stands and forest ecosystems in general.  相似文献   

4.
In eastern Ukraine, the first symptoms of dieback on common ash (Fraxinus excelsior) were observed in 2010, as sparse flushing of leaves, bark necrosis and wood discoloration of shoots. The aim of this study was to assess possible causal agents of the damage by studying fungal communities in both symptomatic and healthy‐looking shoots, and leaf petioles. Field sampling was carried out in 2010 in Kharkiv and Sumy regions in eastern Ukraine and included 68 segments of symptomatic shoots, 68 segments of healthy‐looking shoots and 240 segments of petioles. DNA isolation from individual segments and direct sequencing of fungal ITS rRNA resulted in 430 fungal sequences representing 29 distinct taxa. Results showed that Hymenoscyphus pseudoalbidus – the primary causal agent of ash dieback in Europe – was present at low proportion (5.6%) in symptomatic shoots. Other more frequently detected fungi were Epicoccum nigrum, Venturia fraxini, Colletotrichum truncatum, Aureobasidium pullulans, Alternaria alternata, Alternaria sp. and Lophiostoma corticola. In conclusion, the study reports on the first incidence of ash decline in the Ukraine and other possible causal agents of damage which may help to evaluate and forecast the future situation with F. excelsior stands in the region.  相似文献   

5.
Ash dieback, caused by the fungus Hymenoscyphus fraxineus, has been observed in Europe for several years. In Belgium, the disease was first reported in 2010. Besides crown defoliation and dieback, collar lesions have sometimes been reported. To evaluate the prevalence and the progression of collar lesions and crown defoliation in ash dieback‐affected stands of various ages, a survey was conducted in 2013 and 2014 on 268 ash trees (Fraxinus excelsior) originating from 17 Walloon forest stands. The results showed that the proportion of trees with collar lesions greatly increased between June 2013 and September 2014 and that there appeared to be no significant link between a tree's diameter‐at‐breast height (DBH) and collar lesion occurrence. The mean percentage of defoliation increased in each forest stand across time, with observations conducted in September 2013 and 2014 showing a positive correlation with the mean percentage of trees with collar lesions. Molecular tests were carried out on 103 additional trees originating from 12 of the 17 stands to evaluate the occurrence of H. fraxineus and Armillaria spp. at the collar level. Most of the trees (98%) were infected by H. fraxineus. In contrast, only 41% of the samples were infected with Armillaria spp., most commonly A. gallica and A. cepistipes. This study discusses the role of Armillaria spp. and the rapid increase in the number of trees with collar lesions within the context of the evolution of ash dieback in Europe.  相似文献   

6.
Chalara fraxinea (teleomorph: Hymenoscyphus albidus) is known as a serious pathogen of Fraxinus excelsior, causing massive dieback of trees in Europe. The fungus is able to cause latent infections, and has been previously detected as an endophyte in asymptomatic tissues. Chalara fraxinea is a slow grower in culture, and is thus likely to be overgrown by faster growing fungi whenever pure culture isolations are being attempted. This study reports species‐specific ITS primers allowing fast and reliable detection of the pathogen directly from infected tissues of F. excelsior.  相似文献   

7.
Ash dieback caused by the pathogenic fungus Hymenoscyphus fraxineus [previously known as H. pseudoalbidus (sexual stage) and Chalara fraxinea (asexual stage)] is a widespread problem in Europe. Here, we assess crown damage from natural infection and necrosis development following artificial controlled inoculations on full‐sib and half‐sib progeny from Danish Fraxinus excelsior clones with contrasting and well‐characterized levels of susceptibility to the disease. The inoculation assay was performed on a total of 123 offspring, and necrosis development monitored over two years. The offspring from low susceptible mother clones developed smaller necroses when compared to offspring from susceptible clones. Their crown damage due to natural infections was also significantly less. The correlation coefficient between average crown damages of mother clones and the average of their progeny was 0.85 (natural infections), while the correlation between crown damage of mother clones and the average necrosis development in their progeny after controlled inoculation was 0.73. The correlation between resistance of parent trees and crown damage/necrosis development on their offspring confirms the presence of heritable resistance and indicates that a bioassay based on controlled inoculations has the potential of becoming a fast and cost‐effective tool for estimation of dieback susceptibility in breeding programmes for resistance in ash trees.  相似文献   

8.
European ash (Fraxinus excelsior) trees currently face the major threat of ash dieback caused by an invasive fungus, Hymenoscyphus fraxineus. Collar rots in F. excelsior have been increasingly associated with infections by this pathogen. However, the aetiology of the collar rots is still unclear and remains heavily debated. In contrast to most studies of this kind, entire rootstocks of four diseased ash trees were dug out to examine necrotic tissues in these rootstocks and stem bases in detail and to sample necrotic wood for fungal isolation. With the aid of morphological and molecular identification techniques, five to twelve fungal taxa were detected per tree. Members of the Nectriaceae family and Botryosphaeria stevensii, the causal agent of stem and branch cankers on many tree species, were frequently isolated from outer xylem. In contrast, H. fraxineus was the dominating species in interior wood layers. Microsatellite genotyping of 77 H. fraxineus isolates helped to identify up to six different genotypes per tree. The role of H. fraxineus and other isolated fungi in the aetiology of ash collar rots are discussed.  相似文献   

9.
Currently, massive dieback of Fraxinus excelsior is observed in countries of eastern, northern and central Europe, and the reasons for it are unclear. The aims of the present work were (a) to study fungal communities in declining F. excelsior crowns; (b) to clarify role of fungi in the decline. Shoots from symptomatic crowns were collected in four localities in central Sweden, and distributed into the following categories: (a) visually healthy; (b) initial necroses; (c) advanced necroses; (c) dead tops. The most frequently isolated fungi were Gibberella avenacea, Alternaria alternata, Epicoccum nigrum, Botryosphaeria stevensii, Valsa sp., Lewia sp., Aureobasidium pullulans and Phomopsis sp., and these taxa were consistently found in shoots of all four symptomatic categories. Forty-eight taxa of other fungi were isolated, and fungal diversity was not exhausted by the sampling effort. The same taxa of fungi were dominant in F. excelsior shoots of different symptomatic categories, and moderate to high similarity of fungal communities was observed in shoots despite the symptoms. Forty-four isolates from 24 fungal taxa were used for artificial inoculations of 277 1-year-old F. excelsior seedlings in bare root nursery. After 2 years, only four fungi caused symptomatic necroses of bark and cambium: A. alternata, E. nigrum, Chalara fraxinea and Phomopsis sp. The most pathogenic was C. fraxinea, inducing symptoms on 50% of inoculated trees, while three other fungi caused necroses on 3–17% of inoculated trees. Infection biology of C. fraxinea and environmental factors determining susceptibility of F. excelsior to decline deserve future investigations.  相似文献   

10.
In addition to Hymenoscyphus fraxineus, two fungi identified as Diaporthe eres aff. and Fusarium sambucinum aff. were also isolated from necrotic bark lesions on declining one‐year‐old Fraxinus excelsior in a forest stand in Montenegro. To examine their involvement in ash decline, a pathogenicity test was performed using under bark inoculations on one‐year‐old Fraxinus excelsior. Hymenoscyphus fraxineus was included as comparison. All three fungal species proved highly pathogenic towards one‐year‐old seedlings although lesion sizes differed significantly between the different species. Hymenoscyphus fraxineus was most aggressive, followed by F. sambucinum aff., while D. eres aff. caused the smallest lesions. This study demonstrates for the first time the ability of isolates in the D. eres and F. sambucinum species complexes to cause decline on one‐year‐old common ash seedlings.  相似文献   

11.
The presumed resistance of individual ash trees to ash dieback caused by invasive pathogen Hymenoscyphus fraxineus is an important issue for the maintenance of ash in European forests. All known studies regarding the resistance of ash trees to ash dieback were conducted in plantations and stands of F. excelsior; however, no such data exist for F. angustifolia. Crown damage assessments were performed over four consecutive years between 2009 and 2012 at a F. angustifolia clonal plantation in Hra??ica, Slovenia. Inoculation of H. fraxineus into the branches of the most and least damaged clones of F. angustifolia and leaf phenology assessments was performed to verify the presence of defence mechanisms that limit fungal growth or promote disease escape. Additionally, root collars of selected clones were inspected for fungal infections. The crown damage assessments showed considerable differences among F. angustifolia clones, indicating genetic variability in susceptibility to ash dieback. Crown dieback progressed significantly over the 4‐year time period; the mean crown damage of individual clones in 2012 varied between 16.7% and 83.8%. Significant differences among F. angustifolia clones were found in the inoculation trials and leaf phenology assessments. However, defence mechanisms such as early leaf flushing, early leaf shedding and the ability to inhibit pathogen growth in host tissues were not confirmed. High frequency of Armillaria spp. and H. fraxineus root collar infection demonstrated the need for whole tree inspection to determine causal agent of damages on individual ash trees. Armillaria spp. may be highly associated with ash decline epidemiology.  相似文献   

12.
Increased mortality rates in Scots pine (Pinus sylvestris) forests have recently been observed in the inner alpine Swiss Rhone valley. Drought, in combination with stand competition, mistletoe infections as well as nematode and insect infestations, appears to be the main factor for the decline. In focus of this study was the occurrence and role of fungal pathogens in the decline dynamics. Branches, stems and roots of 208 trees in five different crown transparency classes were collected and inspected for blue stain and fungal infections. Neither Armillaria species nor Heterobasidon annosum s. str. were detected, but blue stain was commonly observed. Visible blue stain increased with increasing crown transparency. Among the recently dead trees, 80% showed visible blue stain in the branches, 90% in the roots and 100% in the stems. In the crown transparency classes 2 and 3 (25–60% crown transparency), five of the 103 trees showed visible blue stain in the roots, one of 130 trees in the stem but none in the branches. Blue‐stain fungi were isolated from all parts of the trees and from all crown transparency classes. Overall incidence of blue stain was highest in the roots and lowest in the branches. In class 2, roots of 60% of the trees were visibly blue‐stained or developed blue stain in culture, but stems of only 24% and branches of 14% of the trees. In the roots Leptographium species, mostly L. serpens, dominated. From stems and branches, mainly Ophiostoma species were isolated. The positive relationship between the incidence of blue stain and crown transparency, in combination with the high infection levels of roots of fairly vigorous Scots pines, indicates the pathogenic potential of the blue‐stain fungi. Hence, these fungi together with their insect vectors may well act as an important contributing factor involved in pine decline.  相似文献   

13.
This study was initiated to investigate the possible role of Phytophthora species in white oak decline (Quercus alba) in southern Ohio at Scioto Trail State Forest. Surveys demonstrated the presence of four species of Phytophthora including one novel species. By far, the most common species was P. cinnamomi; P. citricola and P. cambivora were isolated infrequently. In few instances, P. cinnamomi was isolated from fine roots and necroses on larger roots. No special pattern of incidence was found, but P. cinnamomi was more commonly isolated from greater Integrated Moisture Index values suggesting moist lower bottomlands favour this Phytophthora species. When tree crown condition was examined relative to the presence of Phytophthora, no significant association was found. However, roots of declining P. cinnamomi‐infested trees had 2.5 times less fine roots than non‐infested and healthy trees, which was significantly different. The population densities of P. cinnamomi from declining trees were significantly greater than from healthy trees, suggesting increased pathogen activity that has the potential to cause dieback and decline and possibly the cause of a reduced fine root amount found on declining trees.  相似文献   

14.
We assessed the mycelial growth rate of Hymenoscyphus fraxineus, the causal agent of ash dieback, on agar media containing leaf extracts of seven common Mediterranean species of the Oleaceae (Fraxinus excelsior, F. angustifolia, F. ornus, Ligustrum vulgare, Olea europaea, Phyllirea latifolia and Syringa vulgaris). The pathogen grew on all media, but growth rates showed significant differences among media and H. fraxineus isolates. Growth rates were highest on media containing F. excelsior and F. angustifolia, intermediate on media containing O. europaea and P. latifolia and lowest on those containing F. ornus and L. vulgare.  相似文献   

15.
Sissoo (Dalbergia sissoo), commonly known as shisham, is amongst the finest woods of South Asia, but ‘wilt’ disease has caused a rapid decline in this species. The cause of the disease remains uncertain. The aim of this study is to identify the causal agent of the disease and characterize isolates made from diseased trees, based on genomic data and variations in virulence. Samples of infected roots, stems and the ooze exuded from infected trees were obtained from plants showing symptoms in different geographical regions of India for the isolation of microorganisms. Isolates were used to inoculate healthy plants. Based on the morphological characteristics, genus‐ and species‐specific PCR, and in silico analysis of 5.8S rDNA‐ITS regions, of the 38 fungal isolates, 24 and 14 were identified as Fusarium solani and Fusarium sp., respectively. In a pathotyping study, eighteen F. solani isolates, isolated from roots and stem parts of symptomatic plants, induced typical wilt symptoms when inoculated through soil and roots on D. sissoo seedlings of 1–15 months in age. The population of F. solani was the highest in infected roots and the lowest in parts of stems, gradually decreasing with height, and was isolated constantly up to approximately 40% height of the seedling. F. solani isolates used in inoculations were successfully re‐isolated from the rhizosphere, infected roots and wilted stems, as confirmed using isolate‐specific DNA fingerprints. Molecular phylogenies based on rDNA‐ITS sequences showed that the 38 isolates fell into 2 groups. Group I comprised of F. solani isolates from D. sissoo and F. solani sequences in the NCBI GenBank database, whereas group II included Fusarium isolates other than F. solani. These results are helpful in developing integrated control measures for this highly variable pathogen and to establish a base for future population studies.  相似文献   

16.
Ash dieback, caused by the pathogen Hymenoscyphus pseudoalbidus, is an emerging lethal disease of Fraxinus excelsior in large parts of Europe. To develop a method for the early detection of Hpseudoalbidus, we designed primers for 46 microsatellites (simple sequence repeats, SSRs) of the pathogen. Seven pairs of primers (SSR38, SSR58, SSR114, SSR198, SSR206, SSR211 and SSR212) were found to bind only to the genome of H. pseudoalbidus, but not to the genome of H. albidus or to 52 different fungal endophytes isolated from F. excelsior and F. angustifolia. Using these seven primer pairs, H. pseudoalbidus was identified in fruiting bodies and different types of ash tissues including dead leaves, dead petioles and discoloured or non‐discoloured wood. Along one twig, H. pseudoalbidus was detected at different levels of intensity, which depended on the distance from symptomatic tissue. The detection limit was 0.9–1.8 pg of genomic DNA per PCR. Of 50 analysed commercially available seedlings, six were infected with H. pseudoalbidus. Two SSR loci (SSR198 and SSR211) showed fragment length polymorphism. Our results showed that the new primers not only provide an easy and inexpensive means of detecting H. pseudoalbidus in ash tissues, but can also provide information on the genetic heterogeneity of the species.  相似文献   

17.
18.
The European common ash (Fraxinus excelsior) is currently threatened by a pathogenic fungus, Hymenoscyphus pseudoalbidus, which seems to enter the trees through the leaves. Continuous assessments of 39 clones in Danish field trials have shown that there are significant differences in the susceptibility of clones to the new disease. Interestingly, clones that showed early leaf senescence in the autumn were in general less susceptible to the disease than late‐senescing clones. Thus, variation in susceptibility could be owing to phenological differences associated with the infection biology. To test whether differences in susceptibility are driven by genetically based factors other than phenology, we compared inoculations with H. pseudoalbidus on four highly susceptible clones with those of four less susceptible clones. Development of necrosis was hereafter followed regularly. The growth of the fungus in the inner bark was further detected with species‐specific PCR primers. The severity of the response to infection shows significant differentiation among clones and significant correlation with clone susceptibility, as assessed from natural infections in field trials. The fungus was detected in tissues immediately surrounding the necrosis but showed some signs of endophytic growth. The results suggest that healthier clones are able to limit the growth and spread of the fungus and thereby minimize the occurrence of symptoms. This gives hope for the future preservation of F. excelsior in Europe through selection and breeding.  相似文献   

19.
The effects of Teratosphaeria leaf disease (TLD) on Eucalyptus globulus are varied, and it is currently poorly understood whether infection by TLD can cause long‐term growth effects. Such information would greatly assist disease management and pruning regimes on Eglobulus plantation sites, resulting in both financial and ecological benefits. Two trials were established to quantify the effects of TLD on long‐term growth. The first was a 2‐year fungicide exclusion trial that aimed to determine initial growth losses between trees treated with fungicide and untreated trees. It was found that tree growth was not affected until a threshold value of 20% damage was reached. Volume was reduced by 17% between treated and untreated trees over the course of the 2‐year trial. The second trial, a 5‐year growth study, used differentially affected adjacent stands (one infected and the other unaffected) to look at the longer term effects of more severe defoliation (44–60%) caused by an epidemic of TLD. Results recorded 5 years after the epidemic showed that trees recovered to regain normal growth trajectories after the epidemic, but growth was retarded by ca. 1.2 years for both height and diameter compared with that of the adjoining unaffected stand. As the growth of trees was not permanently reduced by the epidemic, it is concluded that the financial impacts of TLD are more likely to be associated with the loss of income resulting from extensive branch death in the lower crown after leaf and stem infection, which makes the affected stands not suitable for pruning and hence prevents them from being managed as a higher value solid wood crop.  相似文献   

20.
Ash dieback is an emerging disease caused by the fungus Chalara fraxinea that severely affects Fraxinus excelsior and F. angustifolia stands in Europe. Previous studies have shown that this pathogen prefers temperatures around 20°C, while its growth in pure cultures at 30°C proved to be very limited. The purpose of this study was to determine the effects of temperature on the development and growth of C. fraxinea in pure cultures and in plant tissues, as well as to test the heat tolerance of F. excelsior saplings. The sensitivity of fungus to heat in ash tissues was higher than in pure cultures. Low isolation success rate from diseased ash tissue after a five‐hour hot water treatment at 36°C and the relatively high survival rate of ash saplings after hot water treatments at 36°C and 40°C indicate possibilities for the development of a C. fraxinea eradication method in ash saplings. Field monitoring showed that in hot weather periods, thermal conditions inside the ash tissues can be extreme enough to markedly decrease the viability of C. fraxinea in infected plant tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号