首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Foot-and-mouth disease (FMD) within Saudi Arabian dairy herds has been controlled for the past decade through vaccination. Data from 19 outbreaks on Saudi farms has suggested that the durability of these vaccines extended for 2.5 months, providing an 81–98% level of protection. Vaccination has nevertheless failed to prevent the establishment and sometimes persistence of the disease. This is probably because the highly contagious nature of FMD creates increasing levels of viral excretion during an outbreak, and the co-habitation in Saudi farms of affected/susceptible animals following diagnosis, predisposes the herds to re-infection. Pre-clinical excretion of the virus leads to the infection of additional in-contact susceptible animals prior to diagnosis, so the isolation of clinically infected animals does not guarantee a removal of infection. Saudi Arabian farms are subdivided into managed farm pens and isolation (away from the farm) of all animals in infected pens not only removes the infectious individuals showing clinical signs, but also those that are sub-clinical and excreting virus. Simulations suggest that removing all infectious animals from the herd significantly reduces the per cent infected in the herd.  相似文献   

2.
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. In Uganda, FMD outbreaks are mainly controlled by ring vaccination and restriction of animal movements. Vaccination stimulates immunity and prevents animals from developing clinical signs which include lameness, inappetence, and decreased production. Ring vaccination and restriction of animal movements have, however, not successfully controlled FMD in Uganda and outbreaks reoccur annually. The objective of this study was to review the use of FMD virus (FMDV) vaccines and assess the effectiveness of vaccination programs for controlling FMD in Uganda (2001–2010), using retrospective data. FMD vaccine distribution patterns in Uganda (2001–2010) matched occurrence of outbreaks with districts reporting the highest number of outbreaks also receiving the largest quantity of vaccines. This was possibly due to “fire brigade” response of vaccinating animals after outbreaks have been reported. On average, only 10.3 % of cattle within districts that reported outbreaks during the study period were vaccinated. The average minimum time between onset of outbreaks and vaccination was 7.5 weeks, while the annual cost of FMDV vaccines used ranged from US $58,000 to 1,088,820. Between 2001 and 2010, serotyping of FMD virus was done in only 9/121 FMD outbreaks, and there is no evidence that vaccine matching or vaccine potency tests have been done in Uganda. The probability of FMDV vaccine and outbreak mismatch, the delayed response to outbreaks through vaccination, and the high costs associated with importation of FMDV vaccines could be reduced if virus serotyping and subtyping as well as vaccine matching were regularly done, and the results were considered for vaccine manufacture.  相似文献   

3.
Alternative mitigation strategies were compared during hypothetical outbreaks of foot-and-mouth disease (FMD) in the USA using a computer-simulation model. The epidemiologic and economic consequences were compared during these simulated outbreaks. Three vaccination and four slaughter strategies were studied along with two speeds of FMD virus spread among three susceptible populations of animals. The populations represented typical animal demographics in the United States.The best strategy depended on the speed of spread of FMD virus and the demographics of the susceptible population. Slaughter of herds in contact with known contagious herds was less costly than slaughtering only contagious herds. Slaughtering in 3 km rings around contagious herds was consistently more costly than other slaughter strategies. Ring vaccination in 10 km rings was judged more costly than slaughter alone in most situations. Although early ring vaccination resulted in lower government costs and duration in fast-spread scenarios, it was more costly when vaccinated animals were slaughtered with indemnity and other related slaughter costs.  相似文献   

4.
The foot-and-mouth disease outbreak in The Netherlands in 2001 most likely started on a mixed veal-calf/dairy-goat farm. The outbreak among the 74 calves on this farm appeared to be limited to four animals, and no clinical signs of FMD were reported. Also on a second veal-calf farm minor clinical signs and limited virus transmission were observed. Since FMD is known to be a very contagious disease, and can cause severe lesions, these observations were disputed. Therefore, we carried out two experiments to determine whether the Dutch FMD virus isolate from 2001 does spread among individually housed calves with limited contacts, either indirect (experiment 1) or direct (experiment 2). In experiment 1, four pairs of calves were housed in an individual box at 1m distance from each other. In experiment 2, two groups of three calves were housed in individual boxes, directly bordering each other. We infected one animal per pair in experiment 1, and the calf in the middle in experiment 2. We recorded clinical signs, virus shedding in saliva and the development of antibodies. In addition, we determined whether the virus was transmitted from the inoculated calves to the neighbour(s). All inoculated calves showed mild signs of FMD--fever, and some vesicles on hooves and/or in the mouth--but only one calf showed signs that were visible without physical examination. All inoculated calves shed virus in the saliva and developed neutralising antibodies. None of the contact animals seroconverted, indicating that virus transmission did not occur. These experiments showed that no virus transmission among individual housed calves can occur. This finding supports the hypothesis of the route of virus introduction to The Netherlands in 2001 and show that the observations on the two veal-calf farms were not impossible.  相似文献   

5.
Since March 1997 two strains of foot and mouth disease (FMD) virus have found their way into Taiwan, causing severe outbreaks in pigs and in Chinese yellow cattle. Outbreaks occurred in March 1997 were caused by a pig-adapted virus strain (O/Taiwan/97) which did not infect other species of cloven-hoofed animals by natural route. The epidemic spread over the whole region of Taiwan within two months and the aftermath was 6,147 pig farms infected and 3,850,746 pigs destroyed. In June 1999, the second strain of FMD virus (O/Taiwan/99) was isolated from the Chinese yellow cattle in the Kinmen Prefecture and in the western part of Taiwan. By the end of 1999, Chinese yellow cattle were the only species infected and those infected cattle did not develop pathological lesions. Seroconversions of serum neutralization antibody and on non-structural protein (NSP) antibodies were the best indicators for infection in non-vaccinated herds. The infected animals, however, excreted infectious levels of virus to infect new hosts. Based on the detection of the specific antibody to FMD virus, and virus isolation from oesophageal-pharyngeal (OP) fluid samples, ten herds of Chinese yellow cattle located in Kinmen and Taiwan were declared to have been infected. During the period of January to March 2000, however, five outbreaks caused by FMD virus similar to the O/Taiwan/99 virus occurred in four prefectures of Taiwan. The infected species included goats, Chinese yellow cattle and dairy cattle. Those outbreaks have caused high mortality in goat kids under two weeks old and also developed typical clinical signs of infection in dairy cattle.  相似文献   

6.
On 23 February 1999, the Dutch Animal Health Service advised all Dutch veterinary practices to postpone vaccination against bovine herpesvirus 1 (BHV1) immediately. The day before severe disease problems were diagnosed on four dairy farms after vaccination with the same batch of BHV1 marker vaccine. Using monoclonal antibodies, bovine virus diarrhoea virus (BVDV) type 2 was found in the vaccine batch. This paper describes an outbreak of BVDV type 2 infection caused by the use of a batch of modified live BHV1 marker vaccine contaminated with BDVD. Sources of information used were reports of farm visits, minutes of meetings, laboratory results, and oral communications from the people involved. The first symptoms of disease were observed on average six days after vaccination. Morbidity was high on 11 of the 12 farms. On five farms more than 70% of the animals became ill, while on one farm no symptoms could be detected. During the first week after vaccination, feed intake and milk production decreased. During the second week, some animals became clinically diseased having nasal discharge, fever, and diarrhoea. At the end of the second week and at the start of the third week, the number of diseased animals increased rapidly, the symptoms became more severe, and some animals died. Mortality varied among herds. Necropsy most often revealed erosions and ulcers of the mucosa of the digestive tract. In addition, degeneration of the liver, hyperaemia of the abomasum, and swollen mesenterial lymph nodes and swollen spleen were found. On 11 of the 12 farms all animals were culled between 32 and 68 days after vaccination after an agreement was reached with the manufacturer of the vaccine. This was the third outbreak of BVD in cattle after administration of a contaminated vaccine in the Netherlands. The possibilities to prevent contamination of a vaccine as a consequence of infection of fetal calf serum with BVDV are discussed. Improvement of controls to prevent contamination before and during vaccine production, and improvement of the monitoring of side-effects is necessary.  相似文献   

7.
Large scale surveillance of FMD non-structural protein (NSP) antibody in pigs was conducted to monitor for FMD virus circulation in Taiwan using Ceditest and UBI NSP ELISA kits after recurrence of FMD in 2009. A total of 53,759 serum samples were collected from pigs in the auction markets in 2009. There were 43 farms with positive FMD NSP reactors to both NSP ELISA tests in the nationwide surveillance. After tracing back, clinical examination and the NSP ELISA testing using both Ceditest and UBI on 14 follow-up serum samples from all the herds with confirmed NSP reactors in 2009, there were 4 farms classified as positive on follow-up testing criteria. In this surveillance, we have demonstrated that the NSP ELISA tests of outbreak farms followed by clinical and serological investigation could be used to detect FMD circulation in the pig population in Taiwan even while the national compulsory vaccination program is ongoing.  相似文献   

8.
After the foot-and-mouth disease (FMD) outbreak in 2001 the Dutch government implemented movement-prevention regulations to reduce the number of contacts between farms and consequently the risk of spread of highly contagious animal infections in the future. We studied the efficacy of these regulations by comparing registered cattle-movement data from 2000 to those from 2002. We also used the spatial and stochastic simulation model InterFMD to evaluate the consequences of the observed alterations in cattle-contact structure on the spread and control of a FMD epidemic.

There was a significant decrease in the number of cattle movements “for live use”, no difference in the number of group movements “for live use” and a distinct change in the overall contact structure. The most important structure changes were a decrease in the number of group movements from dairy farms to cattle-collection centres (−44%), and an increase in the number of group movements from dairy farms to beef farms (111%).

Our simulations demonstrated that the implemented regulations result in a concentration of the FMD-affected area and therefore in a reduction in size of the epidemics. Based on the intended Dutch strategy to control future FMD outbreaks, the decrease in extreme epidemics (95th percentiles) went from 31 infected farms in an epidemic-length of 65 days to 8 infected farms in an epidemic-length of 53 days in sparsely populated areas. In densely populated areas this decrease went from 135 infected farms to 103, while the duration reduced from 88 days to 81.  相似文献   


9.
10.
Encephalomyocarditis virus (EMCV) has been found on pig farms worldwide and can cause myocarditis in young pigs and reproduction disorders in sows. So far, clinical signs of EMCV have not been reported in the Netherlands. The aim of this study was to estimate the seroprevalence of EMCV infection in Dutch sow herds. A total of 277 Dutch sow herds were randomly selected, from which 3237 serum samples were collected. These samples were tested for EMCV antibodies using the virus neutralization test (VN test). The apparent prevalence of EMCV antibodies was 9.3% in the total sow population, and the apparent herd prevalence was 58.8%. An exact determination of the prevalence of EMCV infections in the Dutch sow population was not possible because the characteristics of the VN test under field circumstances were not known. However, Dutch sow herds seem to be infected with EMCV because the distribution of positive blood samples in the tested sow population was significantly different from that expected if random false-positive reactions had occurred.  相似文献   

11.
The objective of this paper is to describe the severe epidemic of classical swine fever (CSF) in The Netherlands in 1997–1998 under a policy of non-vaccination, intensive surveillance, pre-emptive slaughter and stamping out in an area which has one of the highest pig and herd densities in Europe.

The primary outbreak was detected on 4 February 1997 on a mixed sow and finishing pig herd. A total of 429 outbreaks was observed during the epidemic, and approximately 700 000 pigs from these herds were slaughtered. Among these outbreaks were two artificial insemination centres, which resulted in a CSF-suspect declaration of 1680 pig herds (mainly located in the southern part of The Netherlands). The time between introduction of CSF virus (CSFV) into the country and diagnosis of CSF in the primary outbreak was estimated to be approximately 6 weeks. It is presumed that CSFV was spread from The Netherlands to Italy and Spain via shipment of infected piglets in the beginning of February 1997, before the establishment of a total stand-still of transportation. In June 1997, CSFV is presumed to be introduced into Belgium from The Netherlands.

Pre-emptive slaughter of herds that had been in contact with infected herds or were located in close vicinity of infected herds, was carried out around the first two outbreaks. However, this policy was not further exercised till mid-April 1997, when pre-emptive slaughter became a standard operational procedure for the rest of the epidemic. In total, 1286 pig herds were pre-emptively slaughtered. (approximately 1.1 million pigs). A total of 44 outbreaks (10%) was detected via pre-emptive slaughter.

When there were clinical signs, the observed symptoms in infected herds were mainly atypical: fever, apathy, ataxia or a combination of these signs. In 322 out of 429 outbreaks (75%), detection was bases on clinical signs observed: 32% was detected by the farmer, 25% by the veterinary practitioner, 10% of the outbreaks by tracing teams and 8% by screening teams of the veterinary authorities. In 76% of the outbreaks detected by clinical signs, the farmer reported to have seen clinical symptoms for less than 1 week before diagnosis, in 22% for 1–4 weeks before diagnosis, and in 4 herds (1%) the farmer reported to have seen clinical symptoms for more than 4 weeks before diagnosis.

Transportation lorries played a major role in the transmission of CSFV before the primary outbreak was diagnosed. It is estimated that approximately 39 herds were already infected before the first measures of the eradication campaign came into force.

After the first measures to stop the spread of CSFV had been implemented, the distribution of the most likely routes of transmission markedly changed. In most outbreaks, a neighbourhood infection was indicated.

Basically, there were two reasons for this catastrophe. Firstly, there was the extent of the period between introduction of the virus in the region and detection of the first outbreak. As a result, CSFV had opportunities to spread from one herd to another during this period. Secondly, the measures initially taken did not prove sufficient in the swine- and herd-dense region involved.  相似文献   


12.
The re-emergence of foot-and-mouth disease (FMD) in Botswana is reported. The disease outbreak occurred in the Matsiloje Extension Area of Francistown veterinary district situated in the northeastern part of the country in an Office International des épízooties (OIE) recognized FMD free zone without vaccination. The disease affected cattle only and did not spillover into sheep and goats resident in the same extension area, as demonstrated by lack of seroconversion to FMD when tested. The virus isolate associated with the outbreak was identified as FMD virus; Southern African Territories (SAT) type SAT-2. The disease outbreak is discussed in relation to FMD outbreaks that have occurred previously within and outside Botswana.  相似文献   

13.
Foot-and-mouth disease (FMD) occurred recently for the first time in a decade in Japan. The index case was detected on a beef-breeding farm in Miyazaki Prefecture, Southern Japan, on April 20, 2010. After confirmation of this first case, control measures such as stamping out, movement restriction and disinfection were implemented. However, these strategies proved insufficient to prevent the spread of FMD and emergency vaccination was adopted. Up until the last outbreak on July 4, 2010, a total of 292 outbreaks had been confirmed, with about 290,000 animals having been culled. The epidemic occurred in an area with a high density of cattle and pigs, making disease control difficult. Invasion of the disease into a high-density area aided its rapid spread and led to difficulties in locating suitable burial sites. Epidemiological investigations indicated that the disease was introduced into Japan approximately one month before detection. This delay in initial detection is considered to have allowed an increased number of outbreaks in the early stage of the epidemic. Nevertheless, the epidemic was contained within a localized area in Miyazaki Prefecture and was eradicated within three months because of intensive control efforts including emergency vaccination. Although this epidemic devastated the livestock industry in Japan, many lessons can be learnt for the future prevention and control of infectious diseases in animals.  相似文献   

14.
A prospective epidemiological survey on bovine respiratory syncytial virus (BRSV) infections in calves was carried out on 21 dairy farms during one BRSV epidemic season. Special attention was paid to the role of maternal antibodies. On 15 farms the spread of the virus was demonstrated during the investigation period and on eight farms this was accompanied by an outbreak of acute respiratory disease. Disease seldom occurred in calves younger than two weeks old and the most severe disease was observed in calves from one to three months old. Although maternal antibodies did not effectively prevent the disease, both the incidence and severity of disease were inversely related to the level of specific maternal antibodies. Two serodiagnostic techniques were compared. In calves older than three months from herds with disease outbreaks associated with bovine respiratory syncytial virus the diagnosis was established in 80 per cent of the animals by an increase in IgG titre against BRSV and in 77 per cent by the detection of BRSV specific IgM. In comparison, only 10 per cent of the calves younger than three months were positive by IgG serodiagnosis, and 51 per cent by IgM serodiagnosis. On farms where the spread of the virus was accompanied by an outbreak of clinical disease more calves were present, a higher proportion of the calves was younger than three months, and calves of all ages were more often housed together.  相似文献   

15.
This paper reports on a retrospective study of the antibody responses to structural and non-structural proteins of FMD virus O Taiwan 97 in six pig herds in Taiwan in the year after the 1997 Taiwanese FMD outbreak. All herds were vaccinated against FMD after the outbreak as part of the countrywide control program. Three of the herds had confirmed FMD infections (herds N, O and P) and three herds remained non-infected (herds K, L and M). The serum neutralizing antibody titers and the non-structural protein ELISA (NSP) antibody responses in sows and 1-month-old pigs in the infected herds were higher than in the non-infected herds, but over time a number of positive NSP reactors were detected. From the serological studies and the herd monitoring and investigations it was considered that the FMD NSP positive reactors may not have constituted a true reservoir of FMD virus infection especially in herds where susceptible pigs were no longer present post-exposure or post-vaccination. Pigs vaccinated with an unpurified FMD type O vaccines being used at that time also showed false positive responses for NSP antibodies.  相似文献   

16.
17.
The economic losses due to porcine reproductive and respiratory syndrome virus (PRRSv) outbreaks are reported in the literature to be substantially high, but recent figures are not available. The aim of this study was to quantify the economic effects of epidemic PRRSv outbreaks in Dutch sow herds. Nine sow herds were selected based on a confirmed PRRSv outbreak within those populations. The economic impact during the first 18 weeks after the outbreak was estimated by comparing the overall costs between pre- and postoutbreak periods, using different factors (production data, medication, diagnostics, labour, etc.). An outbreak of PRRSv resulted in a reduced number of sold pigs per sow of 1.7. The economic loss varied between €59 and €379 for one sow per 18-week period outbreak. The mean loss per sow per outbreak was €126. The costs after the outbreak varied significantly from €3 to 160 per sow, due to the different methods used by farmers to tackle PRRSv outbreaks. The calculated costs in this study correlate with the costs of the initial outbreak in The Netherlands of 98 per sow.  相似文献   

18.
The National Reference Laboratory for classical swine fever (CSF) virus in the Netherlands examined more than two million samples for CSF virus or serum antibody during the CSF epizootic of 1997–1998. The immense amount of samples and the prevalence of border disease (BD) virus and bovine viral diarrhoea (BVD) virus infections in Dutch pig herds necessitated the diagnostic efforts of the laboratory to be focused on generating CSF specific test results throughout the eradication campaign.

Detection of 82% of the 429 outbreaks was achieved through the combined use of a direct immunofluorescence and peroxidase assay (FAT/IPA) with samples (tonsils) collected from clinically-suspected pigs. This suggests that in the majority of the outbreaks, the pigs had clinical signs that were recognised by the farmer and/or veterinarians, indicating the presence of CSF virus in a pig herd. A positive diagnosis of 74% of all the tissue samples (tonsils) collected at infected pig holdings was established by FAT. More than 140,000 heparinised blood samples were examined by virus isolation, resulting in the detection of 4.5% of the infected herds. CSF virus was isolated in approximately 29% of all the blood samples collected from pigs at infected or suspected farms.

Several serological surveys — each done within a different framework — led to the detection of 13.5% of the total number of outbreaks. The detection of CSF virus antibody in serum was carried out by semi-automated blocking ELISA. Approximately 28.5% of the sera which reacted in the ELISA were classified as CSF virus-neutralising antibody positive and 26.5% as positive for other pestiviruses following the virus neutralisation test (VNT).

We concluded that two of the CSF laboratory diagnostic methods described were determinative in the eradication campaign: first, the FAT for the screening of diseased pigs; and second, the ELISA and VNT when millions of predominantly healthy pigs needed to be screened for the presence of CSF serum antibody. Decision-making on the basis of results generated by either method can, however, be seriously hindered when samples are examined from pig herds with a high prevalence of non-CSF pestiviruses.  相似文献   


19.
Starting August 2006, a major epidemic of bluetongue (BT) was identified in North-West Europe, affecting The Netherlands, Belgium, Germany, Luxemburg and the North of France. It was caused by BT virus serotype 8 (BTV-8), a serotype previously unknown to the European Union (EU). In this outbreak, the virus caused clinical disease in a few individual animals within cattle herds, whereas overt clinical disease was usually restricted to sheep. Investigations in Belgium suggested that the first clinical signs of BTV-8 appeared mid July 2006 in a cattle herd, while the first suspicion of a BT-outbreak in Belgium was reported on 17 August 2006. In the first 10 BTV-8 outbreaks in the Netherlands, the owners indicated that the first clinical signs started approximately 12-17 days before a suspicion was reported to the veterinary authorities via a veterinary practitioner. In BTV-8 affected sheep flocks, erosions of the oral mucosa, fever, salivation, facial and mandibular oedema, apathy and tiredness, mortality, oedema of the lips, lameness, and dysphagia were among the most frequent clinical signs recorded. The most prominent clinical signs in BTV-8 affected cattle herds were: crusts/lesions of the nasal mucosa, erosions of lips/crusts in or around the nostrils, erosions of the oral mucosa, salivation, fever, conjunctivitis, coronitis, muscle necrosis, and stiffness of the limbs. Crusts/lesions of nasal mucosa, conjunctivitis, hyperaemic/purple coloration and lesions of the teats, and redness/hypersensitivity of the skin were relatively more seen on outbreak farms with cattle compared to sheep. Mortality, oedema of the head and ears, coronitis, redness of the oral mucosa, erosions/ulceration of tongue mucosa, purple coloration of the tongue and tongue protrusion and dyspneu were relatively more seen on outbreak farms with sheep compared to cattle.  相似文献   

20.
The 1997-1998 epidemic of classical swine fever in the Netherlands   总被引:9,自引:0,他引:9  
In 1997, the pig husbandry in the Netherlands was struck by a severe epidemic of classical swine fever (CSF). During this epidemic 429 CSF-infected herds were depopulated and approximately 1300 herds were slaughtered pre-emptively. In addition millions of pigs of herds not CSF-infected were killed for welfare reasons (over crowding or overweight). In this paper, we describe the course of the epidemic and the measures that were taken to control it.The first outbreak was detected on 4 February 1997 in the pig dense south-eastern part of the Netherlands. We estimate that CSF virus (CSFV) had already been present in the country by that time for 5-7 weeks and that the virus had been introduced into approximately 39 herds before the eradication campaign started. This campaign consisted of stamping-out infected herds, movement restrictions and efforts to diagnose infected herds as soon as possible. However, despite these measures the rate at which new outbreaks were detected continued to rise. The epidemic faded out only upon the implementation of additional measures such as rapid pre-emptive slaughter of herds in contact with or located near infected herds, increased hygienic measures, biweekly screening of all herds by veterinary practitioners, and reduction of the transportation movements for welfare reasons. The last infected herd was depopulated on 6 March 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号