首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study characterized and compared the pharmacokinetics of piperacillin after single 100 mg/kg i.m. injections in nine red-tailed hawks (Buteo jamaicensis) and five great horned owls (Bubo virginianus) over 48 hr by a modified agar well diffusion microbial inhibition assay. The mean maximum plasma piperacillin concentrations were 204 microg/ml and 221 microg/ml for the hawks and owls, respectively, and times of maximum concentrations were 15 min and 30 min, respectively. The calculated mean terminal elimination half-lives were 77 min in the hawks and 118 min in the owls. Area-under-the-curve values were 218 +/- 52 microg x hr/ml in the hawks and 444 +/- 104 microg x hr/ml in the owls. On the basis of the most common minimal inhibitory concentration (90%) for various bacterial isolates from clinical samples of 8 microg/ml, analysis of the data suggests that the maximum dosing interval for piperacillin at 100 mg/kg in medium sized raptors should be 4-6 hr.  相似文献   

2.
OBJECTIVE: To determine the pharmacokinetics of butorphanol tartrate after IV and IM single-dose administration in red-tailed hawks (RTHs) and great horned owls (GHOs). ANIMALS: 6 adult RTHs and 6 adult GHOs. PROCEDURES: Each bird received an injection of butorphanol (0.5 mg/kg) into either the right jugular vein (IVj) or the pectoral muscles in a crossover study (1-week interval between treatments). The GHOs also later received butorphanol (0.5 mg/kg) via injection into a medial metatarsal vein (IVm). During each 24-hour postinjection period, blood samples were collected from each bird; plasma butorphanol concentrations were determined via liquid chromatography-mass spectrometry. RESULTS: 2- and 1-compartment models best fit the IV and IM pharmacokinetic data, respectively, in both species. Terminal half-lives of butorphanol were 0.94 +/- 0.30 hours (IVj) and 0.94 +/- 0.26 hours (IM) for RTHs and 1.79 +/- 1.36 hours (IVj), 1.84 +/- 1.56 hours (IM), and 1.19 +/- 0.34 hours (IVm) for GHOs. In GHOs, area under the curve (0 to infinity) for butorphanol after IVj or IM administration exceeded values in RTHs; GHO values after IM and IVm administration were less than those after IVj administration. Plasma butorphanol clearance was significantly more rapid in the RTHs. Bioavailability of butorphanol administered IM was 97.6 +/- 33.2% (RTHs) and 88.8 +/- 4.8% (GHOs). CONCLUSIONS AND CLINICAL RELEVANCE: In RTHs and GHOs, butorphanol was rapidly absorbed and distributed via all routes of administration; the drug's rapid terminal half-life indicated that published dosing intervals for birds may be inadequate in RTHs and GHOs.  相似文献   

3.
OBJECTIVE: To compare anesthetic and cardiorespiratory effects of a 1:1 (vol:vol) mixture of propofol and thiopental sodium with either drug used alone in dogs. DESIGN: Randomized crossover study. ANIMALS: 10 healthy Walker Hounds. PROCEDURE: Dogs received propofol (6 mg/kg [2.7 mg/lb] of body weight), thiopental (15 mg/kg [6.8 mg/lb]), or a mixture of propofol (6 mg/kg) and thiopental (15 mg/kg) at 1-week intervals. Drugs were slowly administered i.v. over 90 seconds or until dogs lost consciousness. Increments of 10% of the initial dose were administered until intubation was possible. Amount of drug required for intubation, quality of induction and recovery, times from induction to intubation and to walking with minimal ataxia, and duration of intubation and lateral recumbency were recorded. Heart and respiratory rates, mean, systolic, and diastolic blood pressure, hemoglobin saturation of oxygen (SpO2), and end-tidal CO2 concentration (ETCO2) were determined before and after intubation. RESULTS: Amounts of propofol and thiopental required to permit intubation were less, but not significantly so, when administered in combination than when administered alone. Duration of lateral recumbency and time from induction to walking were greater and recovery quality was worse in the thiopental group, compared with the other groups. Dogs in all groups remained normotensive. Respiratory rate, heart rate, ETCO2, and SpO2 did not differ among groups. CONCLUSIONS AND CLINICAL RELEVANCE: A 1:1 mixture of propofol and thiopental induced anesthesia of similar quality to propofol or thiopental alone. Recovery quality and recovery times were similar to those of propofol and superior to those of thiopental.  相似文献   

4.
OBJECTIVE: To evaluate the effects of 2 remifentanil infusion regimens on cardiovascular function and responses to nociceptive stimulation in propofol-anesthetized cats. ANIMALS: 8 adult cats. PROCEDURES: On 2 occasions, cats received acepromazine followed by propofol (6 mg/kg then 0.3 mg/kg/min, i.v.) and a constant rate infusion (CRI) of remifentanil (0.2 or 0.3 microg/kg/ min, i.v.) for 90 minutes and underwent mechanical ventilation (phase I). After recording physiologic variables, an electrical stimulus (50 V; 50 Hz; 10 milliseconds) was applied to a forelimb to assess motor responses to nociceptive stimulation. After an interval (> or = 10 days), the same cats were anesthetized via administration of acepromazine and a similar infusion regimen of propofol; the remifentanil infusion rate adjustments that were required to inhibit cardiovascular responses to ovariohysterectomy were recorded (phase II). RESULTS: In phase I, heart rate and arterial pressure did not differ between remifentanil-treated groups. From 30 to 90 minutes, cats receiving 0.3 microg of remifentanil/kg/min had no response to noxious stimulation. Purposeful movement was detected more frequently in cats receiving 0.2 microg of remifentanil/kg/min. In phase II, the highest dosage (mean +/- SEM) of remifentanil that prevented cardiovascular responses was 0.23 +/- 0.01 microg/kg/min. For all experiments, mean time from infusion cessation until standing ranged from 115 to 140 minutes. CONCLUSIONS AND CLINICAL RELEVANCE: Although the lower infusion rate of remifentanil allowed ovariohysterectomy to be performed, a CRI of 0.3 microg/kg/min was necessary to prevent motor response to electrical stimulation in propofol-anesthetized cats. Recovery from anesthesia was prolonged with this technique.  相似文献   

5.
OBJECTIVE: To compare cardiovascular effects of equipotent infusion doses of propofol alone and in combination with ketamine administered with and without noxious stimulation in cats. ANIMALS: 6 cats. PROCEDURE: Cats were anesthetized with propofol (loading dose, 6.6 mg/kg; constant rate infusion [CRI], 0.22 mg/kg/min) and instrumented for blood collection and measurement of blood pressures and cardiac output. Cats were maintained at this CRI for a further 60 minutes, and blood samples and measurements were taken. A noxious stimulus was applied for 5 minutes, and blood samples and measurements were obtained. Propofol concentration was decreased to 0.14 mg/kg/min, and ketamine (loading dose, 2 mg/kg; CRI, 23 microg/kg/min) was administered. After a further 60 minutes, blood samples and measurements were taken. A second 5-minute noxious stimulus was applied, and blood samples and measurements were obtained. RESULTS: Mean arterial pressure, central venous pressure, pulmonary arterial occlusion pressure, stroke index, cardiac index, systemic vascular resistance index, pulmonary vascular resistance index, oxygen delivery index, oxygen consumption index, oxygen utilization ratio, partial pressure of oxygen in mixed venous blood, pH of arterial blood, PaCO2, arterial bicarbonate concentration, and base deficit values collected during propofol were not changed by the addition of ketamine and reduction of propofol. Compared with propofol, ketamine and reduction of propofol significantly increased mean pulmonary arterial pressure and venous admixture and significantly decreased PaO2. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of propofol by CRI for maintenance of anesthesia induced stable hemodynamics and could prove to be clinically useful in cats.  相似文献   

6.
Objective-To compare the anesthetic and cardiorespiratory effects of total IV anesthesia with propofol (P-TIVA) or a ketamine-medetomidine-propofol combination (KMP-TIVA) in horses. Design-Randomized experimental trial. Animals-12 horses. Procedure-Horses received medetomidine (0.005 mg/kg [0.002 mg/lb], IV). Anesthesia was induced with midazolam (0.04 mg/kg [0.018 mg/lb], IV) and ketamine (2.5 mg/kg [1.14 mg/lb], IV). All horses received a loading dose of propofol (0.5 mg/kg [0.23 mg/lb], IV), and 6 horses underwent P-TIVA (propofol infusion). Six horses underwent KMP-TIVA (ketamine [1 mg/kg/h {0.45 mg/lb/h}] and medetomidine [0.00125 mg/kg/h {0.0006 mg/lb/h}] infusion; the rate of propofol infusion was adjusted to maintain anesthesia). Arterial blood pressure and heart rate were monitored. Qualities of anesthetic induction, transition to TIVA, and maintenance of and recovery from anesthesia were evaluated. Results-Administration of KMP IV provided satisfactory anesthesia in horses. Compared with the P-TIVA group, the propofol infusion rate was significantly less in horses undergoing KMP-TIVA (0.14 +/- 0.02 mg/kg/min [0.064 +/- 0.009 mg/lb/min] vs 0.22 +/- 0.03 mg/kg/min [0.1 +/- 0.014 mg/lb/min]). In the KMP-TIVA and P-TIVA groups, anesthesia time was 115 +/- 17 minutes and 112 +/- 11 minutes, respectively, and heart rate and arterial blood pressure were maintained within acceptable limits. There was no significant difference in time to standing after cessation of anesthesia between groups. Recovery from KMP-TIVA and P-TIVA was considered good and satisfactory, respectively. Conclusions and Clinical Relevance-In horses, KMP-TIVA and P-TIVA provided clinically useful anesthesia; the ketamine-medetomidine infusion provided a sparing effect on propofol requirement for maintaining anesthesia.  相似文献   

7.
OBJECTIVE: To compare the cardiopulmonary effects of anesthesia maintained by continuous infusion of ketamine and propofol with anesthesia maintained by inhalation of sevoflurane in goats undergoing magnetic resonance imaging. ANIMALS: 8 Saanen goats. PROCEDURES: Goats were anesthetized twice (1-month interval) following sedation with midazolam (0.4 mg/kg, IV). Anesthesia was induced via IV administration of ketamine (3 mg/kg) and propofol (1 mg/kg) and maintained with an IV infusion of ketamine (0.03 mg/kg/min) and propofol (0.3 mg/kg/min) and 100% inspired oxygen (K-P treatment) or induced via IV administration of propofol (4 mg/kg) and maintained via inhalation of sevoflurane in oxygen (end-expired concentration, 2.3%; 1X minimum alveolar concentration; SEVO treatment). Cardiopulmonary and blood gas variables were assessed at intervals after induction of anesthesia. RESULTS: Mean +/- SD end-expired sevoflurane was 2.24 +/- 0.2%; ketamine and propofol were infused at rates of 0.03 +/- 0.002 mg/kg/min and 0.29 +/- 0.02 mg/kg/min, respectively. Overall, administration of ketamine and propofol for total IV anesthesia was associated with a degree of immobility and effects on cardiopulmonary parameters that were comparable to those associated with anesthesia maintained by inhalation of sevoflurane. Compared with the K-P treatment group, mean and diastolic blood pressure values in the SEVO treatment group were significantly lower at most or all time points after induction of anesthesia. After both treatments, recovery from anesthesia was good or excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that ketamine-propofol total IV anesthesia in goats breathing 100% oxygen is practical and safe for performance of magnetic resonance imaging procedures.  相似文献   

8.
To evaluate clinical usefulness of xylazine (1.0 mg/kg)-midazolam (20 microg/kg)-propofol (3.0 mg/kg) anesthesia in horses, 6 adult Thoroughbred horses were examined. The quality of induction varied from poor to excellent and 5 out of 6 horses presented myotonus in the front half of the body. However, paddling immediately after induction observed in other reports of equine propofol anesthesia was not observed. Recovery time was 35.3 +/- 9.3 min and the quality of recovery was calm and smooth in all horses. Respiration rate decreased after induction and hypoxemia was observed during lateral recumbency. Heart rate also decreased after induction, however mean arterial blood pressure was maintained above approximately 100 mmHg.  相似文献   

9.
OBJECTIVE: To compare the constant rate infusion (CRI) of vecuronium required to maintain a level of neuromuscular blockade adequate for major surgeries, e.g. thoracotomy or laparotomy, in dogs anaesthetized with a CRI of fentanyl and either propofol, isoflurane or sevoflurane. STUDY DESIGN: Prospective, randomized, cross-over study. ANIMALS: Thirteen male beagles (age, 9-22 months; body mass 6.3-11.3 kg). MATERIALS AND METHODS: Dogs were anaesthetized with propofol (24 mg kg(-1) hour(-1) IV CRI; group P), isoflurane (1.3% end-tidal concentration; group I) or sevoflurane (2.3% end-tidal concentration; group S) with fentanyl (5 microg kg(-1) hour(-1) IV, CRI). Sixty to seventy minutes after induction of anaesthesia, vecuronium was administered at a rate of 0.4, 0.3 and 0.2 mg kg(-1) hour(-1) in groups P, I and S respectively. To determine the degree of neuromuscular block, a peripheral nerve was stimulated electrically using the train-of-four (TO4) stimulus pattern. Evoked muscle contractions were evaluated using a neuromuscular monitoring device. Once the TO4 ratio reached 0, the continuous infusion rate was decreased and adjusted to maintain a TO4 count of 1. Continuous infusion was continued for 2 hours. The infusion rate of vecuronium was recorded 20, 40, 60, 80, 100 and 120 minutes after the start of infusion. RESULTS: The mean continuous infusion rates of vecuronium during stable infusion were 0.22 +/- 0.04 (mean +/- SD), 0.10 +/- 0.02 and 0.09 +/- 0.02 mg kg(-1) hour(-1) in groups P, I and S respectively. There were statistically significant differences between the rates in groups P and I and between the rates in groups P and S. Conclusions and clinical relevance In healthy dogs, the recommended maintenance infusion rate of vecuronium is 0.2 mg kg(-1) hour(-1) under CRI propofol-fentanyl anaesthesia and 0.1 mg kg(-1) hour(-1) during CRI fentanyl-isoflurane or sevoflurane anaesthesia.  相似文献   

10.
OBJECTIVE: To evaluate the effects of ketamine, magnesium sulfate, and their combination on the minimum alveolar concentration (MAC) of isoflurane (ISO-MAC) in goats. ANIMALS: 8 adult goats. PROCEDURES: Anesthesia was induced with isoflurane delivered via face mask. Goats were intubated and ventilated to maintain normocapnia. After an appropriate equilibration period, baseline MAC (MAC(B)) was determined and the following 4 treatments were administered IV: saline (0.9% NaCl) solution (loading dose [LD], 30 mL/20 min; constant rate infusion [CRI], 60 mL/h), magnesium sulfate (LD, 50 mg/kg; CRI, 10 mg/kg/h), ketamine (LD, 1 mg/kg; CRI, 25 microg/kg/min), and magnesium sulfate (LD, 50 mg/kg; CRI, 10 mg/kg/h) combined with ketamine (LD, 1 mg/kg; CRI, 25 microg/kg/min); then MAC was redetermined. RESULTS: Ketamine significantly decreased ISOMAC by 28.7 +/- 3.7%, and ketamine combined with magnesium sulfate significantly decreased ISOMAC by 21.1 +/- 4.1%. Saline solution or magnesium sulfate alone did not significantly change ISOMAC. CONCLUSIONS AND CLINICAL RELEVANCE: Ketamine and ketamine combined with magnesium sulfate, at doses used in the study, decreased the end-tidal isoflurane concentration needed to maintain anesthesia, verifying the clinical impression that ketamine decreases the end-tidal isoflurane concentration needed to maintain surgical anesthesia. Magnesium, at doses used in the study, did not decrease ISOMAC or augment ketamine's effects on ISOMAC.  相似文献   

11.
The purpose of this report was to evaluate the cardiorespiratory effects and efficacy of dexmedetomidine as a premedicant agent in cats undergoing ovariohysterectomy anaesthetized with propofol-sevoflurane. Cats were randomly divided into two groups of eight animals each. Dexmedetomidine (0.01 mg/kg) or 0.9% saline was administered intravenously (D and S, respectively). After 5 min, propofol was administered intravenously and anaesthesia was maintained with sevoflurane. Heart and respiratory rates, arterial blood pressure, oxygen saturation, rectal temperature and the amount of propofol needed for induction were measured. Premedication with dexmedetomidine reduced the requirement of propofol (6.7+/-3.8 mg/kg), but induced bradycardia, compared with the administration of saline (15.1+/-5.1 mg/kg). Recovery quality was significantly better in D but no significant difference in time to return of swallowing reflex was observed between groups (D=2.5+/-0.5 min; S=3.2+/-1.8 min). In conclusion, dexmedetomidine is a safe and effective agent for premedication in cats undergoing propofol-sevoflurane anaesthesia with minimal adverse effects.  相似文献   

12.
REASONS FOR PERFORMING STUDY: To search for long-term total i.v. anaesthesia techniques as a potential alternative to inhalation anaesthesia. OBJECTIVES: To determine cardiopulmonary effects and anaesthesia quality of medetomidine-ketamine anaesthesia induction followed by 4 h of medetomidine-propofol anaesthesia in 6 ponies. METHODS: Sedation consisted of 7 microg/kg bwt medetomidine i.v. followed after 10 min by 2 mg/kg bwt i.v. ketamine. Anaesthesia was maintained for 4 h with 3.5 microg/kg bwt/h medetomidine and propofol at minimum infusion dose rates determined by application of supramaximal electrical pain stimuli. Ventilation was spontaneous (F(I)O2 > 0.9). Cardiopulmonary measurements were always taken before electrical stimulation, 15 mins after anaesthesia induction and at 25 min intervals. RESULTS: Anaesthesia induction was excellent and movements after pain stimuli were subsequently gentle. Mean propofol infusion rates were 0.89-0.1 mg/kg bwt/min. No changes in cardiopulmonary variables occured over time. Range of mean values recorded was: respiratory rate 13.0-15.8 breaths/min; PaO2 29.1-37.9 kPa; PaCO2 6.2-6.9 kPa; heart rate 31.2-40.8 beats/min; mean arterial pressure 90.0-120.8 mmHg; cardiac index 44.1-59.8 ml/kg bwt/min; mean pulmonary arterial pressure 11.8-16.4 mmHg. Recovery to standing was an average of 31.1 mins and ponies stood within one or 2 attempts. CONCLUSIONS: In this paper, ketamine anaesthesia induction avoided the problems encountered previously with propofol. Cardiovascular function was remarkably stable. Hypoxaemia did not occur but, despite F(I)O2 of > 0.9, minimal PaO2 in one pony after 4 h anaesthesia was 8.5 kPa. POTENTIAL RELEVANCE: The described regime might offer a good, practicable alternative to inhalation anaesthesia and has potential for reducing the fatality rate in horses.  相似文献   

13.
OBJECTIVE: To evaluate propofol for induction and maintenance of anesthesia, after detomidine premedication, in horses undergoing abdominal surgery for creation of an experimental intestinal adhesion model. STUDY DESIGN: Prospective study. ANIMALS: Twelve horses (424 +/- 81 kg) from 1 to 20 years of age (5 females, 7 males). METHODS: Horses were premedicated with detomidine (0.015 mg/kg i.v.) 20 to 25 minutes before induction, and a propofol bolus (2 mg/kg i.v.) was administered for induction. Propofol infusion (0.2 mg/kg/min i.v.) was used to maintain anesthesia. The infusion rate was adjusted to maintain an acceptable anesthetic plane as determined by muscle relaxation, occular signs, response to surgery, and cardiopulmonary responses. Oxygen (15 L/min) was insufflated through an endotracheal tube as necessary to maintain the SpO2 greater than 90%. Systolic (SAP), mean (MAP), and diastolic (DAP) arterial pressures, heart rate (HR), electrocardiogram (ECG), respiratory rate (RR), SpO2 (via pulse oximetry), and nasal temperature were recorded at 15 minute intervals, before premedication and after induction of anesthesia. Arterial blood gas samples were collected at the same times. Objective data are reported as mean (+/-SD); subjective data are reported as medians (range). RESULTS: Propofol (2.0 mg/kg i.v.) induced anesthesia (mean bolus time, 85 sec) within 24 sec (+/-22 sec) after the bolus was completed. Induction was good in 10 horses; 2 horses showed signs of excitement and these two inductions were not smooth. Propofol infusion (0.18 mg/kg/min +/- 0.04) was used to maintain anesthesia for 61 +/- 19 minutes with the horses in dorsal recumbency. Mean SAP, DAP, and MAP increased significantly over time from 131 to 148, 89 to 101, and 105 to 121 mm Hg, respectively. Mean HR varied over time from 43 to 45 beats/min, whereas mean RR increased significantly over anesthesia time from 4 to 6 breaths/min. Mean arterial pH decreased from a baseline of 7.41 +/- 0.07 to 7.30 +/- 0.05 at 15 minutes of anesthesia, then increased towards baseline values. Mean PaCO2 values increased during anesthesia, ranging from 47 to 61 mm Hg whereas PaO2 values decreased from baseline (97 +/- 20 mm Hg), ranging from 42 to 57 mm Hg. Muscle relaxation was good and no horses moved during surgery: Recovery was good in 9 horses and acceptable in 3; mean recovery time was 67 +/- 29 minutes with 2.4 +/- 2.4 attempts necessary for the horses to stand. CONCLUSIONS: Detomidine-propofol anesthesia in horses in dorsal recumbency was associated with little cardiovascular depression, but hypoxemia and respiratory depression occurred and some excitement was seen on induction. CLINICAL RELEVANCE: Detomidine-propofol anesthesia is not recommended for surgical procedures in horses if dorsal recumbency is necessary and supplemental oxygen is not available (eg, field anesthesia).  相似文献   

14.
The effects of propofol infusion were compared with propofol/isoflurane anaesthesia in six beagles premedicated with 10 microg/kg intramuscular (i.m.) dexmedetomidine. The suitability of a cold pressor test (CPT) as a stress stimulus in dogs was also studied. Each dog received isoflurane (end tidal 1.0%, induction with propofol) with and without CPT; propofol (200 microg/kg/min, induction with propofol) with and without CPT; premedication alone with and without CPT in a randomized block study in six separate sessions. Heart rate and arterial blood pressures and gases were monitored. Plasma catecholamine, beta-endorphin and cortisol concentrations were measured. Recovery profile was observed. Blood pressures stayed within normal reference range but the dogs were bradycardic (mean heart rate < 70 bpm). PaCO2 concentration during anaesthesia was higher in the propofol group (mean > 57 mmHg) when compared with isoflurane (mean < 52 mmHg). Recovery times were longer with propofol than when compared with the other treatments. The mean extubation times were 8 +/- 3.4 and 23 +/- 6.3 min after propofol/isoflurane and propofol anaesthesia, respectively. The endocrine stress response was similar in all treatments except for lower adrenaline level after propofol infusion at the end of the recovery period. Cold pressor test produced variable responses and was not a reliable stress stimulus in the present study. Propofol/isoflurane anaesthesia was considered more useful than propofol infusion because of milder degree of respiratory depression and faster recovery.  相似文献   

15.
OBJECTIVE: To determine the minimum infusion rate (MIR50) for propofol alone and in combination with ketamine required to attenuate reflexes commonly used in the assessment of anesthetic depth in cats. ANIMALS: 6 cats. PROCEDURE: Propofol infusion started at 0.05 to 0.1 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine (low-dose ILD] constant rate infusion [CRI] of 23 microg/kg/min or high-dose [HD] CRI of 46 microg/kg/min), and after 15 minutes, responses of different reflexes were tested. Following a response, the propofol dose was increased by 0.05 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine, and after 15 minutes, reflexes were retested. RESULTS: The MIR50 for propofol alone required to attenuate blinking in response to touching the medial canthus or eyelashes; swallowing in response to placement of a finger or laryngoscope in the pharynx; and to toe pinch, tetanus, and tail-clamp stimuli were determined. Addition of LD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, finger, toe pinch, and tetanus stimuli but did not change those for laryngoscope or tail-clamp stimuli. Addition of HD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, toe pinch, tetanus, and tail-clamp stimuli but did not change finger or laryngoscope responses. CONCLUSIONS AND CLINICAL RELEVANCE: Propofol alone or combined with ketamine may be used for total IV anesthesia in healthy cats at the infusion rates determined in this study for attenuation of specific reflex activity.  相似文献   

16.
The use of propofol, solubilised in a non-ionic emulsifying agent, for the induction and maintenance of anaesthesia in experimental ponies was assessed. Pilot studies revealed that premedication with xylazine (0.5 mg/kg bodyweight [bwt]) intravenously (iv) followed by propofol (2.0 mg/kg bwt) iv provided a satisfactory smooth induction. Two infusion rates (0.15 mg/kg bwt/min and 0.2 mg/kg bwt/min) were compared for maintenance of anaesthesia. An infusion rate of 0.2 mg/kg/min produced adequate anaesthesia in these ponies. Cardiovascular changes included a decrease in arterial pressure and cardiac output during maintenance. Respiratory depression was manifested by a decrease in rate and an increase in arterial carbon dioxide tension. Recovery after 1 h anaesthesia was rapid and smooth. In conclusion, induction and maintenance of anaesthesia with propofol in premedicated ponies proved a satisfactory technique.  相似文献   

17.
The use of 0.025 +/- 0.012 mg/kg (median +/- interquartile range) thiafentanil with 0.15 +/- 0.03 mg/kg xylazine (TX) and 0.011 +/- 0.0015 mg/kg carfentanil with 0.25 +/- 0.093 mg/kg xylazine (CX), with dosages based on estimated bodyweight, was used in the anesthesia of 37 Tibetan yak (Bos grunniens) housed within a drive-through animal park setting. The median time to lateral recumbency was 5 and 7 min for each group, respectively. With the addition of propofol in 8 CX animals and 17 TX animals, the anesthetic plane was suitable for a wide range of procedures. The median time to standing recovery following administration of naltrexone was 4 +/- 3.5 min with TX and 7 +/- 1.5 min with CX. There was one fatality and one case of renarcotization in the TX group. Overall, the dosages used in the study provided a reliable and useful anesthetic induction protocol, with TX animals demonstrating a more rapid induction and recovery with less cardiac depression than CX animals.  相似文献   

18.
OBJECTIVE: To evaluate concomitant propofol and fentanyl infusions as an anesthetic regime, in Greyhounds. ANIMALS: Eight clinically normal Greyhounds (four male, four female) weighing 25.58 +/- 3.38 kg. DESIGN: Prospective experimental study. METHODS: Dogs were premedicated with acepromazine (0.05 mg/kg) by intramuscular (i.m.) injection. Forty five minutes later anesthesia was induced with a bolus of propofol (4 mg/kg) by intravenous (i.v.) injection and a propofol infusion was begun (time = 0). Five minutes after induction of anesthesia, fentanyl (2 microg/kg) and atropine (40 microg/kg) were administered i.v. and a fentanyl infusion begun. Propofol infusion (0.2 to 0.4 mg/kg/min) lasted for 90 minutes and fentanyl infusion (0.1 to 0.5 microg/kg/min) for 70 minutes. Heart rate, blood pressure, respiratory rate, end-tidal carbon dioxide, body temperature, and depth of anesthesia were recorded. The quality of anesthesia, times to return of spontaneous ventilation, extubation, head lift, and standing were also recorded. Blood samples were collected for propofol and fentanyl analysis at varying times before, during and after anesthesia. RESULTS: Mean heart rate of all dogs varied from 52 to 140 beats/min during the infusion. During the same time period, mean blood pressure ranged from 69 to 100 mm Hg. On clinical assessment, all dogs appeared to be in light surgical anesthesia. Mean times (+/- SEM), after termination of the propofol infusion, to return of spontaneous ventilation, extubation, head lift and standing for all dogs were 26 +/- 7, 30 +/- 7, 59 +/- 12, and 105 +/- 13 minutes, respectively. Five out of eight dogs either whined or paddled their forelimbs in recovery. Whole blood concentration of propofol for all eight dogs ranged from 1.21 to 6.77 microg/mL during the infusion period. Mean residence time (MRTinf) for propofol was 104.7 +/- 6.0 minutes, mean body clearance (Clb) was 53.35 +/- 0.005 mL/kg/min, and volume of distribution at steady state (Vdss) was 3.27 +/- 0.49 L/kg. Plasma concentration of fentanyl for seven dogs during the infusion varied from 1.22 to 4.54 ng/mL. Spontaneous ventilation returned when plasma fentanyl levels were >0.77 and <1.17 ng/mL. MRTinf for fentanyl was 111.3 +/- 5.7 minutes. Mean body clearance was 29.1 +/- 2.2 mL/kg/min and Vdss was 2.21 +/- 0.19 L/kg. CONCLUSION AND CLINICAL RELEVANCE: In Greyhounds which were not undergoing any surgical stimulation, total intravenous anesthesia maintained with propofol and fentanyl infusions induced satisfactory anesthesia, provided atropine was given to counteract bradycardia. Despite some unsatisfactory recoveries the technique is worth investigating further for clinical cases, in this breed and in mixed breed dogs.  相似文献   

19.
Induction of anaesthesia in dogs and cats with propofol   总被引:2,自引:0,他引:2  
Propofol was used to induce anaesthesia in 89 dogs and 13 cats of either sex, various breeds and of widely different ages and weights; they varied considerably in physical condition and were anaesthetised for a variety of investigations and surgical procedures. They were premedicated with acepromazine, papaveretum, diazepam, pethidine, atropine and scopolamine in different combinations. After induction with propofol, anaesthesia was maintained with halothane, isoflurane, methoxyflurane and enflurane and, or, nitrous oxide. The mean (+/- sd) induction doses of propofol in unpremedicated and premedicated animals were 5.2 +/- 2.3 mg/kg and 3.6 +/- 1.4 mg/kg respectively for dogs, and 5.0 +/- 2.8 mg/kg and 5.3 +/- 4.3 mg/kg for cats. There were no differences between the sexes. Premedication did not affect recovery times. The incidence of side effects was very low. One dog showed evidence of pain when propofol was injected. No incompatibility was observed between propofol and the premedicants and other anaesthetic agents used.  相似文献   

20.
This study assessed the intraoperative analgesic effects of intravenous lidocaine administered by a constant rate infusion (CRI) in surgical canine patients. A prospective, blinded, randomized study was designed with 2 treatment groups: A (lidocaine) and B (placebo), involving 41 dogs. All patients were premedicated with acepromazine and buprenorphine, induced with propofol and midazolam; anesthesia was maintained with isoflurane in oxygen. Group A received 2 mg/kg IV lidocaine immediately after induction, followed within 5 min by a CRI at 50 μg/kg/min. Group B received an equivalent volume of saline instead of lidocaine. Changes in heart rate and blood pressure during maintenance were treated by increasing CRI. Fentanyl was used as a supplemental analgesic when intraoperative nociceptive response was not controlled with the maximum dose of lidocaine infusion. There was a significantly lower use of supplemental intraoperative analgesia in the lidocaine than in the placebo group. Group B dogs had almost twice as high a risk of intraoperative nociceptive response as group A dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号