首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Since its first isolation from Salix roots in 1972, isolates of a sexually sterile Phytophthora species have been obtained frequently from wet or riparian habitats worldwide and have also been isolated from roots of Alnus and Prunus spp. Although originally assigned to Phytophthora gonapodyides on morphological grounds, it was recognized that these isolates, informally named P. taxon Salixsoil, might represent a separate lineage within ITS Clade 6. Based on phylogenetic analyses and comparisons of morphology, growth‐temperature relationships and pathogenicity, this taxon is formally described here as Phytophthora lacustris sp. nov. Isolates of P. lacustris form a clearly resolved cluster in both ITS and mitochondrial cox1 phylogenies, basal to most other Clade 6 taxa. Phytophthora lacustris shares several unusual behavioural properties with other aquatic Clade 6 species, such as sexual sterility and tolerance of high temperatures, that have been suggested as adaptations to riparian conditions. It appears to be widespread in Europe and has also been detected in Australia, New Zealand and the USA. It was shown to be weakly or moderately aggressive on inoculation to Alnus, Prunus and Salix. The extent of P. lacustris’ activity as a saprotroph in plant debris in water and as an opportunistic pathogen in riparian habitats needs further investigation. Its pathogenic potential to cultivated fruit trees also deserves attention because P. lacustris has apparently been introduced into the nursery trade.  相似文献   

2.
The genetic diversity of Phytophthora spp. was investigated in potted ornamental and fruit tree species. A metabarcoding approach was used, based on a semi‐nested PCR with Phytophthora genus‐specific primers targeting the ITS1 region of the rDNA. More than 50 ITS1 sequence types representing at least 15 distinct Phytophthora taxa were detected. Nine had ITS sequences that grouped them in defined taxonomic groups (P. nicotianae, P. citrophthora, P. meadii, P. taxon Pgchlamydo, P. cinnamomi, P. parvispora, P. cambivora, P. niederhauserii and P. lateralis) whereas three phylotypes were associated to two or more taxa (P. citricola taxon E or III; P. pseudosyringae, P. ilicis or P. nemorosa; and P. cryptogea, P. erythroseptica, P. himalayensis or P. sp. ‘kelmania’) that can be challenging to resolve with ITS1 sequences alone. Three additional phylotypes were considered as representatives of novel Phytophthora taxa and defined as P. meadii‐like, P. cinnamomi‐like and P. niederhauserii‐like. Furthermore, the analyses highlighted a very complex assemblage of Phytophthora taxa in ornamental nurseries within a limited geographic area and provided some indications of structure amongst populations of P. nicotianae (the most prevalent taxon) and other taxa. Data revealed new host–pathogen combinations, evidence of new species previously unreported in Italy (P. lateralis) or Europe (P. meadii) and phylotypes representative of species that remain to be taxonomically defined. Furthermore, the results reinforced the primary role of plant nurseries in favouring the introduction, dissemination and evolution of Phytophthora species.  相似文献   

3.
Forests in Europe are threatened by increased diversity of Phytophthora species, but effects on trees of simultaneous infections by Phytophthora and ecological consequences of their coexistence are unknown. This study explored variation in early survival of Quercus ilex to Phytophthora infections and assessed interactions between Phytophthora species when trees were co‐infected. Three Phytophthora species (P. cinnamomi, P. gonapodyides and P. quercina), seeds from 16 populations of Q. ilex (ballota and ilex subspecies) and two infection times were used as sources of variation in two experiments. The influence of Phytophthora species, Q. ilex subspecies and populations on plant germination and survival were analysed using generalized linear mixed models and survival analysis techniques. Germination rates were not influenced by Phytophthora spp. (= 0.194) but by the subspecies and populations of Q. ilex (< 0.001). In Phytophthora‐infested soils, Q. ilex subsp. ilex germinated at higher rates than Q. ilex subsp. ballota. Plant survival was strongly influenced by Phytophthora species (< 0.001), not by the subspecies and populations of Q. ilex. Seedling mortality was reduced and delayed if a less virulent Phytophthora species infected plants prior to infection by a more virulent Phytophthora species. The results help to explain oak decline syndrome and the lack of natural and artificial regeneration of Q. ilex forests. Lack of interspecific variability of early survival to Phytophthora spp. discourages direct sowing for artificial reforestation programmes. Large, thick seeds, giving plants rapid growth, are advantageous traits when soils are infested with Phytophthora spp.  相似文献   

4.
Rubus anglocandicans is the most widespread and abundant blackberry species within the European blackberry (Rubus fruticosus) aggregate in Western Australia (WA). European blackberry is also one of the 32 Weeds of National Significance in Australia. A disease recorded as ‘blackberry decline’ was first observed in some blackberry sites in WA in 2006. A disease survey was conducted in the Manjimup‐Pemberton region along the Warren and Donnelly River catchments in WA between 2010 and 2012. Phytophthora amnicola, Pbilorbang, Pcryptogea, P. inundata, P. litoralis, Pmultivora, P. taxon personii, P. thermophila and a P. thermophila × amnicola hybrid were recovered from declining and adjacent decline‐free sites, as well as from streams and rivers. Phytophthora cinnamomi was isolated from dying Banksia and Eucalyptus species from two non‐decline sites. Of these species, P. bilorbang and P. cryptogea were more pathogenic than the others in under‐bark inoculations using excised stems (primocanes), in planta primocane inoculations in blackberry growing wild in native forest stands, and in glasshouse pot trials. It was concluded that blackberry decline is a complex syndrome and Phytophthora species, in particular P. bilorbang and P. cryptogea, together with temporary inundation, are major biotic and abiotic factors contributing to blackberry decline.  相似文献   

5.
X. Yang  C. X. Hong 《Plant pathology》2016,65(7):1118-1125
Agricultural run‐off sedimentation reservoirs are an emerging aquatic system of critical importance to plant biosecurity, water and environmental sustainability. Oomycete pathogens such as Phytophthora and Pythium species in irrigation water have been demonstrated to pose significant risks to ornamental crops, but little is known about their diversity and populations in sediments of agricultural irrigation systems. This study investigated the oomycete communities including Phytophthora (Ph.), Phytopythium (Pp.) and Pythium (Py.) species in sediments at various depths of an agricultural run‐off sedimentation reservoir in Virginia during the winters of 2011 and 2015. The recovery of these oomycetes declined sharply with sediment depth from surface to 0·8 m and none was recovered from sediments deeper than 1·4 m. A total of 47 oomycete species were recovered, with all four species of Phytophthora and five of Phytopythium exclusively from the surface. Recovered species included many important plant pathogens such as Ph. nicotianae, Ph. pini, Ph. tropicalis, Pp.  vexans, Py. irregulare and Py. monospermum. These results underline the importance of decontaminating sediments excavated from top layers (0–1·4 m) of the sedimentation reservoir before reuse in plant production.  相似文献   

6.
Emergent plant pathogens represent one of the most significant threats to biodiversity, and exotic Phytophthora species have recently emerged as a serious problem in restored habitats in California and in nurseries producing the plant stock. It is hypothesized that ‘best management practices’ prescribed through a Phytophthora Prevention Programme (PPP) could be useful in minimizing phytophthora disease incidence. To understand the magnitude of the problem and the efficacy of the PPP, plants in restoration nurseries were evaluated for (i) the Phytophthora species assemblage present in the absence of the PPP, and (ii) the effectiveness of the PPP to reduce them. Sampling included 203 plants grown in the absence of the PPP, and 294 grown implementing the PPP. Only samples collected in the absence of the PPP were Phytophthora-positive, and cumulatively yielded 55 isolates from 13 different taxa, including 1 putative interspecific hybrid genotype. There were 21 novel Phytophthora–plant species combinations. The most common Phytophthora species was P. cactorum. Four plant species had the highest disease incidence, namely: Diplacus aurantiacus (50 ± 11.2%), Heteromeles arbutifolia (33 ± 9.6%), Ceanothus thyrsiflorus (30 ± 8.4%), and Frangula californica (30 ± 8.4%). Disease incidence in nurseries after the implementation of the PPP dropped to zero (< 0.001), and was unaffected to any significant degree by nursery differences, or plant species tested. This study identifies a large number of novel ‘plant species × Phytophthora species’ combinations, and provides for the first time strong evidence that the PPP significantly reduced Phytophthora in plant stock for habitat restoration.  相似文献   

7.
A severe dieback of Acer pseudoplatanus trees was noticed in planted forest stands in northern Italy in 2010. Affected trees showed collar rot and aerial bleeding cankers along the stems, leading to crown dieback and eventually death. An unknown Phytophthora species was consistently isolated from necrotic bark and xylem tissue and from rhizosphere soil. Based on its unique combination of morphological and physiological characters and phylogenetic analysis, this new taxon is here described as Phytophthora acerina sp. nov. Phylogenetic analysis of ITS, cox1 and β‐tubulin gene regions demonstrated that P. acerina is unique and forms a separate cluster within the ‘P. citricola complex’, closely related to P. plurivora. Phytophthora acerina is homothallic with smooth‐walled oogonia, thick‐walled, mostly aplerotic oospores with a high abortion rate, paragynous antheridia, and persistent, morphologically variable semipapillate sporangia. Four to 5‐week‐old cultures produced globose to subglobose, appressoria‐like and coralloid hyphal swellings and characteristic stromata‐like hyphal aggregations. Optimum and maximum temperatures for growth are 25°C and 32°C, respectively. Genetic uniformity of all 15 studied isolates and the apparent absence of this species in the extensive surveys of nurseries, forests and seminatural ecosystems conducted in the previous two decades across Europe indicate a recent clonal introduction to northern Italy. Under‐bark inoculation tests demonstrated high aggressiveness of P. acerina to A. pseudoplatanus indicating that this pathogen might be a serious risk to maple plantations and forests in Europe.  相似文献   

8.
Invasive oomycete pathogens have been causing significant damage to native ecosystems worldwide for over a century. A recent well‐known example is Phytophthora ramorum, the causal agent of sudden oak death, which emerged in the 1990s in Europe and North America. In Europe, this pathogen is mainly restricted to woody ornamentals in nurseries and public greens, while severe outbreaks in the wild have only been reported in the UK. This study presents the results of the P. ramorum survey conducted in Swiss nurseries between 2003 and 2011. In all 120 nurseries subjected to the plant passport system, the main P. ramorum hosts were visually checked for above ground infections. Phytophthora species were isolated from tissue showing symptoms and identified on the basis of the morphological features of the cultures and sequencing of the ribosomal ITS region. Phytophthora was detected on 125 plants (66 Viburnum, 58 Rhododendron and one Pieris). Phytophthora ramorum was the most frequent species (59·2% of the plants), followed by P. plurivora, P. cactorum, P. citrophthora, P. cinnamomi, P. cactorum/P. hedraiandra, P. multivora and P. taxon PgChlamydo. The highest incidence of P. ramorum was observed on Viburnum × bodnantense. Microsatellite genotyping showed that the Swiss P. ramorum population is highly clonal and consists of seven genotypes (five previously reported in Europe, two new), all belonging to the European EU1 clonal lineage. It can therefore be assumed that P. ramorum entered Switzerland through nursery trade. Despite sanitation measures, repeated P. ramorum infections have been recorded in seven nurseries, suggesting either reintroduction or unsuccessful eradication efforts.  相似文献   

9.
In Australia, Phytophthora cinnamomi is the only species reported as the causal agent of stem canker and root rot in macadamia. In other countries, five Phytophthora species have been reported to cause diseases in macadamia, which led us to question if more than one Phytophthora species is responsible for poor tree health in macadamia orchards in Australia. To investigate this, samples were collected from the rhizosphere, stem, and root tissues of trees with and without symptoms, nurseries, and water sources from 70 commercial macadamia orchards in Australia. Phytophthora isolates were identified based on morphological characteristics and DNA sequencing. P. cinnamomi was the most predominant and widely distributed species, and was obtained from the different types of samples including symptomless root tissues. In addition to P. cinnamomi, only P. multivora was isolated from diseased tissue (stem canker) samples. Six other Phytophthora species were obtained from the rhizosphere samples: P. pseudocryptogea, P. citrophthora, P. nicotianae, P. gondwanense, P. sojae, and a new Phytophthora taxon. Only P. cinnamomi was obtained from macadamia nursery samples, while five Phytophthora species were obtained from water sources. Of the heterothallic Phytophthora species, mating type A2 isolates were dominant in P. cinnamomi isolates, whereas only mating type A1 isolates were obtained for P. nicotianae, P. pseudocryptogea, and P. citrophthora. Pathogenicity assays revealed that P. cinnamomi and P. multivora caused significantly larger stem and leaf lesions than P. citrophthora, P. nicotianae, and P. pseudocryptogea. Phytophthora sp. and P. sojae were nonpathogenic towards leaves and stems.  相似文献   

10.
A new species of Phytophthora, previously referred to as taxon Dre II, is named Phytophthora hydropathica. It is heterothallic, but all isolates recovered to date are of the A1 compatibility type. Plerotic oospores are produced. Its sporangia are usually obpyriform and are nonpapillate and noncaducous. Isolates of P. hydropathica had nearly identical single‐strand conformation polymorphism (SSCP)‐based DNA fingerprints that are distinct from those of all existing species. Their closest relatives are P. parsiana and P. irrigata. This new species is able to grow at relatively high temperatures, with an optimum of 30°C and a maximum of 40°C. It was frequently isolated from irrigation water during warm summers. This species caused leaf necrosis and shoot blight of Rhododendron catawbiense and collar rot of Kalmia latifolia at two nurseries where irrigation reservoirs yielded P. hydropathica. Its potential impact on other horticultural crops is discussed.  相似文献   

11.
The evergreen holm oaks (Quercus ilex subsp. ilex and Q. ilex subsp. ballota) are the most representative tree species in the Iberian peninsula and the main tree species in oak‐rangeland ecosystems (dehesas). Oak decline in western, central and southern parts of Spain has been associated with root rot caused by Phytophthora cinnamomi for decades. However, Phytophthora species such as P.  quercina and P. psychrophila have recently been found associated with Quercus decline in eastern Spain where calcareous soils are predominant. Soil and root samples from two Quercus forests presenting decline symptoms in two different geographical areas in eastern Spain (Carrascar de la Font Roja and Vallivana) were analysed by amplicon pyrosequencing. Metabarcoding analysis showed Phytophthora species diversity, and revealed that an uncultured Phytophthora taxon, named provisionally Phytophthora taxon ballota, was the predominant species in both areas. In addition, a real‐time PCR assay, based on the pyrosequencing results, was developed for the detection of this uncultured Phytophthora taxon, and also for the detection of P. quercina. TaqMan assays were tested on soil and root samples, and on Phytophthora pure cultures. The new assays showed high specificity and were consistent with metabarcoding results. A new real‐time PCR protocol is proposed to evaluate the implication of different Phytophthora spp. in oak decline in eastern Spain.  相似文献   

12.
The polymerase chain reaction (PCR) was used for the specific detection of Phytophthora nicotianae and P. citrophthora in citrus roots and soils. Primers were based on the nucleotide sequences of the internal transcribed space regions (ITS1 and ITS2) of 16 different species of Phytophthora. Two primer pairs, Pn5B–Pn6 and Pc2B–Pc7, were designed specifically to amplify DNA from P. nicotianae and P. citrophthora, respectively. Another primer pair (Ph2–ITS4) was designed to amplify DNA from many Phytophthora species. All primer pairs were assessed for specificity and absence of cross-reactivity, using DNA from 118 isolates of Phytophthora and 82 of other common soil fungi. In conventional PCR, with a 10-fold dilution series of template DNA, the limit of detection was of 1pgl–1 DNA for all the primer pairs (Ph2–ITS4, Pn5B–Pn6, and Pc2B–Pc7). In nested PCR, with primers Ph2–ITS4 in the first round, the detection limit was of 1fgl–1 for both the primer sets (Pn5B–Pn6 and Pc2B–Pc7). Simple, inexpensive and rapid procedures for direct extraction of DNA from soil and roots were developed. The method yielded DNA of a purity and quality suitable for PCR within 2–3h. DNA extracted from soil and roots was amplified by nested PCR utilizing primers Ph2–ITS4 in the first round. In the second round the primer pairs Pn5B–Pn6 and Pc2B–Pc7 were utilized to detect P. nicotianae and P. citrophthora, respectively. Comparison between the molecular method and pathogen isolation by means of a selective medium did not show any significant differences in sensitivity.  相似文献   

13.
The pathogenicity of some Phytophthora species recently described from Western Australia, together with P. cinnamomi as a control, was tested against seven Western Australian native plant species in the glasshouse. Host species were Banksia grandis, B. littoralis, B. occidentalis, Casuarina obesa, Corymbia calophylla, Eucalyptus marginata and Lambertia inermis. Twenty‐two Phytophthora species were grown on a vermiculite, millet seed and V8 substrate and used as soil inoculum when the plant hosts were approximately 3 months old. Pathogenicity was assessed after 6 weeks and plants were scored for death, root damage, and percentage reduction of shoot growth compared with control plants. The pathogenicity of P. cinnamomi was confirmed. Phytophthora niederhauserii was shown to be similar to P. cinnamomi in pathogenicity and of concern ecologically. Other species that killed one or more hosts were P. boodjera, P. constricta, P. elongata, P. moyootj and P. rosacearum, while P. condilina, P. gibbosa, P. gregata, P. litoralis and P. ‘personii’ caused significant reduction to shoot and/or root growth, but did not kill plants. Host species susceptible to the highest number of Phytophthora species were B. grandis, B. littoralis, B. occidentalis and E. marginata. No Phytophthora species tested killed C. calophylla.  相似文献   

14.
Two novel homothallic species of Phytophthora causing dieback of Kwongan vegetation in south‐west Western Australia are described here as Phytophthora arenaria sp. nov. and Phytophthora constricta sp. nov. DNA sequencing of the ITS rDNA and cox1 gene confirmed that P. arenaria and P. constricta are unique species residing in ITS clades 4 and 9, respectively. Phytophthora arenaria has been isolated from vegetation occurring on the northern sandplains which are warmer and drier than the southern sandplains from which P. constricta has been predominantly isolated, and both species appear morphologically and physiologically well adapted to the ecosystems in which they occur. Both species have been associated mainly with dead and dying Banksia species and the pathogenicity of both P. arenaria and P. constricta to Banksia attenuata was confirmed in this study. The combination of unique DNA sequences, including considerable variation in cox1 sequence data, thick oospore walls and physiological characteristics that appear to be adaptations favouring survival in the harsh Kwongan ecosystem suggest that these species may be endemic to Western Australia.  相似文献   

15.
A new Phytophthora species was detected (i) in the USA, infecting foliage of Kalmia latifolia, (ii) in substrate underneath Pieris, and (iii) in Germany in soil samples underneath Aesculus hippocastanum showing disease symptoms. The new species Phytophthora obscura sp. nov. is formally named based on phylogenetic analysis, host range, Koch’s postulates and morphology. Phytophthora obscura is homothallic with paragynous antheridia and semipapillate sporangia. It is genetically closely related to P. syringae and P. austrocedrae and together these three species define a new Phytophthora subclade 8d, with significant support for all genetic loci analysed including seven nuclear genes and the mitochondrial gene coxII. The morphological and ecological characteristics are very similar to P. syringae, and it is likely that P. obscura was not described earlier because it was identified as P. syringae. Artificial inoculations indicated that horse chestnut, kalmia, pieris and rhododendron might be hosts, and Koch’s postulates were confirmed for kalmia from which it was isolated. This pathogen was named after its elusive nature since it has to date rarely been detected in the US and Germany.  相似文献   

16.
A homothallic Phytophthora species was found to be consistently associated with a rot of mature fruits of two local cultivars of olive (Olea europaea) in Calabria, southern Italy. The phylogenetic analysis of sequences of the ITS1‐5.8S‐ITS2 region and cox1 gene enabled its identification as a new species of clade 2, with a basal position compared to previously described subclades. The new species is described formally with the epithet Phytophthora oleae, referring to the natural matrix from which it was isolated. A unique combination of molecular and morphological characters clearly separates P. oleae from other already described Phytophthora species. This new species produced semipapillate, occasionally bipapillate, persistent sporangia on simple sympodially branching sporangiophores as well as globose and smooth‐walled oogonia, paragynous antheridia and spherical, plerotic oospores. The pathogenicity of P. oleae was confirmed in inoculation trials on fruits of three olive cultivars, including the two local cultivars from which the pathogen had been isolated.  相似文献   

17.
Pseudoperonospora cubensis is an oomycete pathogen causing downy mildew disease on a variety of Cucurbitaceae, and has recently re‐emerged as a destructive disease on crops in this family, mainly on cucumber and squash. Multilocus sequence analysis (MLSA) of four mitochondrial and two nuclear DNA regions was used to detect changes in the genetic structure of P. cubensis populations occurring in the Czech Republic that might be associated with recently reported shifts in virulence. The analysed sample set contains 67 P. cubensis isolates collected from 1995 to 2012 in the Czech Republic and some other European countries. Sequence analyses revealed differences and changes in the genetic backgrounds of P. cubensis isolates. While all isolates sampled before 2009 exhibited the genotype of the subspecies of Clade II and were collected from cucumber, all samples collected from other hosts belonged to Clade I (P. cubensis sensu stricto) or were sampled from 2009 onwards. In addition, 67·16% of all post‐2009 isolates from Clade II had two heterozygous positions in their nrITS sequence, which suggests sexual reproduction and/or a mutational origin. Thus, the results indicate that, apart from the rise in prevalence of Clade I, the change in the genetic structure of P. cubensis populations may be linked with a hybridization or, less likely, a mutation event that rendered strains able to infect a broader spectrum of host species.  相似文献   

18.
An unknown Phytophthora species was discovered in the central Peruvian Andes on blighted foliage of the native South American plant species Urera lacineata. Urera is a genus of native flowering shrubs in the nettle family Urticaceae. This new taxon Phytophthora urerae sp. nov. is herewith formally described based on extensive morphological analysis, phylogenetic analysis of nuclear and mitochondrial loci, and AFLP analysis. Phytophthora urerae sp. nov. is a close relative of the Irish famine pathogen, Phytophthora infestans, and only the third clade 1c taxon described from South America to date. In contrast to the clade 1c taxon Phytophthora andina, first described in South America as a hybrid, P. urerae does not appear to be a hybrid based on cloning and sequencing nuclear loci. Findings of new species in South America may provide novel insights into the origin and evolutionary history of clade 1c Phytophthora species.  相似文献   

19.
Phytophthora niederhauserii, P. pisi, P. sojae and P. vignae are closely related species that are pathogenic to various legume plants. While P. sojae and P. vignae are reported to specifically infect soybean and cowpea, respectively, P. pisi is reported to attack pea and faba bean. Phytophthora niederhauserii is considered to have a broad host range. Zoospores of some Phytophthora species are chemotactically attracted to the isoflavones that are secreted by their host plants. The focus of the current study was to determine the chemotaxic behaviour of zoospores from closely related legume‐root infecting Phytophthora species and to investigate the correlation, if any, to host preference as determined by greenhouse pathogenicity tests. The results showed that P. sojae and P. vignae were attracted to the non‐soybean isoflavone prunetin as well as to the soybean isoflavones genistein and daidzein, which is in contrast with their host specificity on soybean and cowpea, respectively. On the other hand, P. pisi and P. niederhauserii were only attracted to prunetin, previously reported to be produced by pea, but not to the isoflavones associated with the non‐host soybean. The lack of responsiveness to genistein and daidzein in P. pisi may represent a recent adaptation to the host specialization towards pea. However, the affinity of P. niederhauserii to prunetin shows that this trait can also be present in taxa not specifically associated with legume hosts.  相似文献   

20.
Isolates of an unknown Phytophthora species from the ‘Phytophthora citricola complex’ have been found associated with mortality of Aucuba japonica in the UK. Based on morphological characteristics, growth–temperature relationships, sequences of five DNA regions and pathogenicity assays, the proposed novel species is described as Phytophthora pachypleura. Being homothallic with paragynous antheridia and semipapillate sporangia, P. pachypleura resembles other species in the ‘P. citricola complex’ but can be discriminated by its distinctively thick‐walled oospores with an oospore wall index of 0·71. In the phylogenetic analysis based on three nuclear (ITS, β‐tubulin, EF‐1α) and two mitochondrial (cox1, nadh1) DNA regions, P. pachypleura formed a distinct clade within the ‘P. citricola complex’ with P. citricola s. str., P. citricola E and P. acerina as its closest relatives. Phytophthora pachypleura is more aggressive to A. japonica than P. plurivora and P. multivora and has the potential to affect other ornamental species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号