首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
A central eyeball position is often required during sedation or anaesthesia to facilitate examination of the eye. However, use of neuromuscular blockade to produce a central eye position may result in depressed ventilation. This study evaluated the eyeball position, muscle relaxation and changes in ventilation during general anaesthesia after the IV administration of 0.1 mg kg?1 rocuronium. With client consent, 12 dogs of different breeds, body mass 27.2 ± 11.8 kg, aged 5.6 ± 2.8 years (mean ± SD) were anaesthetized for ocular examination. Pre‐anaesthetic medication was 0.01 mg kg?1 medetomidine and 0.2 mg kg?1 butorphanol IV. Anaesthesia was induced with propofol to effect and maintained with 10 mg kg?1 hour?1 propofol by infusion. The dogs were placed in left lateral recumbency, their trachea intubated and connected to a circle breathing system (Fi O2 = 1.0). All dogs breathed spontaneously. The superficial peroneal nerve of the right hind leg was stimulated every 15 seconds with a train‐of‐four (TOF) stimulation pattern and neuromuscular function was assessed with an acceleromyograph (TOF‐Guard). Adequacy of ventilation was measured with the Ventrak 1550. After 10 minutes of anaesthesia to allow stabilisation of baseline values, 0.1 mg kg?1 rocuronium was administered IV. Minute volume (Vm ), tidal volume (Vt ), respiratory rate (RR), Pe ′CO2 and maximal depression of T1 and TOF ratio were measured. Data were analysed using a paired t‐test. The changes in the eyeball position were recorded. A total of 100 ± 33 seconds after the injection of rocuronium, T1 was maximally depressed to 62 ± 21% and the TOF ratio to 42 ± 18% of baseline values. Both variables returned to baseline after 366 ± 132 seconds (T1) and 478 ± 111 seconds (TOF). There was no significant reduction in Vm (2.32 ± 1.1 L minute?1), Vt (124.1 ± 69.3 mL) and RR (10 ± 3.8 breaths minute?1) and no increase in Pe ′CO2 (6.5 ± 2.1 kPa (48.8 ± 16.1 mm Hg)) throughout the procedure. The eyeball rotated to a central position 35 ± 7 seconds after rocuronium IV and remained there for a minimum of 20 ± 7 minutes in all dogs. We conclude that rocuronium at a dose of 0.1 mg kg?1 can be administered to dogs IV with minimal changes in ventilatory variables. The eyeball is fixed in a central position for at least 20 minutes, which greatly facilitates clinical examination.  相似文献   

2.

Objective

To determine the dose of cis-atracurium needed to produce a moderate neuromuscular blockade (NMB) in pigs.

Study design

Prospective experimental study.

Animals

Seven pigs [five females and two males; median (range) body weight: 47 (36–64) kg].

Methods

Pigs were premedicated with intramuscular midazolam (0.3 mg kg?1) and ketamine (7 mg kg?1). Anaesthesia was induced with intravenous (IV) propofol 3 (1–4) mg kg?1 and maintained with isoflurane in oxygen. Based on a preliminary study, the subjects were administered 0.3 mg kg?1 cis-atracurium followed by 0.48 mg kg?1 hour?1 constant rate infusion (CRI) IV. A moderate NMB was defined as a train-of-four (TOF) count of ≤2 by acceleromyography. When the TOF count was >2, 0.1 mg kg?1 cis-atracurium was administered and the CRI was increased. The cis-atracurium CRI was decreased when the TOF count was under 2 for more than 15 minutes. The total dose of cis-atracurium required to maintain a moderate NMB was calculated as the total amount of cis-atracurium used (both CRI and supplementary boluses) divided by the administration time.

Results

The cis-atracurium CRI lasted for 87 (76–151) minutes. To induce and maintain a moderate neuromuscular blockade, the initial dose of cis-atracurium was 0.3 (0.3– 0.5) mg kg?1 and the CRI was 0.71 (0.37–0.98) mg kg?1 hour?1.

Conclusions and clinical relevance

The doses described in our study may help researchers obtain a moderate NMB using cis-atracurium in pigs.  相似文献   

3.
Objective The aim of this study was to characterize the onset and duration of action of the aminosteroid muscle relaxant rocuronium in dogs under clinical conditions. Study design Prospective single dose trial. Animals Twenty‐three dogs aged between 6 months and 12 years, weighing between 5.5 and 61.5 kg admitted to the University of Liverpool Small Animal Hospital between January and March 2000, and undergoing elective surgical procedures under general anaesthesia. Materials and methods Following induction of general anaesthesia, neuromuscular function was evaluated using train‐of‐four (TOF) stimulation. An initial dose of 0.4 mg kg?1 rocuronium was administered intravenously (IV) and neuromuscular blockade was monitored by visually assessing the number of responses (twitches) to TOF stimulation (train‐of‐four count: TOFC). Incremental doses of 0.16 mg kg?1 rocuronium were administered as indicated, when at least two twitches of the TOFC had returned. Results Rocuronium (0.4 mg kg?1) abolished all responses to TOF stimulation in all dogs. The mean time to onset of neuromuscular blockade (complete abolition of all twitches) was 98 ± 52 seconds. Neuromuscular blockade (absence of all twitches to return of all four) lasted 32.3 ± 8.2 minutes. Incremental doses of 0.16 mg kg?1 had a mean duration of action of 20.8 ± 4.9 minutes and up to seven increments were shown to be noncumulative. The effects of rocuronium were readily antagonized with neostigmine and atropine. Small transient increases in arterial blood pressure, which occurred in three dogs after the administration of rocuronium, were the only cardiovascular side‐effects observed. Conclusions Rocuronium is an effective nondepolarizing neuromuscular blocking agent in the dog, with a rapid onset of neuromuscular block after intravenous administration and an intermediate duration of action. Clinical relevance Rocuronium produced a neuromuscular block with similar characteristics to those obtained with vecuronium, thus apparently offering little advantage over vecuronium. However, its availability in aqueous solution and a longer shelf‐life increases convenience.  相似文献   

4.
ObjectiveTo evaluate and compare the cardiopulmonary effects of induction of anesthesia with isoflurane (Iso), ketamine–diazepam (KD), or propofol–diazepam (PD) in hypovolemic dogs.Study designProspective randomized cross–over trial.AnimalsSix healthy intact, mixed breed, female dogs weighing 20.7 ± 4.2 kg and aged 22 ± 2 months.MethodsDogs had 30 mL kg?1 of blood removed at a rate of 1.5 mL kg?1 minute?1 under isoflurane anesthesia. Following a 30–minute recovery period, anesthesia was reinduced. Dogs were assigned to one of three treatments: isoflurane via facemask using 0.5% incremental increases in the delivered concentration every 30 seconds, 1.25 mg kg?1 ketamine and 0.0625 mg kg?1 diazepam intravenously (IV) with doses repeated every 30 seconds as required, and 2 mg kg?1 propofol and 0.2 mg kg?1 diazepam IV followed by 1 mg kg?1 propofol increments IV every 30 seconds as required. Following endotracheal intubation all dogs received 1.7% end–tidal isoflurane in oxygen. Cardiopulmonary variables were recorded at baseline (before induction) and at 5 or 10 minute intervals following endotracheal intubation.ResultsInduction time was longer in Iso (4.98 ± 0.47 minutes) compared to KD (3.10 ± 0.47 minutes) or PD (3.22 ± 0.45 minutes). To produce anesthesia, KD received 4.9 ± 2.3 mg kg?1 ketamine and 0.24 ± 0.1 mg kg?1 diazepam, while PD received 2.2 ± 0.4 mg kg?1 propofol and 0.2 mg kg?1 diazepam. End–tidal isoflurane concentration immediately following intubation was 1.7 ± 0.4% in Iso. Arterial blood pressure and heart rate were significantly higher in KD and PD compared to Iso and in KD compared to PD. Arterial carbon dioxide partial pressure was significantly higher in PD compared to KD and Iso immediately after induction.Conclusions and clinical relevanceIn hypovolemic dogs, KD or PD, as used in this study to induce anesthesia, resulted in less hemodynamic depression compared to isoflurane.  相似文献   

5.
Objective To examine the effect of dose and route of administration on the sedative‐hypnotic effects of midazolam. Design Prospective randomized controlled study Animals Six indigenous, African bred goats. Methods Pilot studies indicated that the optimum dose of midazolam for producing sedation was 0.6 mg kg?1 for intramuscular (IM) injection, while the optimum intravenous (IV) doses causing hypnosis without, and with loss of palpebral reflexes were 0.6 mg kg?1 and 1.2 mg kg?1, respectively. These doses and routes of administration were compared with a saline placebo in a randomized block design in the main experiment, and the sedative‐hypnotic effects evaluated according to pre‐determined scales. Results Intramuscular midazolam produced sedation with or without sternal recumbency in all animals with the peak effect occurring 20 minutes after administration. The scores for IM sedation with midazolam were significantly different (p < 0.05) from placebo. Intravenous midazolam at 0.6 mg kg?1 resulted in hypnosis, and at 1.2 mg kg?1 increased reflex suppression was observed. The maximum scores for hypnosis at both doses were obtained 5 minutes after IV injection. The mean (± SD) duration of lateral recumbency was 10.8 (± 3.8) minutes after IV midazolam (0.6 mg kg?1) compared to 20 (± 5.2) minutes after midazolam at 1.2 mg kg?1. Compared to baseline, the heart rate increased significantly (p < 0.05) after high dose IV midazolam. Conclusion Intramuscular midazolam (0.6 mg kg?1) produced maximum sedation 20 minutes after injection. Intravenous injection produced maximum hypnosis within 5 minutes. Increasing the IV dose from 0.6 to 1.2 mg kg?1 resulted in increased reflex suppression and duration of hypnosis. Clinical relevance For a profound effect with rapid onset midazolam should be given IV in doses between 0.6 and 1.2 mg kg?1.  相似文献   

6.
Objective To characterize responses to different doses of propofol in horses pre‐medicated with xylazine. Animals Six adult horses (five females and one male). Methods Each horse was anaesthetized four times with either ketamine or propofol in random order at 1‐week intervals. Horses were pre‐medicated with xylazine (1.1 mg kg?1 IV over a minute), and 5 minutes later anaesthesia was induced with either ketamine (2.2 mg kg?1 IV) or propofol (1, 2 and 4 mg kg?1 IV; low, medium and high doses, respectively). Data were collected continuously (electrocardiogram) or after xylazine administration and at 5, 10 and 15 minutes after anaesthetic induction (arterial pressure, respiratory rate, pH, PaO2, PaCO2 and O2 saturation). Anaesthetic induction and recovery were qualitatively and quantitatively assessed. Results Differences in the quality of anaesthesia were observed; the low dose of propofol resulted in a poorer anaesthetic induction that was insufficient to allow intubation, whereas the high dose produced an excellent quality of induction, free of excitement. Recorded anaesthesia times were similar between propofol at 2 mg kg?1 and ketamine with prolonged and shorter recovery times after the high and low dose of propofol, respectively (p < 0.05; ketamine, 38 ± 7 minutes; propofol 1 mg kg?1, 29 ± 4 minutes; propofol 2 mg kg?1, 37 ± 5 minutes; propofol 4 mg kg?1, 50 ± 7 minutes). Times to regain sternal and standing position were longest with the highest dose of propofol (32 ± 5 and 39 ± 7 minutes, respectively). Both ketamine and propofol reversed bradycardia, sinoatrial, and atrioventricular blocks produced by xylazine. There were no significant alterations in blood pressure but respiratory rate, and PaO2 and O2 saturation were significantly decreased in all groups (p < 0.05). Conclusion The anaesthetic quality produced by the three propofol doses varied; the most desirable effects, which were comparable to those of ketamine, were produced by 2 mg kg?1 propofol.  相似文献   

7.
ObjectiveTo report the cardiovascular variables, anaesthetic effects and recovery quality of an anaesthesia technique using variable rate infusion propofol combined with constant rate infusion fentanyl in dogs undergoing elective surgery.Study designProspective clinical trial.AnimalsA total of 27 dogs, aged 2.7 ± 2.65 years and weighing 24 ± 11 kg.MethodsFollowing intramuscular acepromazine (0.03 or 0.05 mg kg?1) and subcutaneous carprofen (4 mg kg?1) pre-medication, anaesthesia was induced with propofol (4.0 ± 0.5 mg kg?1) intravenously (IV). All dogs were ventilated with 100% oxygen to maintain normocapnia. Propofol was infused at 0.4 mg kg?1 minute?1 for 20 minutes and then at 0.3 mg kg?1minute?1. If mean arterial blood pressure (MAP) decreased below 70 mmHg, propofol infusion was reduced by 0.1 mg kg?1 minute?1. Five minutes after induction of anaesthesia, fentanyl was administered (2 μg kg?1) IV followed by the infusion at 0.5 μg kg?1 minute?1 and atropine (40 μg kg?1) IV. Heart rate, MAP, respiratory rate, tidal volume, end-tidal carbon dioxide, presence of reflexes, movements and recovery times and quality were recorded.ResultsMean anaesthetic duration was 131 ± 38.5 minutes. Mean heart rate peaked 10 minutes after atropine injection and gradually declined, reaching pre-anaesthetic values at 55 minutes. MAP easily was maintained above 70 mmHg. Mean times to return of spontaneous ventilation, extubation, head lift and sternal recumbency were 21 ± 10.1, 33 ± 14.6, 43 ± 19.7 and 65 ± 23.4 minutes, respectively. Recovery was smooth and quiet. The time to sternal recumbency was significantly correlated with the duration of anaesthesia and total dose of propofol; time to extubation was correlated to total dose of propofol.Conclusion and clinical relevancePropofol and fentanyl infusions provided stable cardiovascular function and satisfactory conditions for surgery. Some modifications of infusion rates are required to improve the long-recovery times.  相似文献   

8.
ObjectiveTo determine in dogs the effects of medetomidine and butorphanol, alone and in combination, on the induction dose of alfaxalone and to describe the induction and intubation conditions.Study designProspective, randomized, blinded clinical trial.AnimalsEighty-five client-owned dogs (ASA 1 or 2).MethodsSubjects were block randomized to treatment group according to temperament. The treatment groups were: medetomidine 4 μg kg?1 (M), butorphanol 0.1 mg kg?1 (B), or a combination of both (MB), all administered intramuscularly. After 30 minutes, a sedation score was assigned, and alfaxalone 0.5 mg kg?1 was administered intravenously over 60 seconds by an observer who was unaware of treatment group. Tracheal intubation conditions were assessed and, if tracheal intubation was not possible after 20 seconds, further boluses of 0.2 mg kg?1 were given every 20 seconds until intubation was achieved. Induction dose and adverse events (sneezing, twitching, paddling, excitement, apnoea and cyanosis) were recorded; induction quality and intubation conditions were scored and recorded.ResultsThe mean dose of alfaxalone required for induction was similar for groups M and B: 1.2 ± 0.4 mg kg?1. The mean dose requirement for group MB (0.8 ± 0.3 mg kg?1) was lower than groups M and B (p < 0.0001). Induction dose was not influenced by temperament or level of sedation. Induction and intubation scores did not differ between treatment groups. Adverse events were noted in 16 dogs; there was no association with treatment group, temperament or level of sedation.Conclusions and clinical relevanceMedetomidine and butorphanol administered in combination reduce the anaesthetic induction dose of alfaxalone compared to either agent alone. This difference should be taken into account when using this combination of drugs in a clinical setting.  相似文献   

9.
ObjectiveTo determine the optimal dose, serum concentrations and analgesic effects of intravenous (IV) tramadol in the horse.Study designTwo-phase blinded, randomized, prospective crossover trial.AnimalsSeven horses (median age 22.5 years and mean weight 565 kg).MethodsHorses were treated every 20 minutes with incremental doses of tramadol HCl (0.1–1.6 mg kg?1) or with saline. Heart rate, respiratory rate, step frequency, head height, and sweating, trembling, borborygmus and head nodding scores were recorded before and up to 6 hours after treatment. In a second study, hoof withdrawal and skin twitch reflex latencies (HWRL and STRL) to a thermal stimulus were determined 5 and 30 minutes, and 1, 2, 4 and 6 hours after bolus IV tramadol (2.0 mg kg?1) or vehicle. Blood samples were taken to determine pharmacokinetics.ResultsCompared to saline, tramadol caused no change in heart rate, step frequency or sweating score. Respiratory rate, head height, and head nodding and trembling scores were transiently but significantly increased and borborygmus score was decreased by high doses of tramadol. Following cumulative IV administration of 3.1 mg kg?1 and bolus IV administration of 2 mg kg?1, the elimination half-life of tramadol was 1.91 ± 0.33 and 2.1 ± 0.9 hours, respectively. Baseline HWRL and STRL were 4.16 ± 1.0 and 3.06 ± 0.99 seconds, respectively, and were not significantly prolonged by tramadol.Conclusion and clinical relevanceIV tramadol at cumulative doses of up to 3.1 mg kg?1 produced minimal transient side effects but 2.0 mg kg?1 did not provide analgesia, as determined by response to a thermal nociceptive stimulus.  相似文献   

10.
Objective This clinical trial attempted to evaluate the potency, onset and duration of action of cis‐atracurium in dogs. Animals Twenty dogs aged between 1 and 15 years and weighing between 15 and 85 kg admitted for a variety of elective, surgical procedures under general anaesthesia. Materials and methods Following induction of general anaesthesia, the effects of an intravenous loading dose of cis‐atracurium (0.1 mg kg?1) were evaluated by counting visual responses to train of four (TOF) nerve stimulation. Incremental doses of 0.02 or 0.04 mg kg?1 cis‐atracurium were administered when the first of four responses to TOF stimulation was present. Results An initial dose of 0.1 mg kg?1 eliminated all four TOF responses in 18 out of 20 dogs. The same dose, repeated 10 minutes later in two animals in which blockade was incomplete, abolished all responses. In dogs receiving 0.1 mg kg?1 cis‐atracurium neuromuscular blockade lasted 27.2 ± 9.3 minutes. Up to six incremental doses were given in individual animals; incremental doses appeared to be noncumulative. No untoward side‐effects were observed with the use of this drug. There was considerable variation between individuals in response to cis‐atracurium. Conclusions Cis‐atracurium is an effective neuromuscular blocking agent in the dog, although its potency varies. Clinical Relevance Further studies are required to determine whether observed differences in potency are related to age, breed or sex. Cis‐atracurium may prove useful in dogs with impaired renal and or hepatic function.  相似文献   

11.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

12.
ObjectiveTo evaluate the effects of medetomidine, midazolam and ketamine (MMK) in captive gorillas after premedication with oral zuclopenthixol.Study designCase series.AnimalsSix gorillas, two males and four females, aged 9–52 years and weighing 63–155 kg.MethodsThe gorillas were given zuclopenthixol dihydrochloride 0.2 ± 0.05 mg kg?1 per os twice daily for 3 days for premedication. On the day of anaesthesia the dose of zuclopenthixol was increased to 0.27 mg kg?1 and given once early in the morning. Anaesthesia was induced with medetomidine 0.04 ± 0.004 mg kg?1, midazolam 0.048 ± 0.003 mg kg?1 and ketamine 4.9 ± 0.4 mg kg?1 intramuscularly (IM). Upon recumbency, the trachea was intubated and anaesthesia was maintained on 1–2% isoflurane in oxygen. Physiological parameters were monitored every 10 minutes and arterial blood gas analysis was performed once 30–50 minutes after initial darting. At the end of the procedure, 42–115 minutes after initial darting, immobilisation was antagonized with atipamezole 0.21 ± 0.03 mg kg?1 and sarmazenil 5 ± 0.4 μg kg?1 IM.ResultsRecumbency was reached within 10 minutes in five out of six animals. One animal required two additional darts before intubation was feasible. Heart rate ranged from 60 to 85 beats minute?1, respiratory rate from 17 to 46 breaths minute?1 and temperature from 36.9 to 38.3 °C. No spontaneous recoveries were observed and anaesthetic level was stable. Blood gas analyses revealed mild respiratory acidosis, and mean PaO2 was 24.87 ± 17.16 kPa (187 ± 129 mmHg) with all values being above 13.4 kPa (101 mmHg). Recovery was smooth and gorillas were sitting within 25 minutes.Conclusion and clinical relevanceThe drug combination proved to be effective in anaesthetizing captive gorillas of various ages and both sexes, with minimal cardio-respiratory changes.  相似文献   

13.
ObjectiveTo investigate the pharmacokinetics of carprofen after a single intravenous (IV) dose and multiple oral doses administered to pigs undergoing electroporation of the pancreas.Study designProspective experimental study.AnimalsA group of eight female pigs weighing 31.74 ± 2.24 kg (mean ± standard deviation).MethodsCarprofen 4 mg kg?1 was administered IV after placement of a central venous catheter during general anaesthesia with isoflurane. Blood samples were collected 30 seconds before and 5, 10, 20, 30 and 60 minutes and 2, 4, 6, 8, 12 and 24 hours after carprofen administration. Subsequently, the same dose of carprofen was administered orally, daily, for 6 consecutive days and blood collected at 36, 48, 60, 72, 96, 120, 144 and 168 hours after initial carprofen administration. Plasma was analysed using liquid chromatography with mass spectrometry. Standard pharmacokinetic parameters were calculated by compartmental analysis of plasma concentration–time curves. Data are presented as mean ± standard error.ResultsThe initial plasma concentration of IV carprofen was estimated at 54.57 ± 3.92 μg mL?1 and decreased to 8.26 ± 1.07 μg mL?1 24 hours later. The plasma elimination curve showed a bi-exponential decline: a rapid distribution phase with a distribution half-life of 0.21 ± 0.03 hours and a slower elimination phase with an elimination half-life of 17.31 ± 3.78 hours. The calculated pharmacokinetic parameters were as follows: the area under the plasma concentration–time curve was 357.3 ± 16.73 μg mL?1 hour, volume of distribution was 0.28 ± 0.07 L kg?1 and plasma clearance rate was 0.19 ± 0.009 mL minute?1 kg?1. The plasma concentration of carprofen, administered orally from days 2 to 7, varied from 9.03 ± 1.87 to 11.49 ± 2.15 μg mL?1.Conclusions and clinical relevanceCarprofen can be regarded as a long-acting non-steroidal anti-inflammatory drug in pigs.  相似文献   

14.
Propofol anaesthesia for surgery in late gestation pony mares   总被引:2,自引:0,他引:2  
Objective To characterize propofol anaesthesia in pregnant ponies. Animals Fourteen pony mares, at 256 ± 49 days gestation, undergoing abdominal surgery to implant fetal and maternal vascular catheters. Materials and methods Pre‐anaesthetic medication with intravenous (IV) acepromazine (20 µg kg?1), butorphanol (20 µg kg?1) and detomidine (10 µg kg?1) was given 30 minutes before induction of anaesthesia with detomidine (10 µg kg?1) and ketamine (2 mg kg?1) IV Maternal arterial blood pressure was recorded (facial artery) throughout anaesthesia. Arterial blood gas values and plasma concentrations of glucose, lactate, cortisol and propofol were measured at 20‐minute intervals. Anaesthesia was maintained with propofol infused initially at 200 µg kg?1 minute?1, and at 130–180 µg kg?1 minute?1 after 60 minutes, ventilation was controlled with oxygen and nitrous oxide to maintain PaCO2 between 5.0 and 6.0 kPa (37.6 and 45.1 mm Hg) and PaO2 between 13.3 and 20.0 kPa (100 and 150.4 mm Hg). During anaesthesia flunixin (1 mg kg?1), procaine penicillin (6 IU) and butorphanol 80 µg kg?1 were given. Lactated Ringer's solution was infused at 10 mL kg?1 hour?1. Simultaneous fetal and maternal blood samples were withdrawn at 85–95 minutes. Recovery from anaesthesia was assisted. Results Arterial blood gas values remained within intended limits. Plasma propofol levels stabilized after 20 minutes (range 3.5–9.1 µg kg?1); disposition estimates were clearance 6.13 ± 1.51 L minute?1 (mean ± SD) and volume of distribution 117.1 ± 38.9 L (mean ± SD). Plasma cortisol increased from 193 ± 43 nmol L?1 before anaesthesia to 421 ± 96 nmol L?1 60 minutes after anaesthesia. Surgical conditions were excellent. Fetal umbilical venous pH, PO2 and PCO2 were 7.35 ± 0.04, 6.5 ± 0.5 kPa (49 ± 4 mm Hg) and 6.9 ± 0.5 kPa (52 ± 4 mm Hg); fetal arterial pH, PO2 and PCO2 were 7.29 ± 0.06, 3.3 ± 0.8 kPa (25 ± 6 mm Hg) and 8.7 ± 0.9 kPa (65 ± 7 mm Hg), respectively. Recovery to standing occurred at 46 ± 17 minutes, and was generally smooth. Ponies regained normal behaviour patterns immediately. Conclusions and clinical relevance Propofol anaesthesia was smooth with satisfactory cardiovascular function in both mare and fetus; we believe this to be a suitable anaesthetic technique for pregnant ponies.  相似文献   

15.
Lidocaine decreases minimum alveolar concentration (MAC) of inhalational anesthetics. This study determined the influence of a low dose, 50 µg kg?1 minute?1 (LDI) and high dose, 200 µg kg?1 minute?1 (HDI) constant rate infusion of lidocaine on the MAC of isoflurane (I) in dogs. Ten mongrel dogs were anesthetized with I in oxygen and mechanically ventilated. End‐tidal anesthetic (Fe ′A) and CO2 (Pe ′CO2) concentrations were monitored at the endotracheal tube adaptor with an infrared gas analyzer calibrated before each experiment with a standardized calibration gas mixture designed for the analyzer. Pe ′CO2 and body temperature were maintained within normal limits. Noxious stimuli included clamping the hindlimb paw (HC) and electrical current (50 V at 50 cycles second?1 for 10 milliseconds pulse?1) applied subcutaneously to the forelimb (FE) at the level of the ulna. After an initial equilibration period of at least 40 minutes at an Fe ′A of 1.7%, the Fe ′A was decreased to a value close to the estimated MAC for dogs. MAC was defined as the Fe ′A mid‐way between the value permitting and preventing purposeful movement. Following baseline MAC, a loading dose of 2 mg kg?1 of lidocaine IV was administered over 3 minutes followed by the LDI, and MAC determinations for the combination started after 30 minutes of infusion. Once determined, the lidocaine infusion was stopped for 30 minutes and the dog maintained at the ETC that prevented movement without the lidocaine. Following this period, a second loading dose of lidocaine was given (2 mg kg?1) over 3 minutes followed by the HDI, and the MAC determination procedure repeated after 30 minutes of infusion. Data were analyzed using an anova for repeated measures. MAC of I was 1.34 ± 0.035% (mean ± SEM) for both the FE and HC stimuli. The LDI significantly decreased MAC to 1.09 ± 0.043% (18.7% reduction) and HDI to 0.76 ± 0.030% (43.3% reduction). In conclusion, lidocaine infusions decreased the MAC of isoflurane in a dose‐dependent manner.  相似文献   

16.
ObjectiveTo evaluate a combination of acepromazine, dexmedetomidine and ketamine (ADK) on induction and recovery from anaesthesia, and on physiological parameters in hares undergoing non‐invasive procedures.Study designProspective clinical study.AnimalsSixteen European hares (Lepus europaeus), seven males and nine females, aged (mean ± SD) 3.25 ± 0.9 months and weight 2.1 ± 0.6 kg.MethodsAcepromazine 1% (A), dexmedetomidine 0.05% (D) and ketamine 5% (K) were mixed and given intramuscularly (IM) at 0.25 mL kg?1, representing 10 mg kg?1 K, 0.25 mg kg?1 A, 12.5 μg kg?1 D. If the righting reflex was present after four minutes, a second injection of 0.15 mL kg?1 (6 mg kg?1 K, 0.15 mg kg?1 A, 7.5 μg kg?1 D) was administered IM. Surgical anaesthesia was judged as present when righting, palpebral, ear‐pinch and pedal withdrawal reflexes were absent. Anaesthetized hares were tagged, and underwent blood sampling and ocular ultrasound examination. Physiological parameters were recorded every ten minutes, and were compared by Kruskal‐Wallis tests.ResultsA single dose induced loss of righting reflex in 11/16 (69%) hares within four minutes; the second dose was effective in the remaining hares. Ten minutes after the loss of the righting reflex, a surgical plane of anaesthesia was present in all hares. Sleep time to regaining righting reflex was 34 ± 11 (range 21–62) minutes and recovery was calm. Although there were some statistical differences over time, cardiovascular parameters remained within an acceptable range but there was respiratory depression and hares were hypoxemic.Conclusions and clinical relevanceThe ADK mixture produced a smooth and rapid induction of anaesthesia, a low incidence of untoward side effects and full recovery after four hours. Supplementary oxygen might be advisable if a deeper plane of anaesthesia was required. Chemical restraint was adequate to perform non‐invasive procedures.  相似文献   

17.

Objective

The butorphanol-azaperone-medetomidine fixed-dose combination (BAM, respectively, 30-12-12 mg mL?1) with subsequent antagonism by naltrexone-atipamezole was evaluated for reversible immobilization of captive cheetahs (Acinonyx jubatus).

Study design

Prospective, clinical trial.

Animals

Twelve cheetahs (six males and six females, weighing 37–57 kg) housed in enclosures, were immobilized at Hoedspruit Endangered Species Centre in the Republic of South Africa.

Methods

BAM volume dose rate was 0.009–0.014 mL kg?1 (mean ± standard deviation 0.010 ± 0.001 mL kg?1). Total dose in all animals was 0.5 mL. The actual doses were as follows: butorphanol (0.29 ± 0.04 mg kg?1), azaperone (0.12 ± 0.01 mg kg?1) and medetomidine (0.12 ± 0.01 mg kg?1). Physiologic variables and quality of immobilization were recorded every 5 minutes beginning at 15–20 minutes after darting. Arterial blood samples were collected three times at 20, 30 and 40 minutes after darting from all animals for analysis of blood oxygenation and acid-base status.

Results

The inductions were calm and smooth and mean induction time was 4.0 ± 1.1 minutes. Heart rate (50 ± 9 beats minute?1) and respiratory frequency (20 ± 3 breaths minute?1) were stable throughout immobilization. The recovery time after reversing with naltrexone and atipamezole was 9.1 ± 3.6 minutes.

Conclusions

and clinical relevance BAM proved to be a reliable and cardiovascular stable drug combination for immobilization of cheetahs.  相似文献   

18.
ObjectiveTo evaluate the effects of the co-administration of midazolam on the dose requirement for propofol anesthesia induction, heart rate (HR), systolic arterial pressure (SAP) and the incidence of excitement.Study designProspective, randomized, controlled and blinded clinical study, with owner consent.AnimalsSeventeen healthy, client owned dogs weighing 28 ± 18 kg and aged 4.9 ± 3.9 years old.MethodsDogs were sedated with acepromazine 0.025 mg kg?1 and morphine 0.25 mg kg?1 intramuscularly (IM), 30 minutes prior to induction of anesthesia. Patients were randomly allocated to receive midazolam (MP; 0.2 mg kg?1) or sterile normal saline (CP; 0.04 mL kg?1) intravenously (IV) over 15 seconds. Propofol was administered IV immediately following test drug and delivered at 3 mg kg?1 minute?1 until intubation was possible. Scoring of pre-induction sedation, ease of intubation, quality of induction, and presence or absence of excitement following co-induction agent, was recorded. HR, SAP and respiratory rate (fR) were obtained immediately prior to, immediately following, and 5 minutes following induction of anesthesia.ResultsThere were no significant differences between groups with regard to weight, age, gender, or sedation. Excitement occurred in 5/9 dogs following midazolam administration, with none noted in the control group. The dose of propofol administered to the midazolam group was significantly less than in the control group. Differences in HR were not significant between groups. SAP was significantly lower in the midazolam group compared with baseline values 5 minutes after its administration. However, values remained clinically acceptable.Conclusions and clinical relevanceThe co-administration of midazolam with propofol decreased the total dose of propofol needed for induction of anesthesia in sedated healthy dogs, caused some excitement and a clinically unimportant decrease in SAP.  相似文献   

19.
Objective To compare the characteristics of anaesthesia induced with four dose combinations of ketamine/medetomidine. Design Prospective randomized study. Animals Five female New Zealand White (NZW) rabbits of approximately 2.3 kg. Methods Rabbits were given one of four drug combinations (25/0.25; 15/0.5; 15/0.25 and 10/0.5 mg kg?1 IM) on four successive occasions with a four day interval. Response to injection and then arterial blood gas and cardiovascular parameters were recorded at predetermined time points. Toe and ear pinch reflexes gave measures of total duration of surgical anaesthesia and total sleep time. Analyses used repeated measures analysis of variance. Results Induction was smooth with little reaction to injection and intubation achieved easily. Two combinations (15/0.25, 10/0.5) produced moderate hypoxaemia (mean pO2 < 8.0 kPa) and two (25/0.25, 15/0.5) very marked hypoxaemia (mean pO2 < 5.3 kPa). This was reversed within 15 minutes of oxygen administration and all rabbits recovered uneventfully. Heart rates fell in all cases, with only minimal effects on arterial blood pressure and no cardiac arrhythmias. Mean duration of surgical anaesthesia was significantly longer for dose groups 25/0.25 (57 ± 12 minutes) and 15/0.5 (59 ± 17 minutes, p = 0.01) compared to dose group 15/0.25 (27 ± 8 minutes). Only three animals in the 10/0.5 mg kg?1 group achieved surgical anaesthesia. Mean duration of loss of the ear pinch reflex was similar between doses, being, respectively, 64 ± 13, 81 ± 7, 60 ± 22 and 62 ± 24 minutes. Sleep time was significantly longer for the 15/0.5 dose (112 ± 10 minutes) compared to 15/0.25 (86 ± 22 minutes, p = 0.04). Sleep times for the 25/0.25 and 10/0.5 mg kg?1 doses were, respectively, 103 ± 23 and 108 ± 12 minutes. Conclusions Ketamine/medetomidine reliably produces smooth induction and recovery in the NZW rabbit, but due to the degree of hypoxaemia produced, should only be used with simultaneous provision of oxygen. Clinical relevance Currently recommended dose rates of ketamine/medetomidine for minor procedures such as ovariohysterectomy in rabbits (25 mg/0.5 mg kg?1) are unnecessarily high; a dose of 15/0.25 mg kg?1 should be adequate for 15–30 minutes of surgical anaesthesia.  相似文献   

20.
Hydromorphone is an agonist opioid with potency approximately five times that of morphine and half that of oxymorphone. The purpose of this study was to compare hydromorphone with oxymorphone, with or without acepromazine, for sedation in dogs, and to measure plasma histamine before and after drug administration. Ten dogs received IM hydromorphone (H; 0.2 mg kg?1), oxymorphone (O; 0.1 mg kg?1), hydromorphone with acepromazine (H; 0.2 mg kg?1, A; 0.05 mg kg?1) or oxymorphone with acepromazine (O; 0.1 mg kg?1, A; 0.05 mg kg?1) in a randomized Latin‐square design. Sedation score, heart rate, respiratory rate, blood pressure, and SpO2 were recorded at baseline and every 5 minutes after drug administration up to 25 minutes. Plasma histamine was measured at baseline and at 25 minutes post‐drug administration. Data were analyzed with repeated measures anova . Mean ± SD body weight was 21.62 ± 1.54 kg. Mean ± SD age was 1.07 ± 0.19 years. Sedation score was significantly greater for OA after 5 minutes than O alone (4.1 ± 3.5 versus 1.9 ± 1.5) and for HA after 15 minutes than H alone (8.6 ± 2.9 versus 5.9 ± 2.5). There was no significant difference in sedation between H and O at any time point. There was no significant difference between groups at any time with respect to heart rate, respiratory rate, blood pressure or SpO2. Mean ± SD plasma histamine (nM ml?1) for all groups was 1.72 ± 2.69 at baseline and 1.13 ± 1.18 at 25 minutes. There was no significant change in plasma histamine concentration in any group. Hydromorphone is effective for sedation in dogs and does not cause measurable increase in histamine. Sedation with hydromorphone is enhanced by acepromazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号