首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
基于BP神经网络的温室生菜CO2施肥研究   总被引:1,自引:1,他引:0  
目前,温室CO2施肥主要采用试验定性分析确定适合范围,难以实现高精度温室产业生产控制。根据光合作用对温室环境因子的非线性,结合BP神经网络对非线性的良好辨识能力,研究出一种CO2施肥技术。结合温室光照、CO2浓度变化规律以及温室生菜生长规律,运用BP神经网络建立温室生菜光合速率与二者的量化模型,预测出在不同温室环境条件下,通过生菜的光合作用速率来衡量生菜生长状况,在温室小气候条件下实现对生菜产量的量化控制。  相似文献   

2.
基于RBF神经网络的温室温度调控研究   总被引:1,自引:0,他引:1  
根据光合作用对温室环境因子的非线性,结合RBF神经网络对非线性的良好辨识能力,研究出一种温度调控技术。结合温室光照、温度变化规律,运用RBF神经网络建立温室生菜光合速率与二者的量化模型,通过生菜的光合作用速率来衡量生菜生长状况,在温室小气候里实现对生菜产量的量化控制。该模型预测精度较高,可作为温室测控系统环境因子调控依据。  相似文献   

3.
作物的生长主要靠光合作用,光合作用的主要原料是CO2.通常大气中CO2含量330ppm.冬季设施栽培中由于有一层膜把温室内和外界空气隔开,这样就造成了室内CO2的严重不足.  相似文献   

4.
CO2施肥技术     
CO2是植物光合作用的主要碳源,作物利用空气中CO2在日光的照射下进行光合作用生成有机物质,空气中CO2浓度一般为300×10-6左右,虽然可基本满足作物光合作用的需要,但明显低于其作物所需的最佳浓度,特别是在设施相对密闭的条件下,日出后作物进行旺盛的光合作用,会急剧降低CO2浓度,造成CO2亏缺。因而,在设施内增施CO2,是强化作物光合作用、促进其生长发育,达到高产优质的有效技术措施。增加温室大棚内的CO2浓度,可以促进植物的光合作用,使植株健康发育,增强抗病能力,大幅度提高产量,并改善蔬菜的外观和营养成分,这一技术称为气肥增施技…  相似文献   

5.
温室气体中最常见的就是CO2,它对于作物进行光合作用来说却是必不可少的。然而设施栽培中因CO2的不足已经成为限制设施栽培作物生长发育最不易控制的主导因素。由此,如何调控大棚内的CO2浓度,使之满足作物光合作用的需要,达到提高产量,  相似文献   

6.
提出一种以利润最大化为目标的温室CO2调控量决策方法.以生菜为研究对象,运用神经网络建立非线性的植物生长速率预测模型,采用多项式函数拟合得到植物市场价格规律模型,并考虑CO2施肥的成本,寻求最优CO2体积比的调控量.以生菜生长过程中的实验数据和2004~2006年凌家塘批发市场提供的生菜价格季节性变化规律为依据,结合实际情况建立预测模型并实现了多信息的融合,为温室测控系统CO2调控量的决策提供了依据.  相似文献   

7.
提出一种以利润最大化为目标的温室CO2调控量决策方法。以生菜为研究对象,运用神经网络建立非线性的植物生长速率预测模型,采用多项式函数拟合得到植物市场价格规律模型,并考虑CO2施肥的成本,寻求最优CO2体积比的调控量。以生菜生长过程中的实验数据和2004~2006年凌家塘批发市场提供的生菜价格季节性变化规律为依据,结合实际情况建立预测模型并实现了多信息的融合,为温室测控系统CO2调控量的决策提供了依据。  相似文献   

8.
温室气体中最常见的就是CO2,它对于作物进行光合作用来说却是必不可少的.然而设施栽培中因CO,的不足已经成为限制设施栽培作物生长发育最不易控制的主导因素.由此,如何调控大棚内的CO2浓度,使之满足作物光合作用的需要,达到提高产量,改善品质的目的,已成为农业设施栽培发展迫切需要解决的问题. 据测,温室中的CO2仅稳定在350ppm左右,这就大大地限制了作物的生长潜能,造成作物生长环境的资源浪费.实验表明,当环境中的CO2浓度达到1000~1500ppm时,可以使作物比平时增产达到20%左右,且品质也有明显提高.  相似文献   

9.
单栋塑料温室内多因子综合CFD稳态模拟分析   总被引:1,自引:0,他引:1  
为分析单栋塑料温室内的综合环境:气流场、温度场、湿度场、CO2浓度场,建立了包括温室内外空间、室内作物和土壤层等的温室环境几何模型。将温室内的湿空气看作水蒸气、CO2和干空气的混合气体,在分析温室中太阳辐射、作物与环境的质热交换,动量及质能传递过程的基础上,对单栋塑料温室内的环境因子进行了稳态模拟。温室内热辐射传递过程采用蒙特卡罗法模拟方法;将室内作物简化为连续固体换热模型,采用剪应力输运模型(SST)表述温室内的空气紊流。结果显示:温室通风对温度、湿度和CO2分布的影响很大,温室内部上风向温度低,湿度小,同时CO2浓度也不高;温室下风向作物冠层的环境未达到优化状态;模型的预测值低于实测值,但变化规律相似,温度、湿度、CO2含量的预测相对误差分别低于8%、6%和7%。  相似文献   

10.
温室番茄光合作用模拟模型中环境因子的影响   总被引:1,自引:0,他引:1  
在建立温室内番茄群体光合作用模拟模型的基础上,综合考虑了温室内各种环境参数对番茄生长与光合作用的影响,构建了温度、CO2浓度及水分对番茄光合作用速率的影响函数,从而可以更准确地计算番茄群体光合日总量,为温室番茄栽培模拟模型的研究提供了一定的理论依据。  相似文献   

11.
针对温室非线性、时变性、延时性、多变量耦合等问题,对温度、湿度、光照强度和CO2浓度等环境因子进行分析,把模糊推理运用到温室环境控制系统,利用专家经验和知识行为转化为相应的模糊控制规则;结合神经网络控制理论,以温度和湿度作为主要控制变量设计模糊神经网络控制系统。仿真结果表明,该系统响应速度快,抗干扰能力强,对温室环境中温湿度有较好的控制效果,可为智能温室自动控制系统设计提供一定参考。  相似文献   

12.
作物蒸腾量是指导作物灌溉关键参数之一,实时获取作物蒸腾量,实现按需灌溉是节约用水的有效途径。然而,温室内小气候效应显著,作物蒸腾与环境因子间关系较为复杂,且各环境因子之间相互关联并呈非线性变化。本文以番茄作为研究对象,使用称量法测量作物实时蒸腾量,通过布设传感器实时获取温室小气候数据,包括空气温度(Air temperature, AT)、相对湿度(Relative humidity, RH)、光照强度(Light intensity, LI)作为模型的小气候环境输入,冠层相对叶面积指数(Relative leaf area index,RLAI)作为模型的作物生长输入,在此基础上,提出了基于长短期记忆网络(Long short term memory, LSTM)的番茄蒸腾量预测模型。利用该模型对番茄蒸腾量进行预测,并与非线性自回归(Nonlinear autoregressive with exogeneous inputs, NARX)神经网络、Elman神经网络、循环神经网络(Recurrent neural network, RNN)模型进行了对比。试验结果表明,LSTM预测模型决定系数(Determination coefficient, R2)与平均绝对误差(Mean absolute error, MAE)分别为0.9925和4.53g,与NARX神经网络、Elman神经网络、RNN方法进行对比,其决定系数分别提高了8.97%、1.18%和0.82%,其平均绝对误差分别降低了8.16、6.23、0.52g。本研究所提的预测模型具有较高的预测精度及泛化性能,研究成果可为温室作物需水规律及需水量研究提供参考。  相似文献   

13.
对温室蔬菜(茄子)的光合作用进行测定,建立茄子光合作用模型。基于作物生长量最大的层次对温室环境因子温度进行优化控制。利用数学分析方法求出理论上的最优解,考虑不同季节、不同天气条件、不同光照下如何对温室内温度进行优化控制。  相似文献   

14.
基于遗传算法的模糊神经网络温室温度控制器   总被引:1,自引:0,他引:1  
为了创造适合作物生长的环境,针对温室系统的特点提出了一种新的基于遗传算法的模糊神经网络控制器,利用遗传算法训练模糊神经网络模型,并采用此模糊神经网络控制器控制温室温度系统.运用该方法对温室温度控制系统进行了Matlab 仿真,结果表明:采用遗传模糊神经控制器的系统,不但提高了阶跃响应的快速性,而且大大减少了超调量.  相似文献   

15.
作物在进行光合作用中对空气中CO2浓度有一定的要求,在一定的CO2浓度范围内,光合作用强度随CO2浓度的升高而升高。目前大气CO2浓度为350PPM,这一浓度远远不能满足植物生长的光合所需。但过高的CO2浓度(4000~7000td·L以上)会引起原生质中毒或气孔关闭而导致反作用,随着CO2浓度降低,光合作用的效率降低,直至净光合速率为零,达到CO2浓度补偿点。为了克制这种缺陷,本技术采  相似文献   

16.
温室大棚在寒冷季节为了保持一定温度,通常密闭较严,温室内的作物生长要进行光合作用,吸收二氧化碳放出氧气。这样,势必造成了温室大棚中的二氧化碳浓度越来越低,使温室大棚中的作物光合作用非常缓慢,使作物生长减弱甚至停止,将严重影响作物的产量和品质。因此要在密闭的温室内为作物补充二氧化碳,满足作物生长要求,提高作物的产量和品质。  相似文献   

17.
季宇寒  李婷  张漫  沙莎 《农业机械学报》2015,46(S1):201-207
CO 2是植物进行光合作用的重要原料,合理增施可提高作物的光合速率。为实现温室CO 2气肥的精细管理,设计了基于无线传感器网络(WSN)的温室CO 2气肥调控系统。该系统由监控节点、智能网关和远程管理软件组成,其中监控节点能够自动实时监测温室环境信息(CO 2浓度、光照强度、空气温湿度和土壤温湿度),并控制CO 2增施气阀的开关;智能网关不仅能实现监控节点与远程管理软件之间的通信,还可在本地实现对温室环境信息的显示与存储,以及CO 2增施调控等操作;远程管理软件除了具备基本的数据接收、存储和查询功能外,还可通过建立的光合速率预测模型对CO 2气肥实现远程自动调控。本文以番茄为研究对象,采用开发的系统实时获取环境信息,使用LI-6400XT光合速率仪获取单叶净光合速率,建立了基于支持向量机(SVM)的番茄光合速率预测模型。为了提高预测模型的通用性,实验将苗后期番茄在4个CO 2浓度梯度进行培育,其中C1、C2、C3分别进行700、 1 000 、1 300 μmol/mol浓度的CO 2增施,CK为对照组(CO 2浓度约为450 μmol/mol)。数据分析采用SVM算法,以多种环境信息作为输入变量,以单叶净光合速率作为输出变量,得到光合速率预测模型。经过测试与验证,CO 2浓度调控系统能够稳定可靠地采集温室环境信息,适合应用在温室环境中;光合速率模型预测值和实测值相关系数为0.981 5,均方根误差为1.092 5 μmol/(m 2 ·s),具有较好的预测效果,为温室番茄CO 2定量增施调控提供了依据。  相似文献   

18.
温室大棚CO2气肥施用技术要点   总被引:2,自引:0,他引:2  
CO2气肥增施技术已成为目前我国温室大棚增产技术之一。文章介绍了温室大棚施用CO2气肥的效果,分析了CO2气肥对不同作物的影响,提出了CO2气肥施用技术要点,即合理选择施用时间、施用量和施用方法。  相似文献   

19.
CO2气肥增施技术已成为目前我国温室大棚增产技术之一.文章介绍了温室大棚施用CO2气肥的效果,分析了CO2气肥对不同作物的影响,提出了CO2气肥施用技术要点,即合理选择施用时间、施用量和施用方法.  相似文献   

20.
对温室环境中温度、湿度、光照、CO2浓度等环境因子进行调控是实现设施作物生产高产、优质、高效的关键。以WinCC组态软件为上位机编程软件,以PLC为控制器,设计一种基于PLC的智能温室控制系统。该系统人机界面友好,性能稳定可靠,性价比高,能很好地实现对智能温室环境因子的自动控制,满足温室作物生长环境控制要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号