首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Organic upland soils store large amounts of humified organic matter. The mechanisms controlling the leaching of this C pool are not completely understood. To examine the effects of temperature and microbial cycling on C leaching, we incubated five unvegetated soil cores from a Podzol O horizon (from NE Scotland), over a simulated natural temperature cycle for 1 year, whilst maintaining a constant soil moisture content. Soil cores were leached with artificial rain (177 mm each, monthly) and the leachates analysed for dissolved organic carbon (DOC) and their specific C‐normalized UV absorbance determined (SUVA, 285 nm). Monthly values of respiration of the incubated soils were determined as CO2 efflux. To examine the effects of vegetation C inputs and soil moisture, in addition to temperature, we sampled O horizon pore waters in situ and collected five additional field soil cores every month. The field cores were leached under controlled laboratory conditions. Hysteresis in the monthly amount of DOC leached from field cores resulted in greater DOC on the rising, than falling temperature phases. This hysteresis suggested that photosynthetic C stimulated greater DOC losses in early summer, whereas limitations in the availability of soil moisture in late summer suppressed microbial decomposition and DOC loss. Greater DOC concentrations of in‐situ pore waters than for any core leachates were attributed to the effects of soil drying and physico‐chemical processes in the field. Variation in the respiration rates for the incubated soils was related to temperature, and respiration provided a greater pathway of C loss (44 g C m−2 year−1) than DOC (7.2 g C m−2 year−1). Changes in SUVA over spring and summer observed in all experimental systems were related to the period of increased temperature. During this time, DOC became less aromatic, which suggests that lower molecular weight labile compounds were not completely mineralized. The ultimate DOC source appears to be the incomplete microbial decomposition of recalcitrant humified C. In warmer periods, any labile C that is not respired is leached, but in autumn either labile C production ceases, or it is sequestered in soil biomass.  相似文献   

2.
Leaching of dissolved organic matter (DOM) from pastoral soils is increasingly seen as an important but poorly understood process. This paper examined the relationship between soil chemical properties, microbial activity and the losses of dissolved organic carbon (DOC) and nitrogen (DON) through leaching from six pasture soils. These soils differed in carbon (C) (4.6–14.9%) and nitrogen (N) (0.4–1.4%) contents and in the amount of organic C and N that had accumulated or been lost in the preceding 20+ years (i.e. −5131 to +1624 kg C ha−1 year−1 and −263 to +220 kg N ha−1 year−1, respectively). The paper also examined whether between‐soil‐type differences in DOC and DON leaching was a major explanatory factor in the observed range of soil organic matter (SOM) changes in these soils. Between 280 and 1690 kg C ha−1 year−1 and 28–117 kg N ha−1 year−1 leached as DOC and DON, respectively, from the six soils in a lysimeter study, with losses being greater from two poorly drained gley soils. Losses of C and N of this magnitude, while at the upper end relative to published data, could not fully explain the losses at Rawerawe, Bruntwood and Lepperton sites reported by Schipper et al. (2007) . The study highlights the leaching of DOM as a significant pathway of loss of C and N in pasture soils that is often ignored or given little attention in predictive models and nutrient budgeting. Leaching losses of DOC and DON alone, or in combination with slightly increased respiration losses of SOM given a 0.2°C increase in the mean annual soil temperature, do not fully explain long‐term changes in the SOM observed at these sites. When soils examined in the present study were separated on the basis of drainage class, the losses of DOC by leaching were correlated with both total and hot‐water extractable C (HWC), the latter being a measure of the labile SOM fraction. Basal microbial CO2 respiration rates, which varied between 1 and 3.5 µg CO2‐C g−1 soil hour−1 in surface soils (0–75‐mm depth), was also linked to HWC and the quantities of C lost as DOC. Adoption of the HWC method as an approach that could be used as a proxy for the direct measurement of the soil organic C lost by leaching as DOC or respired needs to be examined further with a greater number of soils. In comparison, a poor relationship was found between the hot‐water extractable N (HWN) and loss of DON by leaching, despite HWN previously being shown to be a measure of the mineralizable pool of N in soils, possibly reflecting the greater competition for N than C in these soils.  相似文献   

3.
The sound management of agricultural soils that are heavily loaded with phosphorus (P) involves minimizing the losses of P responsible for eutrophication of surface waters, while ensuring enough P for crops. This paper describes a simple model to examine the compatibility of these two objectives in acid sandy soils in a temperate humid climate. The model is based on several assumptions regarding reversible and irreversible P sorption by P-reactive soil compounds (mainly poorly crystalline Fe and Al oxides) and release of P to water (water-P test). Model inputs are amount of P leached, P uptake by crops, and contents of poorly crystalline Fe and Al oxides in soil. The model predicts that reducing the amount of leached P to what is environmentally acceptable (e.g. 0.44 kg P ha–1 year–1, equivalent to 1 kg P2O5 ha–1 year–1) results in the long run in available soil P test values below target concentrations for optimum crop growth. When the amount of leached P is set to a fixed value the model predicts that soils with large contents of Fe and Al oxides can maintain the initial soil P test values for longer periods than other soils. The content in available P decreases if fertilizer P is applied to the soil at a rate equal to P uptake by crops. These results stress the difficulties involved in trying to make agricultural and environmental needs compatible in acid sandy soils.  相似文献   

4.
Summary Topsoils (0–75 mm) from four soil types with different sulphate retention capacities were collected from stock camp and non-camp (main grazing area) sites of grazed pastures in New Zealand which had been annually fertilized with superphosphate for more than 15 years. These soils were analysed for different S fractions and incubated at 30°C for 10 weeks using an open incubation technique in order to assess the extent of S mineralization and the release of soluble soil organic S from camp and non-camp soils during incubation. The soils were preleached with 0.01 M KCl, followed by 0.04 M Ca(H2PO4)2 before being incubated. Pre-incubation leachates and weekly 0.01 M KCl leachates were analysed for mineralized S (i.e., hydriodic acid-reducible S) and total S. Soluble organic S was estimated as the difference between these two S fractions. Results obtained show higher cumulative amounts of all three S fractions in leachates over a 10-week incubation period in camp than in non-camp soils, suggesting that higher mineralization occurred in camp soils. Cumulative amounts of mineralized S from camp and non-camp soils showed a linear relationship with duration of incubation (R 20.985***), while the cumulative release of soluble organic S followed a quadratic relationship (R 20.975***). A significant proportion (14.6%–40.8%) of total S release in KCl leachates was soluble organic S, indcating that organic S should be taken into account when assessing S mineralization. Mineralized S and soluble organic S were best correlated with 0.01 M CaCl2-extractable soil inorganic S (R 2=0.767***) and 0.04 M Ca(H2PO4)2-extractable soil inorganic S(R 2=0.823***), respectively. Soil sulphate retention capacity was found to influence amounts of mineralized S and soluble organic S, and thus periodic leaching with KCl to remove mineralized S from soils may not adequately reflect the extent of soil S mineralization in high sulphate-retentive soils. In low (<10%) sulphateretentive soils, increasing the superphosphate applications from 188 to 376 kg ha–1 year–1 increased S mineralization but not amounts of C-bonded and hydriodic acid-reducible soil S fractions.  相似文献   

5.
Preferential phosphorus leaching from an irrigated grassland soil   总被引:2,自引:0,他引:2  
Intact lysimeters (50 cm diameter, 70 cm deep) of silt loam soil under permanent grassland were used to investigate preferential transport of phosphorus (P) by leaching immediately after application of dairy effluent. Four treatments that received mineral P fertilizer alone (superphosphate at 45 kg P ha?1 year?1) or in combination with effluent (at ~ 40–80 kg P ha?1 year?1) over 2 years were monitored. Losses of total P from the combined P fertilizer and effluent treatments were 1.6–2.3 kg ha?1 (60% of overall loss) during eight drainage events following effluent application. The rest of the P lost (40% of overall loss) occurred during 43 drainage events following a significant rainfall or irrigation compared with 0.30 kg ha?1 from mineral P fertilizer alone. Reactive forms of P (mainly dissolved reactive P: 38–76%) were the dominant fractions in effluent compared with unreactive P forms (mainly particulate unreactive P: 15–56%). In contrast, in leachate following effluent application, particulate unreactive P was the major fraction (71–79%) compared with dissolved reactive P (1–7%). The results were corroborated by 31P nuclear magnetic resonance analysis, which showed that inorganic orthophosphate was the predominant P fraction present in the effluent (86%), while orthophosphate monoesters and diesters together comprised up to 88% of P in leachate. This shows that unreactive P forms were selectively transported through soil because of their greater mobility as monoesters (labile monoester P and inositol hexakisphosphate) and diesters. The short‐term strategies for reducing loss of P after application of dairy effluent application should involve increasing the residence time of applied effluent in the soil profile. This can be achieved by applying effluent frequently in small amounts.  相似文献   

6.
Organic farming is considered an effective means of reducing nitrogen losses compared with more intensive conventional farming systems. However, under certain conditions, organic farming may also be susceptible to large nitrogen (N) losses. This is especially the case for organic dairy farms on sandy soils that use grazed grass–clover in rotation with cereals. A study was conducted on two commercial organic farms on sand and loamy sand soils in Denmark. On each farm, a 3‐year‐old grass–clover field was selected. Half of the field was ploughed the first year and the other half was ploughed the following year. Spring barley (Hordeum vulgare L.) was sown after ploughing in spring. Measurements showed moderate N leaching during the pasture period (9–64 kg N ha?1 year?1) but large amounts of leaching in the first (63–216 kg N ha?1) and second (61–235 kg N ha?1) year after ploughing. There was a small yield response to manure application on the sandy soil in both the first and second year after ploughing. To investigate the underlying processes affecting the residual effects of pasture and N leaching, the dynamic whole farm model farm assessment tool (FASSET) was used to simulate the treatments on both farms. The simulations agreed with the observed barley N‐uptake. However, for the sandy soil, the simulation of nitrate leaching and mineral nitrogen in the soil deviated considerably from the measurements. Three scenarios with changes in model parameters were constructed to investigate this discrepancy. These scenarios suggested that the organic matter turnover model should include an intermediate pool with a half‐life of about 2–3 years. There might also be a need to include effects of soil disturbance (tillage) on the soil organic matter turnover.  相似文献   

7.
The objective of this study is to evaluate different agricultural land‐use practices in terms of N leaching and to give recommendations for a sustainable agriculture on sandy soils in Middle Germany. Soil mineral N (Nmin) and leachate N were quantified at a sandy soil in N Saxony during 3 years. Two treatments were applied: intensive (I)—using inorganic and organic fertilizer and pesticides, and organic (O)—exclusively using organic fertilizer, legume‐based crop rotation, and no pesticides. Split application of mineral fertilizers did not result in substantial N losses at treatment I. Legumes induced a considerable increase of soil mineral N and particularly of leachate mineral N (Nmin_perc) at treatment O. High Nmin_perc concentrations (up to 78 mg N L–1) were observed during as well as after the cultivation of legumes. These high Nmin_perc concentrations are the reason why clearly higher Nmin_perc losses were determined at treatment O (62 kg N ha–1 y–1) compared to treatment I (23 kg N ha–1 y–1). At both treatments, the quantity of N losses was strongly affected by the precipitation rates. Concentrations and losses of dissolved organic N (DONperc) were assessed as above average at both treatments. The results suggest that the DONperc concentration is influenced by precipitation, soil coverage, and organic fertilizers. Higher values were determined in the percolation water of treatment O. The average annual DONperc losses amounted to 15 kg N ha–1 at I and to 32 kg N ha–1 at O. The average monthly percentage of DONperc losses on the loss of the dissolved total N of percolation water (DTNperc) ranged between <1% and 55% at O and between 2% and 56% at I. For the whole measuring period of 29 months, the relative amounts of DONperc of DTNperc (21% at O and 25% at I) were more or less the same for both treatments. The results show that DONperc can contribute significantly to the total N loss, confirming the importance to consider this N fraction in N‐leaching studies. It was concluded that at sandy sites, a split application of mineral fertilizers, as applied at treatment I, seems to be more expedient for limiting the N leaching losses than legume‐based crop rotations.  相似文献   

8.
Macroporous anion-exchange resin extraction and 31P-NMR spectroscopy of dialysed NaOH extracts were used to investigate the effects of land use (Taubenberg, Bavaria: spruce forest, deciduous forest, permanent grass, arable) and fertilization (Askov, Denmark: unmanured, mineral fertilizer, animal manure) on forms of phosphorus in soil with emphasis on the potentially labile organic (Po) and inorganic (Pi pools. Carbon content ranged from 12.5–118.1 g kg?1 and total P (Pi) content from 511 to 2063 mg kg?1. For all soils, the C:Po ratios of SOM decreased in the order: whole soil, 150: 1–44:1; alkali extract, 57:1–41: 1; resin extract, 20:1–9:1; suggesting an increasing P functionality of the OM with increasing Po lability. Analysis of functional relation showed a close relation between resin Po and 31P-NMR estimates for diester-P including teichoic acid-P, indicating that these species contributed significantly to the labile Po pool as determined by the resin method. The most marked effects of land-use were an increase in Pi under grass and arable, a concurrent sequestration of Po and SOM under grass, and a depletion of Po under arable. The amount of resin Pj appeared to be a function primarily of fertilization, and amounted to around 100 mg kg?1 in the fertilized soils irrespective of the SOM content and P source. The forest soil and the unfertilized agricultural soil had much smaller resin Pj values. The soil under grass had the largest amounts in resin Po and diester-P including teichoic acid-P, indicating a rapid turnover of Po with build-up of a large potentially labile, microbially derived Po pool. 31P NMR also showed large proportions of labile Po species in soils where microbial activity is restrained by acidity (Taubenberg spruce forest, phosphonates) or where highly microbially altered OM is relatively enriched (Taubenberg arable, diester-P including teichoic acid-P). We conclude that the resin used in this study isolates a structurally and functionally reasonably uniform pool of potentially labile soil Po.  相似文献   

9.
《Geoderma》2007,137(3-4):455-465
Phosphorus (P) binding to minerals and ion exchange capacity in different clay fractions were examined for a non-calcareous soil in southwest Sweden. The soil had received pig slurry during three decades, 2 kg lower than the recent maximum load of 22 kg P ha 1 year 1 as regulated by livestock density legislation. The topsoil was found to contain 33% clay by weight. Illite was the predominant clay mineral and constituted 13% of total soil. Vermiculite (10%), K-feldspar (14%) and plagioclase (21%) also constituted significant proportions of the mineralogical matrix. Within the most fine-grained clay fraction, 50% of which was less than 0.1 μm in particle size, illite and vermiculite dominated totally, 50 and 23% respectively. In fine-grained (FG), most fine-grained (MFG) and colloidal fractions, there were strong relationships (Pearson correlation coefficient 0.98–1.00) between calcium (Ca) and P. There was a low molar ratio Ca:P in added manure and the presence of Ca–P complexes in the fine soil fractions was indicated. In contrast, in the coarse soil fraction (> 2 μm), there was a clear relationship (Pearson coefficient 0.97) between P and iron oxide (Fe2O3) and between P and aluminium oxide (Al2O3) throughout the soil profile. Thus even for non-calcareous soils, formation of Ca–P complexes should be taken into account with regards to losses of colloidal P to drainage water.  相似文献   

10.
Several studies have focused on the formation and losses of dissolved organic matter in forest systems, whereas a limited number have dealt with this aspect in agricultural soils. The purpose of this study was to estimate the leaching of dissolved organic carbon (DOC) and nitrogen (DON), with focus on the period after cultivating grass-clover swards. Grass-clovers were ploughed in the spring prior to sowing cereals followed by either catch crops or bare soil. The concentrations of DOC and DON decreased with soil depth and ranged at 90-cm soil depth between 7 and 21 mg C L−1 and between 1 and 3 mg N L−1, respectively, in a sandy loam soil, and between 16 and 63 mg C L−1 and between 1 and 10 mg N L−1, respectively, in a coarse sandy soil. The resulting DOC/DON ratios were in the range between 2 and 42, with higher values in the coarse sandy soil than in the sandy loam soil. The total percolation was 218 mm in the sandy loam soil and 596–645 mm in the coarse sandy soil, which resulted in an annual leaching of 22–40 kg DOC ha−1 year−1 and 3–4 kg DON ha−1 year−1 in the sandy loam soil, and 174–310 kg DOC ha−1 year−1 and 10–31 kg DON ha−1 year−1 in the coarse sandy soil. It was shown that higher amounts of DOC were lost by leaching under the catch crops than from bare soil, that losses of DON were higher from bare soil than from soils with catch crops and that DON contributed significantly to the total N loss. Thus, DON needs to be taken into account in N-balance calculations.  相似文献   

11.
Most of the carbon (C) in terrestrial ecosystems is stored in the mineral soil layers. Thus, the response of the mineral soil to potential increases in temperature is crucial for the prediction of the impact of climate change on terrestrial ecosystems. Samples from three mineral soil layers were collected from eight mature forest sites in the European network CARBOEUROFLUX and were incubated at four temperatures (4, 10, 20 and 30°C) for c. 270 days. Carbon mineralization rates were related to soil and site characteristics. Soil water holding capacity, C content, nitrogen (N) content and organic matter all decreased with soil depth at all sites, with significantly larger amounts of organic matter, C and N in the top 0–5 cm of mineral soil than in the deeper layers. The conifer forest soils had significantly lower pH, higher C/N ratios and carbon contents in the top 5 cm than the broadleaf forest soils. Carbon mineralization rates decreased with soil depth and time at all sites but increased with temperature, with the highest rates measured at 30°C for all sites. Between 50 and 70% of the total C respired after 270 days of incubation came from the top 5 cm. The percentage C loss was small in all cases, ranging from 1 to 10%. A two‐compartment model was fitted to all data to derive the labile/active and slow/recalcitrant fractions, as well as their decomposition constants. Although the labile fraction was small in all cases, we found significantly larger amounts of labile C in the broadleaf forest soils than in the conifer forest soils. No statistically significant differences were found in the temperature sensitivity parameter Q10 among sites, soil layers or between conifer and broadleaf soils. The average Q10 for all soils was 2.98 (± 0.10). We found that despite large differences among sites, C mineralization can be successfully predicted as a combined function of site leaf area index, mean annual temperature and content of labile carbon in the soil (R2 = 0.93).  相似文献   

12.
When potassium (K+) fertilizers are applied to the soil, K+ is subject to displacement through the soil profile. Leaching can play an important role in agricultural K+ losses that can decrease groundwater quality. To avoid overfertilization, estimation of K+ leaching from soil is important. The ability of the soils to retain K+ against leaching varies according to the adsorption coefficient of the soils. The aim of this study was to relate the K+ leaching from a wide range of calcareous soils to the values obtained from a sorption–desorption experiment. The soil columns were leached with 10 mM CaCl2 solution and the leachate was analyzed for K+. The breakthrough curves for K+ were different, and the amounts of K+ leached varied considerably between different soils. In these calcareous soils where crops are irrigated with water containing significant concentrations of Ca2+ and other cations, large amounts of K+ will be leached. Cumulative K+ leached after five pore volumes leaching with 10 mM CaCl2 was significantly (r = 0.776, p < 0.01) related to the equilibrium K+ concentration. The results of this study enabled us in many cases to estimate the K+ leaching from soil without conducting column experiments, minimizing the laborotary work.  相似文献   

13.
Phosphorus (P) forms were sequentially extracted from peat derived soils (Eutric Histosols and Gleysols) at eight sites in Saxony‐Anhalt (Germany) to disclose general differences in P pools between mineral and organic soils and to investigate effects of peat humification and oxidation in conjunction with land use and soil management on the P status of soils. Overall 29 samples providing a wide variety of basic chemical properties were subjected to the Hedley fractionation. The Histosol topsoils contained more total P (Pt) (1345 ± 666 mg kg—1) than the Gleysol topsoils (648 ± 237 mg kg—1). The predominant extractable fractions were H2SO4‐P (36—63 % of Pt) in calcareous and NaOH‐Po (0—46 % of Pt) in non‐calcareous Histosols. These soils had large pools of residual P (13—93 % of Pt). Larger contents and proportions of Po and of labile P fractions generally distinguished organic from mineral soils. Regression analyses indicated that poorly crystalline pedogenic oxides and organic matter were binding partners for extractable and non‐extractable P. Intensive management that promotes peat humification and oxidation results in disproportional enrichments of labile P fractions (resin‐P, NaHCO3‐Pi, and NaHCO3‐Po). These changes in P chemistry must be considered for a sustainable management of landscapes with Histosols and associated peat derived soils.  相似文献   

14.
In grassland farming, especially on coarse‐textured soils, K can be a critical element. On these soils, the actual K management as well as fertilizer history to a large extent determine the leaching of K. The effects of four fertilizer regimes on the nutrient balances and leaching of K from grassland grown on a sandy soil were investigated. The swards differed in the source and level of N input and K fertilizer: no fertilizer N + 166 kg K ha?1 year?1 (Control), 320 kg inorganic N ha?1 + 300 kg K ha?1 year?1 (MIN 320), 320 kg N + 425 kg K ha?1 year?1 in form of cattle slurry (SLR 320) and a grass–clover sward + 166 kg K ha?1 year?1 (WCL 0) without any inorganic N input. In a second experimental phase, cores from these swards were used in a mini‐lysimeter study on the fate of K from urine patches. On cut grassland after 6 years K input minus removal in herbage resulted in average K surpluses per year of 47, 39, 56 and 159 kg K ha?1 for the Control, MIN 320, WCL 0 and SLR 320, respectively. Related leaching losses per year averaged 7.5, 5, 15 and 25 kg K ha?1. Losses of urinary‐K through leaching were 2.2–4.5 and 5.7–8.4% of the K supplied in summer and autumn applications, respectively. Plant and soil were the major sinks for K from fertilizer or urine. High levels of exchangeable K in the soil and/or large and late fertilizer or urine applications stimulated leaching of K.  相似文献   

15.
Mineral N accumulates in autumn under pastures in southeastern Australia and is at risk of leaching as nitrate during winter. Nitrate leaching loss and soil mineral N concentrations were measured under pastures grazed by sheep on a duplex (texture contrast) soil in southern New South Wales from 1994 to 1996. Legume (Trifolium subterraneum)‐based pastures contained either annual grass (Lolium rigidum) or perennial grasses (Phalaris aquatica and Dactylis glomerata), and had a control (soil pH 4.1 in 0.01 m CaCl2) or lime treatment (pH 5.5). One of the four replicates was monitored for surface runoff and subsurface flow (the top of the B horizon), and solution NO3 concentrations. The soil contained more mineral N in autumn (64–133 kg N ha?1 to 120 cm) than in spring (51–96 kg N ha?1), with NO3 comprising 70–77%. No NO3 leached in 1994 (475 mm rainfall). In 1995 (697 mm rainfall) and 1996 (666 mm rainfall), the solution at 20 cm depth and subsurface flow contained 20–50 mg N l?1 as NO3 initially but < 1 mg N l?1 by spring. Nitrate‐N concentrations at 120 cm ranged between 2 and 22 mg N l?1 during winter. Losses of NO3 were small in surface runoff (0–2 kg N ha?1 year?1). In 1995, 9–19 kg N ha?1 was lost in subsurface flow. Deep drainage losses were 3–12 kg N ha?1 in 1995 and 4–10 kg N ha?1 in 1996, with the most loss occurring under limed annual pasture. Averaged over 3 years, N losses were 9 and 15 kg N ha?1 year?1 under control and limed annual pastures, respectively, and 6 and 8 kg N ha?1 year?1 under control and limed perennial pastures. Nitrate losses in the wet year of 1995 were 22, 33, 13 and 19 kg N ha?1 under the four respective pastures. The increased loss of N caused by liming was of a similar amount to the decreased N loss by maintaining perennial pasture as distinct from an annual pasture.  相似文献   

16.
The concentrations of total phosphorus and its distribution in fractions of different solubility have been investigated in 6 different organic manures and in 69 soil samples from two counties with high concentrations of livestock population (Cloppenburg and Vechta, Lower Saxony). In the manures, large proportions of total P (means: 24% and 44%) were extracted by H2O and anion exchange resin so that increases in labile soil P fractions can be expected if these manures are applied. The high total P-concentrations of the soils up to 8173 mg kg?1 were related to pedogenesis and soil use. Data such as soil P test (H2O-P, DL-P) values above the P-fertilizer recommendations and considerably larger proportions of soluble and labile P-fractions (7%-47% of total soil P) than in other regions strongly suggested that significant P-losses from the soils are likely. Therefore, reductions of P inputs to soils and measures to reduce the P-solubility and mobility are necessary for water conservation in this region.  相似文献   

17.
Column experiments were conducted over 45 d to determine the degree of P mobility. The sandy loam soil was spiked with 200 mg P kg–1 and 5% organic residues. The treatments included: control without any water‐soluble P and plant residues, potato, wheat, water‐soluble P fertilizer, wheat + water‐soluble P, and potato + water‐soluble P. Each column was leached with distilled water, and leachates were collected and analyzed for P, K+, Ca2+, Mg2+, along with pH and EC. Sequential extraction was performed on soil samples at the end of leaching column experiments. The relatively high initial concentration of P in the leachates decreased to more stable values after 15 d which can be attributed to the colloid‐bound P. The P concentrations in the leachates fluctuated between 8 and 220 mg L–1 in the water‐soluble–P fertilizer treatment, between 0.80 and 230 mg L–1 in the potato + water‐soluble‐P treatment, and between 0.90 and 214 mg L–1 in the wheat + water‐soluble P treatment. Leaching loss of P mainly occurred in the 15 d of leaching, accounting for 94%, 88%, and 65% of total P leached in wheat + water‐soluble‐P, potato + water‐soluble‐P, and water‐soluble‐P treatments, respectively. Maximum amount of P leached was found from an exponential kind model and was in the range 0.45 mg kg–1 to 125.4 mg kg–1 in control and potato + water‐soluble‐P treatments, respectively. Sequential extraction results showed that in control and amended soils the major proportion of P was associated with Ca. The leachate samples in all treatments were saturated with respect to hydroxyapatite, β‐tricalcium phosphate, and octacalcium phosphate up to 20 d of leaching, whereas they were undersaturated with respect to Mg‐P minerals through the entire leaching experiment.  相似文献   

18.
Hedley labile phosphorus(P)pools in soil tend to be several times larger than annual forest requirements,even in highly weathered soils characterized by P limitation.The discrepancy between plant and soil P status could be partly attributable to the frequently adopted air-drying pretreatment that tends to increase soil P solubility.In this study,the effects of air-drying on the distribution of Hedley P fractions were examined using soils collected under 4 forest types at Gongga Mountain,southwestern China.The results showed that the microbial biomass P(Pmic)in the organic horizon decreased markedly after air-drying.The concentrations of Hedley labile P in the air-dried samples were 31%–73%more than those in the field-moist samples.Consequently,the air-drying-induced increments of Hedley labile P pools in the surface soil horizons were 0.8–3.8 times the annual plant P requirements.The organic horizon was more susceptible to the air-drying-induced increases in Hedley labile P than the mineral horizon,probably because of the stronger release of Pmicand disruption of soil organic matter.The quality of P,indexed by the ratio of Hedley labile P to slowly cycling P,shifted in favor of the Hedley labile fractions after air-drying,further revealing that air-drying changed the distribution of Hedley P pools in forest soils.These indicated that the effects of air-drying could not be ignored when interpreting the discrepancy between the P status of plants and the Hedley labile P pools in forest soils.To more efficiently evaluate the P status in forest soils via the Hedley fractionation procedure,the use of field-moist soils is recommended.  相似文献   

19.
评价城市土壤磷素淋溶风险的化学指标   总被引:8,自引:0,他引:8  
Soils from urban and suburban areas are normally enriched with phosphorus (P). Sixteen urban soils with a wide range of total P concentrations under typical urban land uses were sampled and analyzed for extractable P concentrations using water, sodium bicarbonate and citric acid. Meanwhile the soils were artificially leached in columns and P concentrations in the leachates were determined. With linear regression a two-stage linear relationship was found to exis tbetween concentrations of P in the leachates and soil P contents obtained by various chemical measurements, i.e., there was a “change-point” denoting the critical threshold value for extractable P between the regression lines, above which concentrations of P in leachates increased substantially. These threshold “change-point” values were 1.5 mg kg^-1 for water-soluble P and CaCl2-P, 25 mg kg^-1 for Olsen-P, and 250-350 mg kg^-1 for citric acid-P with the sharpest change and the best predictor [τ2 (upper) = 0.928, τ2 (lower) = 0.807] appearing for Olsen-P. These “change-points” were considered important criteria in assessing the risk of P leaching from urban soils and could be used as standards to delineate and target hazardous areas in urban and suburban areas.  相似文献   

20.
Purpose

Recent research suggests that Swedish organic arable soils have been under-recognized as a potential source of phosphorus (P) loading to water bodies. The aim of this study was to compare P losses through leaching from organic and high-fertility mineral soils. In addition, the effectiveness of a magnesium-salt-coated biochar applied below the topsoil as a mitigation strategy for reducing P losses was evaluated.

Materials and methods

Phosphorus leaching was measured from four medium- to high-P arable soils, two Typic Haplosaprists (organic 1 and 2), a Typic Hapludalf (sand), and an unclassified loam textured soil (loam), in a 17-month field study utilizing 90-cm-long lysimeters. A magnesium-salt-coated biochar was produced and characterized using X-ray powder diffraction (XPD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and X-ray adsorption (XANES) spectroscopy, and its phosphate adsorption capacity was determined at laboratory scale. It was also applied as a 3-cm layer, 27 cm below the soil surface of the same lysimeters and examined as a mitigation measure to reduce P leaching.

Results and discussion

Total-P loads from the 17-month, unamended lysimeters were in the order of organic 2 (1.2 kg ha?1)?>?organic 1 (1.0 kg ha?1)?>?sand (0.3 kg ha?1)?>?loam (0.2 kg ha?1). Macropore flow, humic matter competition for sorption sites, and fewer sorption sites likely caused higher P losses from the organic soils. Analysis by XRD and SEM revealed magnesium was primarily deposited as periclase (MgO) on the biochar surface but hydrated to brucite (Mg(OH)2) in water. The Langmuir maximum adsorption capacity (Qmax) of the coated biochar was 65.4 mg P g?1. Lysimeters produced mixed results, with a 74% (P?<?0.05), 51% (NS), and 30% (NS) reduction in phosphate-P from the organic 1, organic 2, and sand, respectively, while P leaching increased by 230% (NS) from the loam.

Conclusions

The findings of this study indicate that P leached from organic arable soils can be greater than from mineral soils, and therefore, these organic soils require further investigation into reducing their P losses. Metal-enriched biochar, applied as an adsorptive layer below the topsoil, has the potential to reduce P losses from medium- to high-P organic soils but appear to be less useful in mineral soils.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号