首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
以2011年1月-2012年12月MODIS多时相遥感影像产品、气象数据和作物生育期为基础,借助SEBAL模型估算了黄淮海平原冬小麦实际蒸散量(ETa);通过MODIS NDVI光谱曲线特征与冬小麦单产数据的耦合,将县域尺度作物单产"降尺度"至基于像元的产量栅格图,实现冬小麦产量栅格化。在完成作物实际蒸散量模拟和产量栅格化的基础上,对黄淮海平原冬小麦水分生产力进行估算。结果表明,冬小麦水分生产力区域平均值为1.21kg·m~(-3),高值区主要位于北京、天津、山东北部和河北南部地区。在环渤海山东半岛滨海外向型二熟农渔区(一区)、海河低平原缺水水浇地二熟兼旱地一熟区(三区)和黄淮平原南阳盆地水浇地旱地二熟区(五区)冬小麦产量与水分生产力呈显著正相关,说明随着冬小麦产量的增加,其水分生产力增加;在燕山太行山山前平原水浇地二熟区(二区)冬小麦水分生产力与实际蒸散量呈极显著负相关(P0.01),与产量呈极显著正相关(P0.01),表明水分生产力将随着实际蒸散量的减少和产量的增加而增大,同时产量增加对水分生产力提高的贡献大于实际蒸散量的减少;在江淮平原丘陵麦稻两熟区(六区)冬小麦水分生产力与实际蒸散量呈显著负相关,与产量相关关系不明显,说明在黄淮海平原南部水分生产力的提高主要依靠实际蒸散量的减少。  相似文献   

2.
太行山山前平原区蒸散量和作物灌溉需水量的分析   总被引:9,自引:2,他引:9  
应用Penman-Montieth、Priestley-Taylor和FAO-24 Blaney-Criddle 3种方法计算了太行山山前平原高产区的参考作物蒸散量并对计算结果和利用实际蒸散量计算的作物系数进行了分析,结果表明:Penman-Montieth公式和FAO-24 Blaney-Criddle公式估算的参考作物蒸散量结果相近,而Priestley-Taylor方法结果偏低;在不同公式基础上计算的作物系数也存在着明显的差异,以Penman-Montieth公式为基础计算的作物系数比较合理,FAO-24 Blaney-Criddle计算的作物系数在4月到10月之间比较合理,Priestley-Taylor公式计算的作物系数偏高;在分析了多年作物系数的基础上,对不同水分年型下的作物需水量和灌溉需水量进行了计算,冬小麦和夏玉米季的灌溉需水量分别在270~400 mm和0~330 mm之间。  相似文献   

3.
基于遥感的华北平原农作物时空分布变化特征分析   总被引:4,自引:4,他引:4  
作物种植面积的多年时空变化是进行农业结构调整和优化的基础,也是开展农业减灾、地下水保护的重要依据。为了解华北平原主要作物近年来种植面积的时空变化过程,本文基于2000—2013年的MODIS NDVI数据和TM/ETM遥感数据提取当地主要作物的种植面积,并分析了华北平原主要作物近年来的时空变化特征。结果表明:1基于MODIS NDVI数据和TM/ETM遥感数据提取当地主要作物的种植面积,提取精度较高,结果可靠;2冬小麦?夏玉米主要分布于太行山前平原、山东省和河南省的引黄河灌区,单季玉米在河北平原北部分布最广,水稻集中分布于天津、河北唐山地区和黄河沿岸,蔬菜主要分布在城市郊区,林果分散分布于几个产果区和京津周边地区,棉花主要集中于华北平原中部地区。3华北平原粮食作物(小麦、玉米和水稻)种植面积明显下降,经济作物(林果和蔬菜)则显著增加,其中林果、蔬菜和水稻的面积变化率较大,分别为56.45%、35.76%和23.16%,蔬菜和水稻的位置转移明显。4景观格局AWMPFD和SHEI指数值表明,河北平原以南的冬小麦?夏玉米种植规模化程度提高,豫北地区冬小麦?夏玉米种植面积增加,豫北以北地区由于各类经济作物种植面积增加,区域作物种植多样化指数增加。该结果可为农业种植结构调整、资源合理利用提供参考。  相似文献   

4.
基于STME模型和MODIS数据的滹滏平原实际蒸散量遥感估算   总被引:1,自引:0,他引:1  
滹滏平原光、热及土壤资源优越,是华北平原重要的粮食生产基地,灌溉是该区农业获得稳产高产的重要保障,持续抽取地下水和无节制利用地表水已经引起了严重的水资源危机,合理高效利用有限水资源进行农业生产势在必行。本文利用单源梯形遥感蒸散发模型(a single-source trapezoid model for evapotranspiration,STME)和中等分辨率成像光谱仪MODIS(2011—2012年共115期)地表温度和反射率产品估算区域地表土壤缺水状况及实际蒸散量,并利用中国科学院栾城农业生态系统试验站(以下简称"栾城站")和赵县梨园涡度相关系统地表水热通量的观测值对STME模型估算结果进行验证。结果表明该模型可以很好地估算区域蒸散量,误差在可接受范围内。赵县梨园净辐射Rn的观测平均值为4.10 mm,估算平均值为4.69 mm,均方根差RMSD为0.80 mm;赵县梨园蒸散量观测平均值为2.86 mm,估算平均值为3.01 mm,均方根差RMSD为0.95 mm;栾城站蒸散量的观测平均值为2.67 mm,估算平均值为2.44 mm,均方根差RMSD为0.87 mm。将STME模型应用到滹滏平原估算日蒸散量,明确了区域尺度蒸散发的时空变化特征:10月份果园生态系统蒸散量多于农田生态系统;11月份区域蒸散量整体小于1 mm;第2年春季小麦返青、拔节期,农田生态系统蒸散量多于果园生态系统蒸散量;5月份处于植被生长旺盛期,农田和果园生态系统的蒸散量相差不大;6月份小麦收获,玉米播种,农田生态系统蒸散量少于果园生态系统;7月份整个区域蒸散量达到最大,蒸散量不仅与植被长势相关,而且与土壤湿度相关;8、9月份随着植被的成熟和收获,区域蒸散量整体变小。不同时期区域水分亏缺指数不同,可根据其指导区域灌溉量。STME模型继承了基于数理计算确定梯形顶点的方法和水分亏缺指数,使得计算过程得以简化且物理机制明确。  相似文献   

5.
R-K蒸散模型用于华北平原冬小麦农田的参数校正与评价   总被引:1,自引:1,他引:0  
为了解华北平原冬小麦田蒸散特征,并对蒸散估算模型在冬小麦田的适用性和稳定性进行分析,该文利用涡度相关系统对2013-2015年冬小麦田的蒸散量进行观测,以气象数据为基础对估算模型Rana和Katerji模型(简称R-K模型)进行修正;利用修正后模型对日蒸散量进行预测;并与FAO-PM模型的预测值及涡度相关系统的测量值进行对比,来说明R-K模型在冬小麦田的适用性。结果表明冬小麦田蒸散量有明显的季节变化,日蒸散量在1月底最小,返青期开始逐渐增大,于4、5月份达到最大值;2个冬小麦生长季总蒸散量分别为436.3和334.8 mm。统计参数的对比说明修正后R-K模型对冬小麦田日蒸散量的预测效果优于FAO-PM模型。敏感性分析说明R-K模型对气象因素不敏感,稳定性良好。R-K模型对冬小麦不同生长阶段的蒸散量预测效果在后期表现最佳,其次为发育期、中期和初期,越冬期表现最差。该研究可为利用模型估算蒸散量及指导农田精确灌溉提供参考。  相似文献   

6.
基于互补相关模型和IKONOS数据的农田蒸散时空特征分析   总被引:4,自引:3,他引:1  
获取田块内高分辨率农田实际蒸散信息对于精准农业中制定灌溉计划、变量处方实施及评价水分利用效率等具有重要参考价值,将传统方法与遥感结合并生成精细田块尺度的农田蒸散成为当前研究热点方向。本文基于互补相关模型和北京2011年3-6月份间内气象观测数据进行了冬小麦实际蒸散估算,并利用大型蒸渗仪对结果进行了验证和分析。最后将互补相关模型与高空间分辨率遥感数据结合实现了田块尺度农田瞬时蒸散估算,并结合蒸发比率不变法实现了日尺度蒸散扩展。结果表明:在2011年3-6月间试验区内冬小麦总耗水量达到469.12 mm,其中在灌浆期5月份耗水比重最大,占到总量近二分之一;互补相关模型估算精度整体较高,其中在5月份估算精度最高(R2=0.863,RMSE=0.103 mm);扩展后的日尺度蒸散量与实测结果非常一致(R2=0.937,RMSE=0.668 mm)。上述结果表明在没有土壤温、湿度数据及高分辨率热红外遥感数据条件下,仅利用互补相关模型,并结合气象观测数据和高分辨率遥感数据即可估算出精细尺度农田蒸散。  相似文献   

7.
华北平原灌溉农田的土壤水量平衡和水分利用效率   总被引:16,自引:1,他引:16  
华北平原农业面临的主要问题是水资源短缺,地下水位持续下降。通过一维土壤水量平衡模型模拟了华北平原不同灌溉方式下农田耗水量和土壤水分深层渗漏的变化,并分析了作物的产量和水分利用效率。结果显示在正常的灌溉条件下,冬小麦季地下水的采补差额超过了200mm,某生育期一定程度的水分亏缺(返青期、拔节期或灌浆期)能明显减少冬小麦的耗水量,但没有明显减少作物的产量。因此,在一定程度上减少灌溉是可行的,但仍不能达到地下水资源的采补平衡。从长远来看,华北平原维持可持续的地下水灌溉开采,应减少冬小麦的种植面积、增加低耗水经济作物的比例。  相似文献   

8.
降水是作物生产的主要限制因素,在干旱半干旱地区尤为重要。通过对太行山山前平原近46年降水量资料分析表明,太行山山前平原降水量在以每年5.1mm速度下降,其中夏玉米季下降比较严重。而冬小麦季的灌溉需水量是夏玉米季的2倍。田间试验结果表明,旱作条件下作物产量与降水量关系密切,而非充分灌溉条件下作物产量的变异性不大,今后应提倡合理灌溉。  相似文献   

9.
华北平原是中国重要的粮食生产基地,在国家粮食产业中地位较高,但长期灌溉造成了华北平原地下水资源的严重亏损,地下水位持续下降。该研究利用APSIM模型对华北平原1986-2015年不同种植模式下的产量和耗水情况进行模拟研究,为华北平原调整作物种植模式、农业水资源管理以及农业发展政策的制定提供科学依据。研究结果表明:APSIM模型能够较好地模拟冬小麦和夏玉米的生育期、产量及水分利用特征,其中生育期模拟结果的误差在5 d之内,产量、ET和下渗量模拟结果的R2均在0.84以上,表明该模型在华北平原具有较好的适用性;在华北平原地区,冬小麦-夏玉米一年两熟种植模式(M2Y1)年均产量(13 445 kg/hm2)最高,但耗水量(724 mm)也是最大,水分亏损(233 mm)最为严重;一年一熟种植模式(M1Y1)年均耗水量(534 mm)较小,水分亏损量(43 mm)最少,但产量(9 215 kg/hm2)较低;两年三熟种植模式(M3Y2)兼顾产量和耗水,在保证一定产量的前提下减少了耗水量,产量耗水综合效果最好,适合在华北平原推广实行。此外,该研究对栾城站丰水年、平水年和枯水年等不同降水年型下的3种种植模式产量耗水特征进行了对比分析,研究表明在华北平原降水资源对于作物生长有重要意义,年降水量越大,作物产量越高,水分亏损量越少。  相似文献   

10.
农业技术和气候变化对农作物产量和蒸散量的影响   总被引:4,自引:2,他引:2  
随着农业生产条件的改善、品种改进和有利的气象条件的变化, 世界各地的作物产量得到大幅度提高, 但作物的蒸散量却未出现大幅度提高。本文以石家庄气象站1955~2007 年的气象资料为基础, 分析了河北省冬小麦和夏玉米生长期间主要气象因素变化, 结合中国科学院栾城农业生态系统试验站长期定位灌溉试验的研究结果, 分析了农业生产条件和气象因子变化对冬小麦和夏玉米产量及耗水量的影响。结果表明,1955~2007 年冬小麦和夏玉米生长季的气象因子发生了变化, 日照时数、相对湿度、风速、气温日较差显著降低, 最低气温、平均气温和积温显著升高, 气象因子的变化对作物总蒸散量未产生明显影响, 但由于降水减少,作物生长期间的灌溉需水量呈增加趋势。长期灌溉试验结果表明, 随着农业生产条件的变化和品种的改良, 冬小麦和夏玉米的产量不断增加, 而耗水量的增加幅度小于产量增加幅度, 夏玉米的耗水量呈稳定状态。节水技术的推广和应用对维持耗水量稳定起着非常关键的作用。  相似文献   

11.
农田耗水构成、规律及影响因素分析   总被引:5,自引:2,他引:3  
农业用水占总用水量的70%左右, 对农田耗水规律和过程的研究对发展区域节水农业有着非常重要的作用。本文通过回顾中国科学院栾城农业生态系统试验站建站以来在农田水分循环和节水方面的研究进展,对长期定位试验下不同灌溉水量的耗水规律、农田耗水过程及影响农田耗水的因素进行了分析。通过利用水量平衡法和大型蒸渗仪测定等方法确定蒸散量, 用小型蒸发器测定土壤蒸发。长期定位试验的结果表明: 在该区域冬小麦-夏玉米一年两作的种植方式下, 这两种作物耗水量相似, 随着灌溉量的增加, 农田耗水有增加的趋势; 冬小麦的农田耗水量在283~493 mm 之间, 灌溉水量较小处理的变异系数较大。利用大型称重式蒸渗仪和自制的微型蒸发器(MLS)测定的冬小麦和夏玉米季的棵间蒸发均占蒸散量的1/3。因此, 在此基础上可以利用秸秆覆盖减少土壤蒸发且效果非常明显, 20 年的试验表明秸秆覆盖每年可以减少土壤蒸发40~50 mm, 冬小麦秸秆覆盖夏玉米田可以抑制棵间蒸发的58.0%, 夏玉米秸秆覆盖冬小麦田可以抑制蒸发40.4%。长期耕作的定位试验表明: 不同耕作方式下的土壤蒸发也存在明显的差异, 免耕加秸秆覆盖处理的蒸发最小, 而深耕的最大。同时, 不同灌溉制度、种植方式和冠层结构均会对农田耗水产生影响。这些研究结果为以后的节水理论和技术发展提供了依据。  相似文献   

12.
Maize (Zea mays L.), a staple crop grown from June to September during the rainy season on the North China Plain, is usually inter-planted in winter wheat (Triticum aestivum L.) fields about one week before harvesting of the winter wheat. In order to improve irrigation efficiency in this region of serious water shortage, field studies in 1999 and 2001, two dry seasons with less than average seasonal rainfall, were conducted with up to five irrigation applications to determine evapotranspiration, calculate the crop coefficient, and optimize the irrigation schedule with maize under mulch, as well as to establish the effects of irrigation timing and the number of applications on grain yield and water use efficiency (WUE) of maize. Results showed that with grain production at about 8 000 kg ha^-1 the total evapotranspiration and WUE of irrigated maize under mulch were about 380-400 mm and 2.0-2.2 kg m^-3, respectively. Also in 2001 WUE of maize with mulch for the treatment with three irrigations was 11.8% better than that without mulch. In the 1999 and 2001 seasons, maize yield significantly improved (P = 0.05) with four irrigation applications, however, further increases were not significant. At the same time there were no significant differences for WUE with two to four irrigation applications. In the 2001 season mulch lead to a decrease of 50 mm in the total soil evaporation, and the maize crop coefficient under mulch varied between 0.3-1.3 with a seasonal average of 1.0.  相似文献   

13.
华北典型区域农田耗水与节水灌溉研究   总被引:7,自引:3,他引:4  
本文总结了中国科学院遗传与发育生物学研究所农业资源研究中心围绕华北典型地区冬小麦-夏玉米一年两熟开展的节水灌溉研究。在位于华北中北部的中国科学院栾城农业生态系统试验站的定点试验结果显示,从1980年到2017年,在充分灌溉条件下冬小麦产量增加55.7%、夏玉米产量增加59.7%。冬小麦生育期耗水(ET)从400 mm增加到465 mm;玉米耗水年平均稳定在375 mm左右;年耗水量从777.0 mm增加到834.4 mm;满足冬小麦、夏玉米生育期耗水条件下,年灌溉需水量平均300 mm,必须减少灌溉用水和田间耗水,才能解决区域地下水超采问题。研究发现在限水灌溉条件下,冬小麦拔节期1次灌溉可显著促进作物营养生长和根系生长,利于后期土壤水分高效利用,在维持作物稳产基础上,比充分灌溉年节水165.2 mm。研究发现进一步利用小定额灌溉技术,通过增加灌水频率、缩减次灌水量,可增加有限水对作物的有效性,实现作物根系、土壤水分和养分在空间上的耦合,进一步提升有限灌溉对作物的增产作用。只考虑维持播种时良好土壤水分条件、生育期不进行灌溉的最小灌溉模式,与充分灌溉模式相比,产量减少28%,但可节约灌溉水69%,田间耗水减少43%,水分利用效率提高13%,年耗水量维持在560 mm左右。相对于减熟制节约灌溉水措施,冬小麦-夏玉米一年两季最小灌溉模式总产量高于两年3作5.5%~12.0%,年耗水量低于两年3作10%~13%,可显著消减减熟制带来的休闲期土壤蒸发损失。因此,实施冬小麦、夏玉米生育期节水灌溉,如最小灌溉、关键期灌溉,可大幅度降低灌水量和作物生育期耗水量,同时又能维持一定的生产能力,是华北实施地下水限采措施下应优先考虑的技术选择。  相似文献   

14.
应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征   总被引:23,自引:1,他引:23  
将Hydrus 1D水氮联合模型用于模拟冬小麦农田水分氮素运移转化过程,试验和模拟结果表明,北京地区冬小麦农田不同水肥处理小区,蒸散量约400mm,占根层总耗水量的95%以上,水分渗漏到根层以下量很少,各小区最大渗漏量为38.4mm。作物吸氮占总耗氮量的94%以上,而根层以下氮淋失很少,最大氮淋失量为8.7kg/hm2。氮淋失量主要对应于水分渗漏量,可考虑改变灌溉措施减少水氮淋失量。传统水、肥管理方案与优化水、肥管理方案比较,各处理产量和水氮利用效率无显著差异,而前者根层水分渗漏量大并肥料总投入量大。综合评价认为,优化水肥管理措施更合理可取。  相似文献   

15.
华北平原浅层地下水可持续利用潜力分析   总被引:6,自引:2,他引:4  
浅层地下水是华北平原最重要的水资源,对农业、经济和社会发展具有制约性作用。本文基于"华北平原地下水可持续利用调查评价"项目研究资料与成果,以行政区为单元,计算了华北平原浅层地下水开采资源量,评价了其资源潜力,在此基础上定性分析了浅层地下水的可持续利用潜力。研究结果表明,华北平原浅层地下水总开采资源量为202.94×108m3·a-1,开采资源模数为14.58×104m3·a-1·km-2,区域分布不均,呈西部山前平原及沿黄平原高、中东部平原低的规律。浅层地下水开采潜力系数为1.15,总体上采补平衡,开采潜力一般,但空间分布不均,最高值为滨州地区的5.16和天津地区的4.18,较低的为石家庄地区的0.72和廊坊地区的0.75。可持续利用潜力分析表明,华北平原浅层地下水已基本无开发利用潜力,尤其浅层淡水,局部地区超采现象严重,可持续利用潜力不容乐观;但微咸水、咸水开采潜力(较)大,其中河北平原咸水、微咸水开采资源潜力近35×108 m3·a-1,在开发利用技术条件允许的情况下可以进一步增大开发利用率,提高区内浅层地下水可持续利用潜力。该研究可为实现华北平原的水资源优化配置、农业与经济社会的可持续发展提供指导。  相似文献   

16.
气候变暖及其对作物系统的影响是农业应对全球变化领域的主要研究命题之一。本文以河北省石家庄为例, 通过对近50 年气温数据以及作物系统热量资源变化特征的分析, 探讨了太行山山前平原区气候变暖对冬小麦-夏玉米作物系统的影响。山前平原区近50 年来明显变暖, 增温速率为0.35 ℃·10a-1, 其中冬季增温幅度最大, 为0.51 ℃·10a-1。气候变暖对作物的影响主要体现在有效积温的增加。近20 年来, >10 ℃积温较基准时段增加明显, 农业热量资源条件改善, 相当于农作物有效生育期延长10~20 d。由于较大的增温幅度及季节不均衡性, 冬小麦-夏玉米作物系统受到显著影响: 1990 年以来, 冬小麦生长季积温较基准时段上升幅度超过10%, 冬前生长期积温增加易造成旺长, 影响其安全越冬能力, 需推迟冬小麦播种期以适应气候变暖导致的不利影响; 气候变暖改善了夏玉米生育期热量条件, 综合考虑其收获期因小麦晚播而相应推迟的影响,夏玉米生长季>10 ℃积温可超过2 900 ℃, 满足中晚熟玉米品种平播的热量条件。  相似文献   

17.
针对海河平原地下水位持续下降和维持小麦—玉米两熟较高产量之间的矛盾,对不同降水年型小麦—玉米不同灌溉制度下产量和水分利用效率(WUE)进行模拟分析,结果对平衡该区域地下水可持续利用与粮食生产提供重要科学决策依据。利用研究区域站点长时间序列气象数据,以小麦不同水分处理地上部生物量、叶面积和周年土壤水分动态田间试验数据为基础,对APSIM小麦玉米遗传参数和土壤水分等相关参数进行了校准和验证。利用校准和验证的APSIM模型,对不同降水年型小麦—玉米不同生长阶段水分亏缺指数(CWDI)进行了分析,并模拟了8种不同灌溉制度情景下小麦玉米产量、水分利用效率和灌溉水利用效率(IWUE)。结果表明:不同降水年型小麦各生育阶段CWDI均较高,说明无论干旱、平水和湿润年份小麦需水量远大于降水量,尤其是拔节—成熟期水分严重亏缺,属极旱;玉米抽雄前基本不受干旱胁迫影响,但抽雄后的灌浆阶段处于中旱或重旱,对水分需求迫切。兼顾产量和水分利用效率的灌溉制度,干旱、平水及湿润年份全年灌溉3次,灌水量为225 mm(小麦播种75 mm+拔节期75 mm+开花期75 mm)时可获得较高的周年产量和最大WUE。不同降水年型周年产量和WUE在干旱年份分别为17 357.6 kg/hm~2和29.6 kg/(hm~2·mm),平水年份分别为18 827.9 kg/hm~2和25.9 kg/(hm~2·mm),湿润年份分别为19 685.2 kg/hm~2和25.8 kg/(hm~2·mm)。此灌溉制度下,小麦、玉米可获得较高的产量和水分利用效率,为该区域水—粮权衡的重要灌溉策略和措施。  相似文献   

18.
华北平原冬小麦-夏玉米一年两熟种植模式为维护国家粮食安全发挥了重要作用。但冬小麦生长期正处于华北平原降水较少的干旱季节,实现高产依赖于灌溉,是华北平原地下水超采的主导因素之一。随着国家地下水限采政策的实施,在地下水超采区如何稳定冬小麦的种植面积和产量是面临的一个重要问题。本文通过综述以往研究并结合典型地点田间试验结果,从冬小麦种植可减少休闲期土壤蒸发损失、具有的深根系系统可充分利用土壤储水、可利用微咸水替代淡水灌溉、通过限水灌溉发展优质麦生产、冬春形成覆盖层美化和防沙尘效应等方面论述了华北平原种植冬小麦的优势,提出华北平原冬小麦生产需要转变传统高耗水高产量理念,充分发挥冬小麦抗旱、耐盐能力强的特点,在不实施大规模压缩冬小麦种植面积条件下,通过冬小麦限水灌溉和微咸水利用满足对地下水压采需求,充分发挥华北平原冬小麦种植冬春防风沙、美化环境的生态功能,同时满足区域口粮安全的保障功能。  相似文献   

19.
华北山前平原农田生态系统氮通量与调控   总被引:4,自引:2,他引:2  
针对华北太行山前平原冬小麦-夏玉米轮作农田, 研究农田常规施肥[400 kg(N)·hm-2·a-1]条件下作物氮素吸收与损失通量过程, 并根据各氮素输出通量特征开展管理调控。研究结果表明, 全年小麦-玉米轮作农田系统氮输入总量为561~580 kg(N)·hm-2, 输出量468~494 kg(N)·hm-2, 两季作物总盈余86~93 kg(N)·hm-2, 其中有机氮为24~36 kg·hm-2。氨挥发和NO3--N 淋溶损失是该区域农田氮素损失的主要途径, 是氮肥利用率低的重要原因。平均每年因氨挥发而造成的肥料氮损失量为60 kg(N)·hm-2, NO3--N 淋溶损失量为47~84kg(N)·hm-2, 两者占施肥总量的30%。每年因硝化-反硝化过程造成的肥料损失很小, 仅为5.0~8.7 kg(N)·hm-2。通过施肥后适时灌水、合理调控灌水时间与用量, 以及利用秸秆还田与肥料混合施用等管理措施可改善氮素的迁移和转化规律, 有效减少氨挥发和NO3--N 淋溶损失, 并结合缓/控释肥与精准施肥技术, 充分利用土壤本身矿质氮素, 可有效提高养分利用效率和作物产量, 改善农田生态环境与促进农业持续和谐发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号