首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Brown spot is a devastating rice disease. Quantitative resistance has been observed in local varieties (e.g., ‘Tadukan’), but no economically useful resistant variety has been bred. Using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) from ‘Tadukan’ (resistant) × ‘Hinohikari’ (susceptible), we previously found three QTLs (qBS2, qBS9, and qBS11) that conferred resistance in seedlings in a greenhouse. To confirm their effect, the parents and later generations of RILs were transplanted into paddy fields where brown spot severely occurred. Three new resistance QTLs (qBSfR1, qBSfR4, and qBSfR11) were detected on chromosomes 1, 4, and 11, respectively. The ‘Tadukan’ alleles at qBSfR1 and qBSfR11 and the ‘Hinohikari’ allele at qBSfR4 increased resistance. The major QTL qBSfR11 coincided with qBS11 from the previous study, whereas qBSfR1 and qBSfR4 were new but neither qBS2 nor qBS9 were detected. To verify the qBSfR1 and qBSfR11 ‘Tadukan’ resistance alleles, near-isogenic lines (NILs) with one or both QTLs in a susceptible background (‘Koshihikari’) were evaluated under field conditions. NILs with qBSfR11 acquired significant field resistance; those with qBSfR1 did not. This confirms the effectiveness of qBSfR11. Genetic markers flanking qBSfR11 will be powerful tools for marker-assisted selection to improve brown spot resistance.  相似文献   

2.
Fusarium head blight (FHB) is an important disease of wheat (Triticum aestivum L.). The aim of this study was to determine the effects of quantitative trait locus (QTL) regions for resistance to FHB and estimate their effects on reducing FHB damage to wheat in Hokkaido, northern Japan. We examined 233 F1-derived doubled-haploid (DH) lines from a cross between ‘Kukeiharu 14’ and ‘Sumai 3’ to determine their reaction to FHB during two seasons under field conditions. The DH lines were genotyped at five known FHB-resistance QTL regions (on chromosomes 3BS, 5AS, 6BS, 2DL and 4BS) by using SSR markers. ‘Sumai 3’ alleles at the QTLs at 3BS and 5AS effectively reduced FHB damage in the environment of Hokkaido, indicating that these QTLs will be useful for breeding spring wheat cultivars suitable for Hokkaido. Some of the QTL regions influenced agronomic traits: ‘Sumai 3’ alleles at the 4BS and 5AS QTLs significantly increased stem length and spike length, that at the 2DL QTL significantly decreased grain weight, and that at the 6BS QTL significantly delayed heading, indicating pleiotropic or linkage effects between these agronomic traits and FHB resistance.  相似文献   

3.
Many important apple (Malus × domestica Borkh.) fruit quality traits are regulated by multiple genes, and more information about quantitative trait loci (QTLs) for these traits is required for marker-assisted selection. In this study, we constructed genetic linkage maps of the Japanese apple cultivars ‘Orin’ and ‘Akane’ using F1 seedlings derived from a cross between these cultivars. The ‘Orin’ map consisted of 251 loci covering 17 linkage groups (LGs; total length 1095.3 cM), and the ‘Akane’ map consisted of 291 loci covering 18 LGs (total length 1098.2 cM). We performed QTL analysis for 16 important traits, and found that four QTLs related to harvest time explained about 70% of genetic variation, and these will be useful for marker-assisted selection. The QTL for early harvest time in LG15 was located very close to the QTL for preharvest fruit drop. The QTL for skin color depth was located around the position of MYB1 in LG9, which suggested that alleles harbored by ‘Akane’ are regulating red color depth with different degrees of effect. We also analyzed soluble solids and sugar component contents, and found that a QTL for soluble solids content in LG16 could be explained by the amount of sorbitol and fructose.  相似文献   

4.
Resistance to soybean mosaic virus (SMV) is imperative for soybean (Glycine max (L.) Merr.) production in the Tohoku region. Molecular markers for SMV resistance were previously reported for U.S. SMV strains, but they cannot be applied because of the differences in strain classification between Japan and the U.S. A U.S. variety ‘Harosoy’ has been used mainly as a donor of resistance to SMV strains C and D in a Japanese breeding program, resulting in resistant varieties such as ‘Fukuibuki.’ Because ‘Harosoy’ harbors the Rsv3 gene conferring resistance to the virulent SMV strain groups, G5 through G7, it appears that the Rsv3 gene confers resistance to strains C and D. In this study, we introduced resistance to the two strains from ‘Fukuibuki’ into a leading variety ‘Ohsuzu’ by recurrent backcrossing with marker-assisted selection. All lines selected with markers near Rsv3 showed resistance to the strains, suggesting that the Rsv3 locus is responsible for the resistance. Three years of trials showed that one of the breeding lines, ‘Tohoku 169,’ was equivalent to ‘Ohsuzu’ with respect to agricultural characteristics such as seed size, maturity date, and seed yield, except for the SMV resistance.  相似文献   

5.
Pre-harvest sprouting (PHS) is one of the serious problems for wheat production, especially in rainy regions. Although seed dormancy is the most critical trait for PHS resistance, the control of heading time should also be considered to prevent seed maturation during unfavorable conditions. In addition, awning is known to enhance water absorption by the spike, causing PHS. In this study, we conducted QTL analysis for three PHS resistant related traits, seed dormancy, heading time and awn length, by using recombinant inbred lines from ‘Zenkouji-komugi’ (high PHS resistance) × ‘Chinese Spring’ (weak PHS resistance). QTLs for seed dormancy were detected on chromosomes 1B (QDor-1B) and 4A (QDor-4A), in addition to a QTL on chromosome 3A, which was recently cloned as TaMFT-3A. In addition, the accumulation of the QTLs and their epistatic interactions contributed significantly to a higher level of dormancy. QDor-4A is co-located with the Hooded locus for awn development. Furthermore, an effective QTL, which confers early heading by the Zenkouji-komugi allele, was detected on the short arm of chromosome 7B, where the Vrn-B3 locus is located. Understanding the genetic architecture of traits associated with PHS resistance will facilitate the marker assisted selection to breed new varieties with higher PHS resistance.  相似文献   

6.
Rice brown spot (BS), caused by Bipolaris oryzae, causes yield loss and deterioration of grain quality. Using single-nucleotide polymorphism (SNP) markers, we conducted quantitative trait locus (QTL) analysis of BS resistance in backcross inbred lines (BILs) from a cross between an American rice cultivar, ‘Dawn’ (resistant), and ‘Koshihikari’ (susceptible). Four QTLs for BS resistance were detected in a three-year field evaluation, and ‘Dawn’ contributed the resistance alleles at all QTLs. The QTL with the greatest effect, qBSR6-kd, explained 15.1% to 20.3% of the total phenotypic variation. Although disease score and days to heading (DTH) were negatively correlated in all three years, qBSR6-kd was located near a QTL for DTH at which the ‘Dawn’ allele promoted heading. Another BS resistance QTL (qBSR3.1-kd) was unlinked to the QTLs for DTH. Therefore, these two QTLs are likely to be useful for breeding BS-resistant varieties without delaying heading. The other two BS resistance QTLs (qBSR3.2-kd and qBSR7-kd) were located near DTH QTLs at which the ‘Dawn’ alleles delayed heading. The QTLs reported here will be good candidates for developing BS-resistant cultivars.  相似文献   

7.
Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding.  相似文献   

8.
Male sterility is one of the reproductive isolation systems in plants and quite useful for F1 seed production. We previously identified three independent quantitative trait loci (QTLs) for male sterility of cultivated strawberry, Here, we identified the specific subgenomes in which these QTLs are located by QTL-seq approach. QTLs qMS4.1, qMS4.2, and qMS4.3 were mapped separately in subgenomes Fvb4-4, Fvb4-3, and Fvb4-1, respectively, in ‘Camarosa’ genome assembly v. 1.0.a1. Candidate regions of qMS4.1 and qMS4.3 were clearly detected around 12–26 Mb in Fvb4-4 and 12–14 Mb in Fvb4-1, respectively; those of qMS4.2 were fragmented in Fvb4-3, which suggests that some scaffolds were incorrectly assembled in Fvb4-3. qMS4.3 was mapped to chr4X1 of ‘Reikou’ genome assembly r2.3, and qMS4.1 and qMS4.2 were both mapped to chr4Av, which indicates that differentiation of the subgenomes in which both QTLs are located was insufficient in ‘Reikou’ r2.3. Although ‘Camarosa’ genome assembly v. 1.0.a1 is an unphased map, which merges homologous chromosomes into one sequence, ‘Reikou’ genome assembly r2.3 is a phased map, which separates homologous chromosomes. QTL mapping to different reference genomes clearly showed the specific features of each reference genome, and that using different kinds of reference map could accelerate fine mapping and map-based cloning of certain genes of cultivated strawberry.  相似文献   

9.
Asian cultivated rice Oryza sativa L. was domesticated from its wild ancestor, O. rufipogon. During domestication, the cultivated rice lost its seed-shattering behaviour. Previous studies have shown that two major quantitative trait loci (QTLs; qSH1 and sh4) are responsible for the seed-shattering degree. Here, we produced introgression lines carrying non-functional alleles from O. sativa ‘Nipponbare’ at the two major QTLs in the genetic background of wild rice O. rufipogon W630, and examined the effects of the two QTLs on seed shattering and abscission layer formation. The introgression lines, with Nipponbare alleles at either or both loci, showed complete or partial abscission layer formation, respectively, indicating that other unknown loci might be involved in enhancing seed shattering in wild rice. We detected a single QTL named qSH3 regulating seed-shattering degree using an F2 population between Nipponbare and the introgression line carrying Nipponbare alleles at the two QTLs. Although we generated an introgression line for qSH3 alone, no effects on seed shattering were observed. However, a significant effect on seed-shattering degree was observed for the introgression line carrying Nipponbare alleles at qSH3 and the two QTLs, suggesting an important role of qSH3 on seed shattering in coordination with the two QTLs.  相似文献   

10.
Lodging tolerance (LT) is an important trait for high yield and combine-harvesting efficiency in soybean [Glycine max (L.) Merr.]. Many previous studies have investigated quantitative trait loci (QTLs) for lodging score (LS) in soybean. Most of the investigated QTLs were located in the proximal region of maturity or growth habit loci. The aim of this study was to identify genetic factors for LT not associated with maturity or growth habit. QTL analysis was performed using a recombinant inbred line (RIL) population derived from a cross between ‘Toyoharuka’ (TH), a lodging-tolerant cultivar, and ‘Toyomusume’ (TM). The genotypes of TH and TM were estimated as both e1e2E3E4 and dt1. The average LS over 4 years was used for QTL analysis, identifying a major and stable QTL, qLS19-1, on chromosome 19. The LS of the near-isogenic line (NIL) with the TH allele at Sat_099, the nearest marker to qLS19-1, was significantly lower than the NIL with the TM allele at that position. The TH allele at Sat_099 rarely had a negative influence on seed yield or other agronomic traits in both NILs and the TM-backcrossed lines. Our results suggest that marker-assisted selection for qLS19-1 is effective for improving LT in breeding programs.  相似文献   

11.
To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a ‘piping-leaf-type’ cultivar, ‘Yugafu’, and a ‘spiny-tip-leaf-type’ variety, ‘Yonekura’. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the ‘spiny-leaf type’ as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding.  相似文献   

12.
In the wheat (Triticum aestivum L.) cultivar ‘Zenkoujikomugi’, a single nucleotide polymorphism (SNP) in the promoter of MOTHER OF FT AND TFL1 on chromosome 3A (MFT-3A) causes an increase in the level of gene expression, resulting in strong grain dormancy. We used a DNA marker to detect the ‘Zenkoujikomugi’-type (Zen-type) SNP and examined the genotype of MFT-3A in Japanese wheat varieties, and we found that 169 of 324 varieties carry the Zen-type SNP. In Japanese commercial varieties, the frequency of the Zen-type SNP was remarkably high in the southern part of Japan, but low in the northern part. To examine the relationship between MFT-3A genotype and grain dormancy, we performed a germination assay in three wheat-growing seasons. On average, the varieties carrying the Zen-type SNP showed stronger grain dormancy than the varieties carrying the non-Zen-type SNP. Among commercial cultivars, ‘Iwainodaichi’ (Kyushu), ‘Junreikomugi’ (Kinki-Chugoku-Shikoku), ‘Kinuhime’ (Kanto-Tokai), ‘Nebarigoshi’ (Tohoku-Hokuriku), and ‘Kitamoe’ (Hokkaido) showed the strongest grain dormancy in each geographical group, and all these varieties, except for ‘Kitamoe’, were found to carry the Zen-type SNP. In recent years, the number of varieties carrying the Zen-type SNP has increased in the Tohoku-Hokuriku region, but not in the Hokkaido region.  相似文献   

13.
Black spot disease, which is caused by the Japanese pear pathotype of the filamentous fungus Alternaria alternata (Fries) Keissler, is one of the most harmful diseases in Japanese pear cultivation. We mapped a gene for susceptibility to black spot disease in the Japanese pear (Pyrus pyrifolia Nakai) cultivar ‘Kinchaku’ (Aki gene) at the top of linkage group 11, similar to the positions of the susceptibility genes Ani in ‘Osa Nijisseiki’ and Ana in ‘Nansui’. Using synteny-based marker enrichment, we developed novel apple SSR markers in the target region. We constructed a fine map of linkage group 11 of ‘Kinchaku’ and localized the Aki locus within a 1.5-cM genome region between SSR markers Mdo.chr11.28 and Mdo.chr11.34. Marker Mdo.chr11.30 co-segregated with Aki in all 621 F1 plantlets of a ‘Housui’ × ‘Kinchaku’ cross. The physical size of the Aki region, which includes three markers (Mdo.chr11.28, Mdo.chr11.30, and Mdo.chr11.34), was estimated to be 250 Kb in the ‘Golden Delicious’ apple genome and 107 Kb in the ‘Dangshansuli’ Chinese pear genome. Our results will help to identify the candidate gene for susceptibility to black spot disease in Japanese pear.  相似文献   

14.
‘Enrei’ is the second leading variety of soybean (Glycine max (L.) Merr.) in Japan. Its cultivation area is mainly restricted to the Hokuriku region. In order to expand the adaptability of ‘Enrei’, we developed two near-isogenic lines (NILs) of ‘Enrei’ for the dominant alleles controlling late flowering at the maturity loci, E2 and E3, by backcrossing with marker-assisted selection. The resultant NILs and the original variety were evaluated for flowering, maturity, seed productivity and other agronomic traits in five different locations. Expectedly, NILs with E2 or E3 alleles flowered later than the original variety in most locations. These NILs produced comparatively larger plants in all locations. Seed yields were improved by E2 and E3 in the southern location or in late-sowing conditions, whereas the NIL for E2 exhibited almost the same or lower productivity in the northern locations due to higher degrees of lodging. Seed quality-related traits, such as 100-seed weight and protein content, were not significantly different between the original variety and its NILs. These results suggest that the modification of genotypes at maturity loci provides new varieties that are adaptive to environments of different latitudes while retaining almost the same seed quality as that of the original.  相似文献   

15.
The yellowing strain of Soybean dwarf virus (SbDV-YS) causes yellowing and yield loss in common bean (Phaseolus vulgaris). The most effective control is achieved through breeding for resistance. An indeterminate climbing cultivar with a white seed coat, ‘Oofuku’, is resistant to SbDV-YS in inoculation tests. We crossed ‘Oofuku’ with an elite cultivar, ‘Taisho-Kintoki’, which is SbDV-YS-susceptible, determinate dwarf with a red-purple seed coat, and performed amplified-fragment-length polymorphism analysis of F3 lines. From nucleotide sequences of the resistant-specific fragments and their flanking regions, we developed five DNA markers, of which DV86, DV386, and DV398 were closely linked to Sdvy-1, a resistance gene. Using the markers, we developed ‘Toiku-B79’ and ‘Toiku-B80’, the near-isogenic lines (NILs) incorporating Sdvy-1 in the background of ‘Taisho-Kintoki’. The NILs had similar growth habit, maturity date and seed shape to those of ‘Taisho-Kintoki’. The quality of boiled beans was also similar, except that the NILs had more seed coat cracking than ‘Taisho-Kintoki’. The NILs showed no SbDV-YS infection in inoculation tests. We suggest that Sdvy-1 is a useful source of SbDV-YS resistance in common bean.  相似文献   

16.
In Chinese cabbage (Brassica rapa), the clubroot resistance (CR) genes Crr1 and Crr2 are effective against the mild Plasmodiophora brassicae isolate Ano-01 and the more virulent isolate Wakayama-01, but not against isolate No. 14, classified into pathotype group 3. ‘Akiriso’, a clubroot-resistant F1 cultivar, showed resistance to isolate No. 14. To increase the durability of resistance, we attempted to identify the CR locus in ‘Akiriso’. CR in ‘Akiriso’ segregated as a single dominant gene and was linked to several molecular markers that were also linked to CRb, a CR locus from cultivar ‘CR Shinki’. We developed additional markers around CRb and constructed partial genetic maps of this region in ‘Akiriso’ and ‘CR Shinki’. The positions and order of markers in the genetic maps of the two cultivars were very similar. The segregation ratios for resistance to isolate No. 14 in F2 populations derived from each of the two cultivars were also very similar. These results suggest that the CR locus in ‘Akiriso’ is CRb or a tightly linked locus. The newly developed markers in this study were more closely linked to CRb than previously reported markers and will be useful for marker-assisted selection of CRb in Chinese cabbage breeding.  相似文献   

17.
Salt-affected soils are generally classified into two main categories: saline and sodic (alkaline). Developing and using soybean (Glycine max (L.) Merr) cultivars with high salt tolerance is an effective way of maintaining sustainable production in areas where soybean growth is threatened by salt stress. Early classical genetics studies revealed that saline tolerance was conditioned by a single dominant gene. Recently, a series of studies consistently revealed a major quantitative trait locus (QTL) for saline tolerance located on linkage group N (chromosome 3) around the SSR markers Satt255 and Sat_091; other minor QTLs were also reported. In the case of sodic tolerance, most studies focused on iron deficiency caused by a high soil pH, and several QTLs associated with iron deficiency were identified. A wild soybean (Glycine soja Sieb. & Zucc.) accession with high sodic tolerance was recently identified, and a significant QTL for sodic tolerance was detected on linkage group D2 (chromosome 17). These studies demonstrated that saline and sodic tolerances were controlled by different genes in soybean. DNA markers closely associated with these QTLs can be used for marker-assisted selection to pyramid tolerance genes in soybean for both saline and sodic stresses.  相似文献   

18.
Powdery mildew, caused by Podosphaera xanthii (syn. Sphaerotheca fuliginea ex Fr. Poll.), is one of the most economically important foliar diseases in cucumber (Cucumis sativus L.). Cucumber parental line ‘Kyuri Chukanbohon Nou 5 Go’, developed from weedy cucumber line CS-PMR1, is highly resistant to powdery mildew and is promising breeding material. We performed quantitative trait locus (QTL) analysis using double-digest restriction-site-associated DNA sequencing (ddRAD-Seq) in a population from a cross between ‘Kyuri Chukanbohon Nou 5 Go’ and the Japanese native cultivar ‘Kaga-aonaga-fushinari’, which is susceptible to powdery mildew. The resistance of the population and its parents was evaluated using leaf disc assays and image analysis. We detected one major QTL on Chr. 5 that was effective at both 20°C and 25°C and one minor QTL on Chr. 1 effective at 20°C. We detected two additional QTLs in subpopulation: one on Chr. 3 effective at 20°C and one on Chr. 5 effective at both 20°C and 25°C in a position different from the major QTL. The resistance alleles at all four QTLs were contributed by ‘Kyuri Chukanbohon Nou 5 Go’. The results of this study can be used to develop practical DNA markers tightly linked to genes for powdery mildew resistance.  相似文献   

19.
Seed storability in rice (Oryza sativa L.) is an important agronomic trait. Two segregating populations with N22 (indica) as a common parent, viz. a set of 122 backcross-inbred lines (BILs) derived from the backcross Nanjing35 (japonica)/N22//Nanjing35 and another population comprising 189 recombinant inbred lines (RILs) from the cross of USSR5 (japonica) and N22, were studied to detect quantitative trait loci (QTL) controlling seed storability. Germination percentage (GP) was used to evaluate seed storability after aging treated under three different conditions, viz. natural, artificial and combined aging treatments. A total of seven QTLs were identified on chromosomes 1, 2, 5, 6 and 9. Among them, a major QTL, qSSn-9, was common in the two populations. In contrast, four QTLs (qSSnj-2-1, qSSn-2-2, qSSn-5 and qSSn-6) were detected in BILs and the QTL qSSn-1 was identified in RILs, which was a new QTL for seed storability. The N22-derived alleles increased the seed storability at all the loci except qSSnj-2-1. We also investigated the effect of QTLs using five selected lines with high storability from BILs and verified qSSn-5 with a near-isogenic line (NIL). These results provide an opportunity for pyramiding or map-based cloning major QTLs for seed storability in rice.  相似文献   

20.
The appearance of brown rice grown under high temperature conditions is an important characteristic for improvement in Japanese rice breeding programs. We performed a QTL analysis of the appearance quality of brown rice using chromosome segment substitution lines of the indica cultivar ‘Habataki’ in the ‘Koshihikari’ genetic background. A line carrying a ‘Habataki’ segment on chromosome 7 showed a high percentage of perfect grains produced under high temperature conditions during the ripening period. To verify the role of this segment, and to narrow down the region containing the useful allele, substitution mapping was performed using multiple paired lines. As a result, the chromosomal location of a gene that we named Appearance quality of brown rice 1 (Apq1) was delimited to a 48-kb region. In addition, we developed an Apq1-near isogenic line (NIL) to evaluate the effect of Apq1 on various agronomic traits. Under high temperature conditions during the ripening period, the Apq1-NIL produced significantly higher percentages of perfect grains than ‘Koshihikari’. Other agronomic traits, including yield and palatability, were similar between the Apq1-NIL and ‘Koshihikari’. Therefore, the ‘Habataki’ allele of Apq1 will be useful in breeding programs aimed at improving the quality of grains ripened under high temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号