首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Off southern‐central Chile, the impact of spring upwelling variability on common sardine (Strangomera bentincki) recruitment was examined by analyzing satellite and coastal station winds, satellite chlorophyll, and common sardine recruitment from a stock assessment model. In austral spring, the intensity of wind‐driven upwelling is related to sea surface temperature (SST) from the Niño 3.4 region, being weak during warm periods (El Niño) and strong during cold periods (La Niña). Interannual changes in both spring upwelling intensity and SST from the Niño 3.4 region are related to changes in remotely sensed chlorophyll over the continental shelf. In turn, year‐to‐year changes in coastal chlorophyll are tightly coupled to common sardine recruitment. We propose that, in the period 1991–2004, interannual changes in the intensity of spring upwelling affected the abundance and availability of planktonic food for common sardine, and consequently determined pre‐recruit survival and recruitment strength. However, the importance of density‐dependent factors on the reproductive dynamic cannot be neglected, as a negative association exists between spawning biomass and recruitment‐per‐spawning biomass. Coastal chlorophyll, upwelling intensity, and SST anomalies from the Niño 3.4 region could potentially help to predict common sardine recruitment scenarios under strong spring upwelling and El Niño Southern Oscillation (ENSO)‐related anomalies.  相似文献   

2.
《水生生物资源》2002,15(2):87-94
The recruitment of Strangomera bentincki (common sardine) and Engraulis ringens (anchovy) and the relationships with oceanographic conditions in the upwelling ecosystem of central-south Chile were investigated from 1990 to 1998, with emphasis on the 1997–1998 El Niño. Time series of recruitment, biomass, local sea surface temperature, and a coastal upwelling index were used to explore relationships during the spawning (July–August) and pre-recruitment (August–December) periods. The 1997–1998 El Niño caused physical changes in the small pelagic fish habitat off central-south Chile. Anomalous sea surface temperatures (SST) and upwelling indexes began to be detected from May 1997 and persisted into 1998. Recruitment of common sardine showed significantly negative relationship with SST anomalies during the pre-recruitment period, as well as with the upwelling index during the peak of spawning. However, the recruitment of anchovy did not seem to be affected by the environmental changes observed in the 1990s. Instead, the recruitment rate of anchovy showed negative relationship with the recruitment rate of common sardine. We conclude that the conditions of the 1997–1998 El Niño off central-south Chile affected the survival of common sardine offspring, and that the recruitment success of anchovy could be determined by less-abundant cohorts of common sardine through a biological mechanism of interaction.  相似文献   

3.
Mangalore coast is well known for its multi‐species and multi‐gear fisheries and the fishery and oceanographic features of this region is a true representation of the Malabar upwelling system. Ten years of study (1995–2004) of oceanographic parameters has been carried out from the inshore waters off Mangalore to understand their seasonal and interannual variations and influences on the pelagic fishery of the region. Attempt has been also made to understand the influence of local and global environmental conditions on the alternating patterns of abundance between the Indian mackerel and oil sardine from the area. Field‐ and satellite‐derived oceanographic data have shown that coastal upwelling occurs during July–September with a peak in August resulting in high nutrient concentrations and biological productivity along the coast. Nearly 70% of the pelagic fish catch, dominated by oil sardine and mackerel, was obtained during September–December, during or immediately after the upwelling season. Catches of scombroid fishes were significantly related to cold Sea Surface Temperature, while such relationships were not observed for sardines and anchovies. Significant positive correlations were observed between the ENSO events (MEI) and seawater temperature from the study area. The extreme oceanographic events associated with the cold La Niña, which preceded the exceptional 1997–98 El Niño event, were responsible for the collapse of the pelagic fishery, especially the mackerel fishery along the southwest coast of India (Malabar upwelling system). Coinciding with the collapse of the mackerel fishery, oil sardine populations revived during 1999–2000 all along the southwest coast of India. Tolerance of oil sardine to El Niño / La Niña events and the low predatory pressure experienced by their eggs and larvae due to the collapse of mackerel population might have resulted in its population revival.  相似文献   

4.
  1. Dosidicus gigas is an ecologically and economically important squid species extensively distributed in the eastern Pacific Ocean. Its habitat is extremely sensitive to climatic and environmental variability.
  2. The relationship between habitat pattern of D. gigas and El Niño–Southern Oscillation (ENSO, divided into the El Niño, ENSO-neutral, and La Niña events) was assessed from 1950 to 2015, using a habitat suitability index (HSI) modelling approach including two crucial environmental variables: sea surface temperature (SST) and sea surface height anomaly (SSHA).
  3. On the basis of cross-correlation analysis, it showed that both SST anomaly and SSHA were significantly positively related to the ENSO index. Moreover, a significantly negative association was found between the HSI values and the ENSO index.
  4. Due to the El Niño events, SST off Peru became higher and sea level rose, resulting in contracted areas of suitable SST and SSHA; consequently, suitable habitats for D. gigas dramatically decreased. In contrast, during the ENSO-neutral and La Niña years, the extent of suitable SST and SSHA increased due to the colder water and lower sea level, and suitable habitat for D. gigas expanded.
  5. Moreover, the latitudinal gravity centre of HSI was significantly positively associated with the ENSO index. Relative to the ENSO-neutral and La Niña years, a southward movement of the monthly preferred SST isotherm for D. gigas during the El Niño years could explain the occurrence of more suitable habitats in southern waters off Peru.
  6. These findings suggested that the ENSO event plays an important role in regulating environmental conditions off Peru and further affected the spatio-temporal distribution of D. gigas habitat.
  相似文献   

5.
We assessed growth in subyearling chinook salmon (Oncorhynchus tshawytscha) during the 1998 El Niño and 1999 La Niña in the Gulf of the Farallones, a region of the continental shelf off central California seaward of the Golden Gate and the southernmost ocean entry point for the species in North America. Juvenile salmon demonstrated greater growth during this strong El Niño, when water temperature anomalies of more than +3°C were recorded at local buoys, than during the similarly strong 1999 La Niña. Slopes of regressions of weight on length, length on age, and weight on age were all significantly greater for juvenile salmon during the 1998 El Niño compared with those in the 1999 La Niña. Daily otolith increment widths, an estimator of somatic growth, corroborated population data. Between June 1 and August 9, mean increment widths for juvenile chinook salmon in 1998 were 3.54 ± 0.03 μm, significantly larger than the 3.13 ± 0.03 μm found in juveniles during the same time interval in 1999. Condition factor for juvenile chinook salmon entering the ocean at the Golden Gate was the same in both years, but became significantly greater in ocean fish during the 1998 El Niño than in ocean fish during the 1999 La Niña. Energy storage was significantly greater in ocean juvenile salmon during the 1998 El Niño as well. Mean triacylglycerol/cholesterol ratios increased following ocean entry in 1998, whereas they declined in ocean juveniles during 1999. Thus, not only was growth better in the El Niño period compared with La Niña, but lipid accumulation was also better. Oceanographic data for 1998 indicated elevated temperatures, lower salinity, greater freshwater outflow from San Francisco Bay, northerly flowing coastal currents, and positive upwelling index anomalies. This combination of environmental factors resulted in greater zooplankton productivity that, in conjunction with higher temperatures, allowed metabolic processes to enhance growth. Although El Niño events have certainly produced large-scale, and often adverse, effects on ecosystems, the results of this study emphasize the importance of local oceanographic conditions to growth and other physiological and ecological processes.  相似文献   

6.
7.
Oceanographic and hydroacoustic data were obtained by the Instituto del Mar del Peru (IMARPE) during 72 cruises off the Peruvian coast between 1985 and 2017 to determine the ranges of the abiotic parameters influencing the anchovy (anchoveta) distribution and to observe the effect of the 1997–1998 El Niño event. The hydroacoustic data show a high seasonal variability in anchoveta distribution related to differences of environmental parameters as well as changes in distribution after the very strong El Niño event in 1997–1998. Geostatistic variograms were used to describe the seasonal variability and generalized additive models (GAMs) with a Tweedie distribution were applied to study the relationships between anchoveta and oceanographic parameters. The dependent variable was the value for anchoveta obtained from echosounder (nautical area scattering coefficient [NASC] of anchoveta) and the tested covariates were temperature, salinity, and dissolved oxygen at the sea surface; distance to the coast; year, latitude–longitude; and Oceanic Niño Index 1 + 2. The results show a high variability of anchoveta with seasonal differences in its distribution. Preferred abiotic conditions (temperature, salinity, oxygen) of anchoveta were 17.6–23.7°C, 32.30–35.14, and 5.9–8.7 ml/L in summer and 14.5–18.8°C, 34.81–35.12, and 5.2–6.3 ml/L in winter. The values in autumn and spring were intermediate and are considered as in transition. The anchoveta were detected at higher values after the 1997–1998 El Niño event, probably influenced by reduced standing stocks of congener fish species and by the Pacific decadal oscillation (PDO) or by a changes in climate.  相似文献   

8.
Mesopelagic species are the principal constituents of larval fish assemblages inhabiting the southerly California Current region. Seasonal larval abundance is influenced by circulation of the California Current and subtropical Countercurrent, including regional changes of the physical, chemical, and biological characteristics during the El Niño‐Southern Oscillation. This study examines the mesopelagic fish larvae distribution and abundance patterns between seasons and years, with the aim of describing the mesopelagic larval assemblages during dynamic environmental changes induced by El Niño (1997–1998) and the rapid transition to La Niña (1998–2000) along the west coast of the Baja California Peninsula (25–31°N). Despite large oceanographic variability, larval assemblages varied principally on a seasonal basis, related to reproductive periods and the north–south gradient influenced by the seasonal pattern of the California Current. An increased diversity, number of species, and abundance of tropical species was noticeable during the northward expansion of warm‐water taxa during El Niño, principally in the northern areas (Ensenada and Punta Baja). After El Niño, population adjustments and rapid recovery occurred during La Niña conditions, which reflected seasonal differences in the mesopelagic community structure that are closely related to the seasonal pattern of oceanic currents.  相似文献   

9.
Seasonal assemblages of mesopelagic fish larvae and changes related with environmental factors (plankton biomass, sea surface temperature anomaly, upwelling, and the multivariate El Niño index) were investigated. From 1982 to 1987, 16 oceanographic cruises were carried out along the Pacific coast of Baja California Sur, Mexico. Larvae of 42 mesopelagic fish taxa were collected. Larval abundance was highly variable during the studied period, but summer months coincided with higher abundance (>200 larvae under 10 m2). Larval assemblages were dominated by three of the most common species of tropical (Vinciguerria lucetia, Diogenichthys laternatus) and subtropical affinity (Triphoturus mexicanus). A group of species of tropical affinity (Diplophos proximus, Diaphus pacificus, Benthosema panamense) was useful for distinguishing the 1982–84 El Niño event, and an assemblage of larvae of temperate affinity (Symbolophorus californiensis, Melamphaes lugubris, Bathylagus ochotensis, Leuroglossus stilbius, Protomyctophum crockeri) characterized ‘normal’ years (mid‐1984 to mid‐1987).  相似文献   

10.
Samples from the southern California sector of the California Current System were examined to test for changes in abundance, reproduction, recruitment and naupliar survival of the planktonic copepod, Calanus pacificus, coincident with the 1993 Californian El?Niño, relative to 1992 (also El Niño conditions) and to 1989–1991 (defined as `normal'). In 1993, as in 1992, females were rare in both winter and spring, but per capita reproduction was less, food limitation was greater and biomass of chlorophyll was reduced only in winter. Recruitment was more variable than was naupliar survival. Recruitment increased in both El Niño springs, but survival of older naupliar stages decreased. The mesoscale distributions of larval anchovy, relative to eggs and nauplii of Calanus, did not result in efficient use of the reduced supply of this source of food, and the abundance of larval anchovy did not cause measurable variation in the survival of naupliar Calanus.  相似文献   

11.
The spatial pattern of sardine spawning as revealed by the presence of sardine eggs is examined in relation to sea surface temperature (SST) and mean volume backscatter strength (MVBS) measured by a 150 kHz acoustic Doppler current profiler (ADCP) during four spring surveys off central and southern California in 1996–99. Studies in other regions have shown that MVBS provides an excellent measure of zooplankton distribution and density. Zooplankton biomass as measured by survey net tows correlates well with concurrently measured MVBS. The high along‐track resolution of egg counts provided by the Continuous Underway Fish Egg Sampler (CUFES) is a good match to the ADCP‐based data. Large interannual differences in the pattern and density of sardine eggs are clearly related to the concurrently observed patterns of surface temperature and MVBS. The strong spatial relationship between sardine eggs and MVBS is particularly evident because of the large contrast in zooplankton biomass between the 1998 El Niño and 1999 La Niña. The inshore distribution of sardine spawning appears to be limited by the low temperatures of freshly upwelled waters, although the value of the limiting temperature varies between years. Often there is an abrupt offshore decrease in MVBS that is coincident with the offshore boundary of sardine eggs. Possible reasons for this association of sardine eggs and high zooplankton biomass include an evolved strategy that promotes improved opportunity of an adequate food supply for subsequent larval development, and/or adult nutrient requirements for serial spawning. Hence, the distribution of these parameters can be used as an aid for delineating the boundaries of sardine spawning habitat.  相似文献   

12.
  1. In the south‐eastern Pacific Ocean, few studies of whale sharks (Rhincodon typus) exist. In Peru, the northern coast has been identified as the area with the highest presence of whale sharks, yet their ecology in this area is poorly defined.
  2. This study predicts the spatial distribution of whale sharks off coastal northern Peru (03°00′S–04°30′S) during La Niña and El Niño seasonal conditions, utilizing maximum entropy modelling. Between 2009 and 2018 (except for 2011), 347 whale sharks were geo‐referenced in northern Peru with greatest data recordings in the austral summer and spring during La Niña events.
  3. Depth was the most important predictive variable for spatial distribution of whale sharks, followed by chlorophyll‐a. Sharks were predicted in shallower coastal waters in which chlorophyll‐a values are higher.
  4. Habitat suitability was higher in the northern coastal part of the study area. Spring presents the most suitable environmental conditions for whale sharks, both during La Niña and El Niño conditions. The probability of whale shark presence in the north of Peru increases at higher chlorophyll‐a and sea surface temperature values. Therefore, whale sharks appear to aggregate seasonally in northern Peru, potentially exploiting rich foraging grounds.
  5. In these areas of high suitability, whale sharks are susceptible to fisheries, bycatch, ship collisions, unmanaged tourism, and pollution; thus, management actions should focus in these areas.
  6. This study represents a first step to understand the distribution and habitat suitability of whale shark in Peruvian waters. Further studies should identify suitable habitat for whale sharks in offshore areas. Also, these should focus on the connectivity of these aggregations with other localities in the south‐eastern Pacific in order to contribute to regional strategies for the conservation of this iconic species in this particular region.
  相似文献   

13.
We used the average fork length of age‐3 returning coho (Oncorhynchus kisutch) and age‐3 ocean‐type and age‐4 stream‐type Chinook (Oncorhynchus tshawytscha) salmon along the northeast Pacific coast to assess the covariability between established oceanic environmental indices and growth. These indices included the Multivariate El Niño‐Southern Oscillation Index (MEI), Pacific Decadal Oscillation (PDO), Northern Oscillation Index, and Aleutian Low Pressure Index. Washington, Oregon, and California (WOC) salmon sizes were negatively correlated with the MEI values indicating that ultimate fish size was affected negatively by El Niño‐like events. Further, we show that the growth trajectory of WOC salmon was set following the first ocean winter. Returning ocean‐type British Columbia‐Puget Sound Chinook salmon average fork length was positively correlated with the MEI values during the summer and autumn of return year, which was possibly a result of a shallower mixed layer and improved food‐web productivity of subarctic Pacific waters. Size variation of coho salmon stocks south of Alaska was synchronous and negatively correlated with warm conditions (positive PDO) and weak North Pacific high pressure during ocean residence.  相似文献   

14.
1. This paper sets out to: (1) review previous ecological studies and analyse recent trends of the Peruvian bay scallop fishery in order to better understand and to model the species’ temporal and spatial (meta) population dynamics along the South Pacific coast; (2) develop a fisheries model to protect the stock from overexploitation and optimize the annual yield of the pulse fishery in Independence Bay, the centre of the scallop diving fishery in Peru. 2. Natural stock fluctuations are very pronounced in this species and are positively correlated with the El Niño–Southern Oscillation (ENSO). During such an event, habitat conditions for the Peruvian bay scallop are improved either regionally or locally, such that populations proliferate and larval production and dispersal are greatly increased. Extinct beds and new habitats are recolonized during these periods (producing a strong pulse of metapopulation biomass), although most become extinct very shortly thereafter. 3. For management purposes, two considerations are fundamental: (1) heavy overfishing or extinction of the main scallop source populations would endanger the metapopulation as a whole; (2) rates of growth and survival greatly increase (and with them the potential yield of the scallop stock) locally over an El Niño cycle in a way that can be roughly estimated from past experience, including the most recent El Niño event (1997–1998). 4. We suggest a fisheries management regime capable of adapting to natural changes and propose a procedure for calculating both the optimal yield and the respective fishing effort under normal upwelling and El Niño scenarios, considering changes in the size at first capture (Lc) and fishery mortality (F). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Surface water in the North Equatorial Current (NEC) is composed of southern low‐salinity water diluted by precipitation to less than 34.2 psu and northern, high‐salinity tropical water greater than 34.8 psu. Analyses of 27‐year historical data, observed in winter and summer along the longitude 137°E by the Japan Meteorological Agency, shows that an obvious salinity front (34.5 psu) generated by the two water masses was usually located around 15°N. However, the salinity front has been moving northward during the past three decades. El Niño/Southern Oscillation (ENSO) affected salinity in the surface layer, while temperature changed in the middle layer. The salinity front sometimes moved southward, mainly south of 5°N, and the movement was well correlated with the southern oscillation index (SOI). Because precipitation at Yap (9.5°N, 138.1°E) fluctuated with SOI, this spike‐like southward movement of the salinity front was probably affected by reduction of low‐salinity water during El Niño in the north‐western Pacific Ocean. However, ENSO only induced such large southward movements of the salinity front when the time lag between the low precipitation and low SOI was short (within four months). This salinity front is quite important for long‐distance migrating fish such as the Japanese eel because the eels spawn just south of the salinity front in the NEC. This behaviour suggests that the movement of the salinity front associated with ENSO may control the success of larval transport from the spawning ground in the NEC to the nursery ground in East Asia. In fact, catch of the Japanese eel larvae in Japan was well correlated with fluctuation of SOI and the location of the salinity front, and lower catch occurred during El Niño. The salinity front has moved from 13°N to 17°N during the past three decades. Considering that conditions of larval transport are worse north of 15°N, we suggest that decadal‐scale linear decrease of glass eel catch during the past three decades also can be explained by the displacement of the salinity front.  相似文献   

16.
A generalized additive model (GAM) was constructed to separate and quantify the effects of fishery‐based (operational) and oceanographic parameters on the bigeye tuna (Thunnus obesus) catch rates at Palmyra Atoll in the central Tropical Pacific. Bigeye catch, the number of hooks per set, and set location from 4884 longline sets spanning January 1994 to December 2003 were used with a temporally corresponding El Niño‐Southern Oscillation (ENSO) indicator built from sea surface height (SSH) data. Observations of environmental data combined with the results from the GAM indicated that there is an increase in bigeye catch rates corresponding to an increase in eastward advection during the winter months of El Niño events. A seasonal pattern with higher bigeye catch rates from December to April and a spatial pattern with higher rates to the northeast and northwest of the atoll were observed during this study period. It is hypothesized that the combination of the eastward advection of the warm pool coupled with vertical changes in temperature during the winter months of El Niño events increases the availability of bigeye tuna in this region. This increase in availability may be due to a change in exploitable population size, location, or both.  相似文献   

17.
Time series analyses (Box–Jenkins models) were used to study the influence of river runoff and wind mixing index on the productivity of the two most abundant species of small pelagic fish exploited in waters surrounding the Ebre (Ebro) River continental shelf (north‐western Mediterranean): anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus). River flow and wind were selected because they are known to enhance fertilization and local planktonic production, thus being crucial for the survival of fish larvae. Time series of the two environmental variables and landings of the two species were analysed to extract the trend and seasonality. All series displayed important seasonal and interannual fluctuations. In the long term, landings of anchovy declined while those of sardine increased. At the seasonal scale, landings of anchovy peaked during spring/summer while those of sardine peaked during spring and autumn. Seasonality in landings of anchovy was stronger than in sardine. Concerning the environmental series, monthly average Ebre runoff showed a progressive decline from 1960 until the late 1980s, and the wind mixing index was highest during 1994–96. Within the annual cycle, the minimum river flow occurs from July to October and the wind mixing peaks in winter (December–April, excluding January). The results of the analyses showed a significant correlation between monthly landings of anchovy and freshwater input of the Ebre River during the spawning season of this species (April–August), with a time lag of 12 months. In contrast, monthly landings of sardine were significantly positively correlated with the wind mixing index during the spawning season of this species (November–March), with a lag of 18 months. The results provide evidence of the influence of riverine inputs and wind mixing on the productivity of small pelagic fish in the north‐western Mediterranean. The time lags obtained in the relationships stress the importance of river runoff and wind mixing for the early stages of anchovy and sardine, respectively, and their impact on recruitment.  相似文献   

18.
Eastern boundary upwelling ecosystems are highly productive and sustain the world’s largest fisheries, usually dominated by sardine and anchovy species. Stock size is highly variable from year to year due to the impact of the unstable physical environment on fish early stages. Biophysical models of early life‐stage dispersal of marine organisms have been built by coupling (i) hydrodynamic models and (ii) life history models (i.e. egg and larva stages), and are therefore useful tools to investigate physical–biological interactions. Here, we review biophysical models of anchovy and sardine ichthyoplankton dispersals developed in the Benguela, Humboldt and Canary Current upwelling ecosystems. We also include a similar study conducted in the California Current upwelling on zooplankton. We then integrate this information into a comparative analysis of sardine and anchovy reproductive strategies in the different systems. We found that the main spawning periods match the season of (i) maximal simulated ichthyoplankton retention over the continental shelf in the northern Benguela, southern Humboldt and Canary (for sardine); (ii) maximal food concentration in the southern Benguela, California and Canary (for anchovy); and (iii) maximal shelf retention of ichthyoplankton and food concentration in the northern Humboldt (for both anchovy and sardine). This specificity of the northern Humboldt ecosystem could explain why it sustains the largest small pelagic fish stock. Finally, the possible effects of climate change on these patterns are discussed.  相似文献   

19.
The effects of climate events on the feeding ecology and trophic dynamics of Pacific salmon (Oncorhynchus spp.) in offshore waters of the central Gulf of Alaska were investigated during early summers (1994–2000), based on analyses of stomach contents, and carbon and nitrogen stable isotopes (δ13C and δ15N). Gonatid squids (mainly Berryteuthis anonychus) were the dominant prey of all salmon species except for chum salmon (O. keta). During the 1997 El Niño event and the 1999 La Niña event, squids decreased sharply in the diets of all Pacific salmon except coho salmon (O. kisutch) in the Subarctic Current, and chum salmon diets changed from gelatinous zooplankton (1995–97) to a more diverse array of zooplankton species. A δ13C and δ15N analysis indicated that all salmon species occupied the same branch of the food web in 1999–2000. We hypothesize that high‐seas salmon adapt to climate‐induced changes in their prey resources by switching their diets either within or between trophic levels. To understand the effects of climate change on Pacific salmon in the Gulf of Alaska, biological oceanographic research on B. anonychus and other important prey resources is needed.  相似文献   

20.
Large amplitude variations in recruitment of small pelagic fish result from interactions between a fluctuating environment and population dynamics processes such as spawning. The spatial extent and location of spawning, which is critical to the fate of eggs and larvae, can vary strongly from year to year, as a result of changing population structure and environmental conditions. Spawning habitat can be divided into ‘potential spawning habitat’, defined as habitat where the hydrographic conditions are suitable for spawning, ‘realized spawning habitat’, defined as habitat where spawning actually occurs, and ‘successful spawning habitat’, defined as habitat from where successful recruitment has resulted. Using biological data collected during the period 2000–2004, as well as hydrographic data, we investigate the role of environmental parameters in controlling the potential spawning habitat of anchovy and sardine in the Bay of Biscay. Anchovy potential spawning habitat appears to be primarily related to bottom temperature followed by surface temperature and mixed‐layer depth, whilst surface and bottom salinity appear to play a lesser role. The possible influence of hydrographic factors on the spawning habitat of sardine seems less clear than for anchovy. Modelled relationships between anchovy and sardine spawning are used to predict potential spawning habitat from hydrodynamical simulations. The results show that the seasonal patterns in spawning are well reproduced by the model, indicating that hydrographic changes may explain a large fraction of spawning spatial dynamics. Such models may prove useful in the context of forecasting potential impacts of future environmental changes on sardine and anchovy reproductive strategy in the north‐east Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号