首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to evaluate the anesthetic and cardiorespiratory effects of tiletamine/zolazepam and the effect of flumazenil on the recovery from tiletamine/zolazepam anesthesia in the pig. Six Landrace and Yorkshire cross-bred pigs (three females and three males, 3-4 months old) weighing 35.8 ± 1.7 kg were used in this study. Pigs were given tiletamine/zolazepam intramuscularly at a dose of 4.4 mg kg(-1) (2.2 mg kg(-1) tiletamine and 2.2 mg kg(-1) zolazepam) of body weight. Twenty minutes after the administration of tiletamine/zolazem, the pigs were given saline solution (control, Group TZ) or given flumazenil intravenously at a dose of 0.08 mg kg(-1) of body weight (Group TZF). Anesthesia and recovery times, scores of anesthetic effects and cardiorespiratory variables were recorded for each pig. There was a significant difference between the duration of tiletamine/zolazepam anesthesia with and without the antagonist. Flumazenil significantly shortened the recovery time. A significant difference in blood gas variables was observed between the two groups. The anesthetic effects induced by tiletamine/zolazepam could be reversed successfully and safely by flumazenil alone. Therefore, flumazenil administration could be considered in cases in which quick recovery is required in pigs.  相似文献   

2.
We studied four different drug regimes for anaesthetic management in chinchillas and evaluated and compared their cardiovascular and respiratory effects. In this randomized, cross-over experimental study, seven adult chinchillas, five females, two males [515 +/- 70 (SD) g] were randomly assigned to one of the following groups: group 1 [midazolam, medetomidine and fentanyl (MMF), flumazenil, atipamezole and naloxone (FAN); MMF-FAN] received 1.0 mg/kg midazolam, 0.05 mg/kg medetomidine and 0.02 mg/kg fentanyl i.m., and for reversal 0.1 mg/kg flumazenil, 0.5 mg/kg atipamezole and 0.05 mg/kg naloxone s.c. after 45 min; group 2 (MMF) 1.0 mg/kg midazolam, 0.05 mg/kg medetomidine and 0.02 mg/kg fentanyl i.m.; group 3 [xylazine/ketamine (X/K)] 2.0 mg/kg xylazine and 40.0 mg/kg ketamine i.m.; and group 4 [medetomidine/ketamine (M/K)] 0.06 mg/kg medetomidine and 5.0 mg/kg ketamine i.m. Reflexes were judged to determine anaesthetic stages and planes. Anaesthesia with X/K and M/K was associated with a prolonged surgical tolerance and recovery period. By reversing MMF, recovery period was significantly shortened (5 +/- 1.3 min versus 40 +/- 10.3 min in MMF without FAN, 73 +/- 15.0 min in X/K, and 31 +/- 8.5 min in M/K). Without reversal, MMF produced anaesthesia lasting 109 +/- 16.3 min. All combinations decreased respiratory and heart rate but compared with X/K and M/K, respiratory and cardiovascular complications were less in the MMF groups. Focussing on the clinical relevance of the tested combinations, completely reversible anaesthesia showed two major advantages: anaesthesia can be antagonized in case of emergency and routinely shortens recovery. In small animals particularly these advantages lead to less complications and discomfort and thus often can be lifesaving. As all analgesic components (medetomidine and fentanyl) are reversed, postoperative analgesia should be provided before reversal of anaesthesia.  相似文献   

3.
Five chimpanzees (Pan troglodytes) initially received oral droperidol sedation (1.25 mg for a juvenile chimpanzee, body wt = 18.5 kg, and 2.5 mg for adults, body wt >20 kg, range: 18.5-71 kg) followed by transmucosal carfentanil administration at 2.0 microg/kg. This preinduction regimen was developed to produce heavy sedation or even light anesthesia in order to eliminate the need for or at least minimize the stress of darting with tiletamine/zolazepam at 3 mg/kg i.m. This study was designed to assess the safety and efficacy of transmucosal carfentanil. Once each animal was unresponsive to external stimuli, or at approximately 25 min (range 24-34 min) after carfentanil administration, naltrexone and tiletamine/zolazepam (N/T/Z) were combined into one intramuscular injection for anesthetic induction. Naltrexone was administered at 100 times the carfentanil dose in milligrams. For comparison, two chimpanzees received only droperidol, 2.5 mg p.o., followed by tiletamine/zolazepam, 3 mg/kg i.m. The preinduction period for all animals receiving carfentanil was characterized as smooth, with chimpanzees becoming gradually less active and less responsive to external stimuli. Two animals became very heavily sedated at 24 and 35 min, respectively, and were hand injected with N/T/Z. The other three chimpanzees became sternally recumbent but retained some response to stimuli, and N/T/Z was administered by remote injection with minimal response. Rectal body temperatures, pulse and respiratory rates, arterial oxygen hemoglobin saturation, and arterial blood gases were measured at initial contact (t = 0 min) and at 10-min intervals thereafter. Respiratory depression was present in all chimpanzees, regardless of protocol. Mean hemoglobin saturation was 91% for both groups. Mean partial pressure of oxygen, arterial values for carfentanil-treated and control animals were 64.4 +/- 7.6 and 63.5 +/- 6.0 at t = 0, respectively. Only the partial pressure of carbon dioxide, arterial (Paco2) and pH showed significant differences between treated and control animals. Mean Paco2 was greater and mean pH lower for the carfentanil-treated group compared with the controls at t = 0 (58.9 +/- 3.7 and 50.3 +/- 3.1 for Paco2 and 7.33 +/- 0.02 and 7.40 +/- 0.30 for pH, respectively). The results of this study suggest that oral droperidol followed by transmucosal carfentanil can be used effectively as a premedication regimen to produce profound sedation, which limits the stress of darting during parenteral anesthetic induction with tiletamine/zolazepam in chimpanzees. The main side effect of respiratory depression appears to be adequately managed by reversing the carfentanil at the time of induction.  相似文献   

4.
Xylazine and tiletamine-zolazepam anesthesia in horses   总被引:4,自引:0,他引:4  
The cardiopulmonary and anesthetic effects of xylazine in combination with a 1:1 mixture of tiletamine and zolazepam were determined in 6 horses. Each horse was given xylazine IV or IM, as well as tiletamine-zolazepam IV on 4 randomized occasions. Anesthetics were administered at the rate of 1.1 mg of xylazine/kg of body weight, IV, 1.1 mg of tiletamine-zolazepam/kg, IV (treatment 1); 1.1 mg of xylazine/kg, IV, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 2); 1.1 mg of xylazine/kg, IV, 2.2 mg of tiletamine-zolazepam/kg, IV (treatment 3); and 2.2 mg of xylazine/kg, IM, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 4). Tiletamine-zolazepam doses were the sum of tiletamine plus zolazepam. Xylazine, when given IV, was given 5 minutes before tiletamine-zolazepam. Xylazine, when given IM, was given 10 minutes before tiletamine-zolazepam. Tiletamine-zolazepam induced recumbency in all horses. Duration of recumbency in group 1 was 31.9 +/- 7.2 (mean +/- 1 SD) minutes. Increasing the dosage of tiletamine-zolazepam (treatments 2 and 3) significantly (P less than 0.05) increased the duration of recumbency. Xylazine caused significant (P less than 0.05) decreases in heart rate and cardiac output and significant (P less than 0.05) increases in central venous pressure and mean pulmonary artery pressure 5 minutes after administration. Respiratory rate was decreased. Arterial blood pressures increased significantly (P less than 0.05) after xylazine was administered IV in treatments 1 and 3, but the increases were not significant in treatment 2. Xylazine administered IM caused significant (P less than 0.05) increases in central venous pressure and significant (P less than 0.05) decreases in cardiac output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
OBJECTIVE: To evaluate the use of the anesthetic combination tiletamine, zolazepam, ketamine, and xylazine (TKX) for anesthesia of feral cats at large-scale neutering clinics. DESIGN: Original study. ANIMALS: 7,502 feral cats. PROCEDURE: Cats were trapped by their caretakers for a feral cat neutering program from July 1996 to August 2000. The anesthetic combination TKX was injected IM into cats while they remained in their traps. Each milliliter of TKX contained 50 mg of tiletamine, 50 mg of zolazepam, 80 mg of ketamine, and 20 mg of xylazine. Females were spayed by veterinarians, whereas males were castrated by veterinarians or veterinary students. Yohimbine (0.5 mg, IV) was administered at the end of the procedure. Logs were kept of the individual drug doses, signalment of the cats, and any complications encountered. These data were analyzed retrospectively (1996 to 1999) and prospectively (2000). RESULTS: Of the 5,766 cats for which dosing records were complete, 4,584 (79.5%) received a single dose of TKX. The mean initial dose of TKX was 0.24 +/- 0.04 ml/cat, and the total mean dose of TKX was 0.27 +/- 0.09 ml. Overall mortality rate was 0.35% (26/7,502) cats, and the death rate attributable solely to potential anesthetic deaths was 0.23% (17/7,502) cats. CONCLUSIONS AND CLINICAL RELEVANCE: The use of TKX for large-scale feral cat neutering clinics has several benefits. The TKX combination is inexpensive, provides predictable results, can be administered quickly and easily in a small volume, and is associated with a low mortality rate in feral cats.  相似文献   

6.
Fallow deer were immobilised using a combination of xylazine and ketamine. Adult males (n = 10) and adult females (n = 10) received 4 mg/kg of each drug intramuscularly. Juveniles (n = 11) received 2 mg/kg of each drug, intravenously. Times to recumbency were as follows: adult males 4.9 +/- 2.9 min, adult females 4.1 +/- 1.9 min, juveniles 2.3 +/- 1.1 min. After 30 min each deer received 0.2 mg/kg of yohimbine, or an equal volume of sterile diluent intravenously. Yohimbine substantially reduced the recovery times of treated deer. Adults males were releasable 7.2 +/- 4.3 min after yohimbine administration, whereas control males were not releasable until 165 +/- 18 min. Treated adult females were releasable after 6.6 +/- 4.3 min, while control females were not releasable until 84 +/- 29 min. Juveniles were releasable 2.1 +/- 0.8 min after administration of yohimbine but control juveniles were not releasable until 62 +/- 16 min. Xylazine/ketamine administration produced statistically significant changes in packed cell volume, total plasma protein, albumin, sodium, glucose, creatine phosphokinase and inorganic phosphate values after 30 min. Yohimbine administration had no effect on these changes.  相似文献   

7.
ObjectiveTo evaluate the antagonistic effects of atipamezole (ATI), flumazenil (FLU) and naloxone (NAL) alone and in various combinations following administration of tiletamine–zolazepam–xylazine–tramadol.Study designProspective, experimental, randomized cross-over study.AnimalsEight Chinese miniature pigs (three females and five males) mean age 8 (range 7–10) months and bodyweight 57.5 (52.4–62.1) kg.MethodsAll animals were anaesthetized with tiletamine/zolazepam (3.0 mg kg?1), xylazine (1.2 mg kg?1) and tramadol (1.6 mg kg?1) given intramuscularly (IM). Thirty minutes later, one of eight treatments was administered IM: saline control, ATI (0.12 mg kg?1), FLU (0.1 mg kg?1), NAL (0.03 mg kg?1), ATI–FLU, FLU–NAL, ATI–NAL or ATI–FLU–NAL. After injection of antagonists the following times were recorded: to recovery of the palpebral, pedal and tail clamp reflexes, to head movement, sternal recumbency, standing and walking. Posture, sedation, analgesia, jaw relaxation and auditory response were scored at set times until 120 minutes after injection of antagonists. Heart rates, respiratory rates and rectal temperature were measured at those times. Data were analyzed by anova for repeated measures, followed by the Tukey’s test to compare differences between means, or by Kruskal–Wallis test as appropriate.ResultsFLU, NAL alone, or FLU–NAL did not effectively antagonize anaesthesia induced by tiletamine/zolazepam–xylazine–tramadol. ATI, ATI–FLU, ATI–NAL and ATI–FLU–NAL produced an immediate and effective recovery from anaesthesia. The combination of ATI–FLU–NAL was the most effective combination in antagonizing the anaesthetic effect. Adverse effects such as tachycardia, tachypnoea, excitement and muscle tremors were not observed during this study.Conclusion and clinical relevanceATI–FLU–NAL is the most effective combination for antagonizing tiletamine/zolazepam–xylazine–tramadol anaesthesia in pigs. However, ATI alone or in various combinations also provides effective antagonism.  相似文献   

8.
Eight horses were anesthetized three times, by intravenous administration of xylazine (1.1 mg/kg) and ketamine (2.2 mg/kg), detomidine (0.02 mg/kg) and tiletamine-zolazepam (1.1 mg/kg), or detomidine (0.04 mg/kg) and tiletamine-zolazepam (1.4 mg/kg). The sequences were randomized. The duration of analgesia and the times to sternal and standing positions were recorded. Heart rate, arterial pressure, pHa, PaCO2, and PaO2 were measured before and during anesthesia. The duration of analgesia with the two doses of detomidine-tiletamine-zolazepam, 26 +/- 4 minutes and 39 +/- 11 minutes, respectively, was significantly longer than the 13 +/- 6 minutes obtained with xylazine-ketamine. Bradycardia occurred after administration of detomidine, but heart rates returned to baseline values 5 minutes after administration of tiletamine and zolazepam. Arterial pressure was significantly higher and PaO2 significantly lower during anesthesia with detomidine-tiletamine-zolazepam than with xylazine-ketamine. Some respiratory acidosis developed with all anesthetic combinations. The authors conclude that detomidine-tiletamine-zolazepam can provide comparable anesthesia of a longer duration than xylazine and ketamine, but hypoxemia will develop in some horses.  相似文献   

9.
Tiletamine (12.5 mg), zolazepam (12.5 mg), ketamine (20 mg), and xylazine (5 mg) (TKX; 0.25 ml, IM) combination was evaluated as an anesthetic in 22 male and 67 female adult feral cats undergoing sterilization at high-volume sterilization clinics. Cats were not intubated and breathed room air. Oxygen saturation (SpO(2)), mean blood pressure (MBP), heart rate (HR), respiration rate (RR), and core body temperature were recorded. Yohimbine (0.25 ml, 0.5 mg, IV) was administered at the completion of surgery. TKX produced rapid onset of lateral recumbency (4+/-1 min) and surgical anesthesia of sufficient duration to complete surgical procedures in 92% of cats. SpO(2) measured via a lingual pulse oximeter probe averaged 92+/-3% in male cats and 90+/-4% in females. SpO(2) fell below 90% at least once in most cats. MBP measured by oscillometry averaged 136+/-30 mm Hg in males and 113+/-29 mm Hg in females. MBP increased at the onset of surgical stimulation suggesting incomplete anti-nociceptive properties. HR averaged 156+/-19 bpm, and RR averaged 18+/-8 bpm. Neither parameter varied between males and females or over time. Body temperature decreased significantly over time, declining to 38.0+/-0.8 degrees C at the time of reversal in males and 36.6+/-0.8 degrees C at the time of reversal in females. Time from anesthetic reversal to sternal recumbency was prolonged (72+/-42 min). Seven cats (8%) required an additional dose of TKX to maintain an adequate plane of anesthesia at the onset of surgery, and this was associated with significantly longer recovery times (108+/-24 min).  相似文献   

10.
OBJECTIVE: To quantitate the dose and time-related effects of morphine sulfate on the anesthetic sparing effect of xylazine hydrochloride in halothane-anesthetized horses and determine the associated plasma xylazine and morphine concentration-time profiles. ANIMALS: 6 healthy adult horses. PROCEDURE: Horses were anesthetized 3 times to determine the minimum alveolar concentration (MAC) of halothane in O2 and characterize the anesthetic sparing effect (ie, decrease in MAC of halothane) by xylazine (0.5 mg/kg, i.v.) administration followed immediately by i.v. administration of saline (0.9% NaCI) solution, low-dose morphine (0.1 mg/kg), or high-dose morphine (0.2 mg/kg). Selected parameters of cardiopulmonary function were also determined over time to verify consistency of conditions. RESULTS: Mean (+/- SEM) MAC of halothane was 1.05 +/- 0.02% and was decreased by 20.1 +/- 6.6% at 49 +/- 2 minutes following xylazine administration. The amount of MAC reduction in response to xylazine was time dependent. Addition of morphine to xylazine administration did not contribute further to the xylazine-induced decrease in MAC (reductions of 21.9 +/- 1.2 and 20.7 +/- 1.5% at 43 +/- 4 and 40 +/- 4 minutes following xylazine-morphine treatments for low- and high-dose morphine, respectively). Overall, cardiovascular and respiratory values varied little among treatments. Kinetic parameters describing plasma concentration-time curves for xylazine were not altered by the concurrent administration of morphine. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of xylazine decreases the anesthetic requirement for halothane in horses. Concurrent morphine administration to anesthetized horses does not alter the anesthetic sparing effect of xylazine or its plasma concentration-time profile.  相似文献   

11.
The use of 0.025 +/- 0.012 mg/kg (median +/- interquartile range) thiafentanil with 0.15 +/- 0.03 mg/kg xylazine (TX) and 0.011 +/- 0.0015 mg/kg carfentanil with 0.25 +/- 0.093 mg/kg xylazine (CX), with dosages based on estimated bodyweight, was used in the anesthesia of 37 Tibetan yak (Bos grunniens) housed within a drive-through animal park setting. The median time to lateral recumbency was 5 and 7 min for each group, respectively. With the addition of propofol in 8 CX animals and 17 TX animals, the anesthetic plane was suitable for a wide range of procedures. The median time to standing recovery following administration of naltrexone was 4 +/- 3.5 min with TX and 7 +/- 1.5 min with CX. There was one fatality and one case of renarcotization in the TX group. Overall, the dosages used in the study provided a reliable and useful anesthetic induction protocol, with TX animals demonstrating a more rapid induction and recovery with less cardiac depression than CX animals.  相似文献   

12.
This study was designed to evaluate 2 combinations for immobilization of bison. Seven wood bison received 1.5 mg/kg body weight (BW) of xylazine HCl + 1.5 mg/kg BW of zolazepam HCl and 1.5 mg/kg BW of tiletamine HCl on one occasion. The bison received 60 micrograms/kg BW of medetomidine HCl + 0.6 mg/kg BW of zolazepam HCl and 0.6 mg/kg BW of tiletamine HCL on another occasion. Xylazine was antagonized with 3 mg/kg BW of tolazoline HCl and medetomidine HCl was antagonized with 180 micrograms/kg (BW) of atipamezole HCl. Temporal characteristics of immobilization and physiological effects (acid-base status, thermoregulatory, cardiovascular, and respiratory effects) of the drug combinations were compared. Induction was significantly faster with xylazine HCl-zolazepam HCl/tiletamine HCl. Recovery following antagonist administration was significantly faster with medetomidine HCl-zolazepam HCl/tiletamine HCl. The average drug volumes required were 7.00 mL of xylazine HCl-zolazepam HCl/tiletamine HCL and 2.78 mL of medetomidine HCl-zolazepam HCl/tiletamine HCl. Hypoxemia, hypercarbia, and rumenal tympany were the major adverse effects with both drug combinations.  相似文献   

13.
Xylazine combined with ketamine successfully immobilized free-ranging and captive goitred gazelles (Gazella subgutterosa) and Arabian mountain gazelles (Gazella gazella). One hundred thirty immobilizations were performed on 58 individuals. When administered i.m. via dart to free-ranging gazelles, xylazine (125 mg/ml) combined with ketamine (100 mg/ml) produced smooth induction and recovery. Mountain gazelles required higher dosages (11.7-15.2 mg/kg xylazine and 9.3-12.2 mg/kg ketamine) than goitred gazelles (6.8-7.4 mg/kg xylazine and 5.4-5.9 mg/kg ketamine). For manually restrained captive gazelles of both species, i.v. xylazine (11 mg/ml) combined with i.v. ketamine (44 mg/ml) immobilized the gazelles at considerably lower doses (0.4-1.0 mg/kg xylazine and 1.4-3.9 mg/kg ketamine). These anesthetic combinations are useful alternatives to ultrapotent narcotics in these gazelle species.  相似文献   

14.
Three anesthetic protocols, each using an alpha-2 agonist sedative in combination with a dissociative anesthetic, were evaluated in 17 captive fallow deer (Cervus dama). The alpha-2 agonist was given first in two of the three protocols: 1) detomidine (0.1-0.2 mg/kg i.m.) followed by tiletamine-zolazepam (3.0-6.3 mg/kg i.m.) and 2) xylazine (0.6-0.9 mg/kg i.m.) followed by tiletamine-zolazepam (4-5 mg/kg i.m.). In the third protocol, xylazine (1.0-6.2 mg/kg i.m.) and ketamine (2.5-5.1 mg/kg i.m.) were given simultaneously. Each of the sedative/anesthetic combinations produced acceptable immobilization in fallow deer and both provide an alternative to narcotic anesthesia.  相似文献   

15.
OBJECTIVE: To determine the anesthetic dose and cardiopulmonary effects of xylazine hydrochloride when used alone or in combination with ketamine hydrochloride and evaluate the efficacy of yohimbine hydrochloride to reverse anesthetic effects in captive Axis deer. ANIMALS: 35 adult (10 males and 25 females) Axis deer (Axis axis). PROCEDURES: All deer were anesthetized by IM administration of xylazine (3.5 mg/kg; experiment 1), a combination of ketamine and xylazine (1.25 and 1.5 mg/kg, respectively; experiment 2), or another combination of ketamine and xylazine (2.5 and 0.5 mg/kg, respectively; experiment 3). In addition, female deer were also anesthetized by IM administration of a third combination of ketamine and xylazine (1.5 and 1 mg/kg, respectively; experiment 4). Ten to 40 minutes after induction, anesthesia was reversed by IV administration of yohimbine (5, 8, or 10 mg). RESULTS: In male deer, experiment 3 yielded the most rapid induction of anesthesia. In females, experiment 4 yielded the best induction of anesthesia without adverse effects. All doses of yohimbine reversed anesthesia. Duration of anesthesia before administration of yohimbine had no effect on recovery time. CONCLUSIONS AND CLINICAL RELEVANCE: A combination of ketamine and xylazine can be used to induce anesthesia in Axis deer. Furthermore, anesthetic effects can be reversed by administration of yohimbine.  相似文献   

16.
OBJECTIVE: To evaluate the effects of intranasal administration of midazolam and xylazine (with or without ketamine) and detomidine and their specific antagonists in parakeets. DESIGN: Prospective study. ANIMALS: 17 healthy adult Ring-necked Parakeets (Psittacula krameri) of both sexes (mean weight, 128.83+/-10.46 g [0.28+/-0.02 lb]). PROCEDURE: The dose of each drug or ketamine-drug combination administered intranasally that resulted in adequate sedation (ie, unrestrained dorsal recumbency maintained for >or=5 minutes) was determined; the onset of action, duration of dorsal recumbency, and duration of sedation associated with these treatments were evaluated. The efficacy of the reversal agents flumazenil, yohimbine, and atipamezole was also evaluated. RESULTS: In parakeets, intranasal administration of midazolam (7.3 mg/kg [3.32 mg/lb]) or detomidine (12 mg/kg [5.45 mg/lb]) caused adequate sedation within 2.7 and 3.5 minutes, respectively. Combinations of midazolam (3.65 mg/kg [1.66 mg/lb]) and xylazine (10 mg/kg [4.55 mg/lb]) with ketamine (40 to 50 mg/kg [18.2 to 22.7 mg/lb]) also achieved adequate sedation. Compared with detomidine, duration of dorsal recumbency was significantly longer with midazolam. Intranasal administration of flumazenil (0.13 mg/kg [0.06 mg/lb]) significantly decreased midazolam-associated recumbency time. Compared with the xylazineketamine combination, duration of dorsal recumbency was longer after midazolam-ketamine administration. Intranasal administration of flumazenil, yohimbine, or atipamezole significantly decreased the duration of sedation induced by midazolam, xylazine, or detomidine, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Intranasal administration of sedative drugs appears to be an acceptable method of drug delivery in Ring-necked Parakeets. Reversal agents are also effective when administered via this route.  相似文献   

17.
Thirteen wild-caught white-tailed deer (Odocoileus virginianus) from two different holding sites were chemically immobilized to facilitate capture, processing, and translocation to a new facility. The deer were divided into two treatment groups on the basis of age and received i.m. injections of the immobilizing agents via remote drug delivery systems. Group 1 (<1 yr old; n = 6) animals were immobilized with a combination of xylazine 1 mg/kg i.m. and azaperone 0.3 mg/kg i.m. At the end of the procedure the deer received zuclopenthixol acetate 1 mg/kg i.m. and (to antagonize the xylazine) tolazoline 2 mg/kg i.m. Group 2 (>1 yr old; n = 7) deer were administered xylazine 1 mg/kg i.m.. tiletamine-zolazepam 1 mg/kg i.m., and ketamine 1 mg/kg i.m. The deer in this group received a combination of azaperone 0.3 mg/kg i.m. and zuclopenthixol acetate 1 mg/kg i.m. before reversal with tolazoline 2 mg/kg i.m. All deer were recovered in a trailer before being moved in small groups to the new facility and released into the new enclosures. Azaperone and zuclopenthixol acetate provided short- and long-term relief from anxiety and allowed the animals to gradually become familiar with their new surroundings without excitement, injuries, or mortalities. Two deer exhibited mild signs of extrapyramidal side effects, which suggests that they may have received a relative overdose of the tranquilizers.  相似文献   

18.
Nine groups of rats (n = 5 per group) received an intramuscular (IM) injection of one of the following drugs or drug combinations: saline, atropine (0.05 mg/kg), glycopyrrolate (0.5 mg/kg), ketamine:xylazine (85:15 mg/kg), ketamine:detomidine (60:10 mg/kg), atropine:ketamine:xylazine (0.05: 85:15 mg/kg), glycopyrrolate: ketamine:xylazine (0.5:85:15 mg/kg), atropine:ketamine:detomidine (0.05: 60:10 mg/kg) or glycopyrrolate: ketamine:detomidine (0.5:60:10). Similarly six groups of rabbits (n = 5) received an IM injection of either saline, atropine (0.2 mg/kg), atropine (2 mg/kg), glycopyrrolate (0.1 mg/kg), ketamine:xylazine (35:10 mg/kg) or glycopyrrolate:ketamine:xylazine (0.1:35:10 mg/kg). In rats, atropine sulfate (0.05 mg/kg) and glycopyrrolate (0.5 mg/kg) produced an increase in heart rate for 30 and 240 min, respectively. In rabbits atropine sulfate at either 0.2 or 2.0 mg/kg did not induce a significant increase in heart rate, but glycopyrrolate (0.1 mg/kg) elevated the heart rate above saline treated animals for over 50 min. Both atropine and glycopyrrolate provided protection against a decrease in heart rate in rats anesthetized with ketamine: xylazine (85:15 mg/kg) or ketamine: detomidine (60:10 mg/kg); however, glycopyrrolate was significantly more effective in maintaining the heart rate within the normal range. Glycopprrolate also prevented a decrease in heart rate in rabbits anesthetized with ketamine:xylazine (35:5 mg/kg). Neither glycopyrrolate nor atropine influenced respiration rate, core body temperature or systolic blood pressure when used alone or when combined with the injectable anesthetic. Glycopyrrolate is an effective anticholinergic agent in rabbits and rodents and more useful as a preanesthetic agent than atropine sulfate in these animals.  相似文献   

19.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

20.
Evaluation of Three Midazolam-Xylazine Mixtures Preliminary Trials in Dogs   总被引:1,自引:0,他引:1  
The depressant effects of midazolam and xylazine on the central nervous system (CNS) were evaluated in 12 dogs. Xylazine was administered to six dogs (1.1 mg/kg intravenously [IV]) followed in 5 minutes by midazolam (1.0 mg/kg intramuscularly [IM]). In a second group of six dogs, xylazine (2.2 mg/kg IM) was followed in 5 minutes by midazolam (1.0 mg/kg IV). Both drug regimens induced rapid and profound sedation or anesthesia. Duration of action varied with the doses and routes of administration. Dogs given the high dose of xylazine IM had an arousal time of 95.4 +/- 8.9 minutes and a walking time of 155.4 +/- 8.8 minutes. These values exceeded the IV xylazine values threefold. Partial reversal of CNS depression was accomplished with either a benzodiazepine antagonist (flumazenil) or an alpha-2 antagonist (yohimbine). In a separate trial, a mixture of xylazine (0.55 mg/kg), midazolam (1.0 mg/kg), and butorphanol (0.1 mg/kg) with and without glycopyrrolate was evaluated in eight dogs. As with the xylazine-midazolam combinations, the CNS depressant effect of this mixture was clinically indistinguishable from anesthesia achieved with other rapid-acting injectable agents. Clinical signs of CNS depression were readily and completely antagonized by the simultaneous injection of flumazenil and yohimbine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号