首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
为探讨不同恢复方式对大兴安岭重度火烧迹地土壤团聚体形成及其团聚体碳循环的影响,以大兴安岭1987年重度火烧后分别经过人工恢复(兴安落叶松、樟子松)和天然恢复的林分为研究对象,分析不同恢复方式下土壤团聚体有机碳、团聚体微生物量碳和团聚体K2SO4浸提碳的分布特征。结果表明:(1)不同林型间土壤团聚体有机碳含量、团聚体微生物量碳含量和团聚体K2SO4浸提碳含量差异显著(P0.05),其大小关系均是兴安落叶松人工林天然次生林樟子松人工林。(2)在不同植被恢复方式下,土壤有机碳含量和微生物量碳含量呈随团聚体粒径增大而增大的趋势,且大团聚体显著高于微团聚体(P0.05),土壤K2SO4浸提碳主要分布于1~0.5mm粒径及其更大粒径团聚体中。(3)土壤团聚体有机碳和团聚体微生物量碳富聚于土壤表层(0—5cm),其含量均随土层深度的增加而减小。除2 mm和2~1mm粒径外,其余粒径团聚体K2SO4浸提碳含量呈随土层深度增加而减小的趋势。(4)土壤微生物量碳与土壤有机碳和K2SO4浸提碳呈极显著正相关(P0.01),说明土壤微生物量碳与有机碳和K2SO4浸提碳之间有密切联系。  相似文献   

2.
以天山中部中科院巴音布鲁克草原生态观测站三种类型草地长期(26 a)围栏封育样地为研究对象,通过野外调查取样结合室内分析的方法,研究了长期(26 a)围栏封育对草地土壤有机碳和微生物量碳含量的影响,结果表明:(1)围栏外(自然放牧条件下),表层的土壤有机碳含量为高寒草甸(165.29 g·kg-1)〉高寒草甸草原(98.73 g·kg-1)〉高寒草原(83.54 g·kg-1),微生物量碳含量依次为高寒草甸草原(181.70 mg·kg-1)〉高寒草甸(146.37 mg·kg-1)〉高寒草原(43.06 mg·kg-1)。围栏封育后,高寒草甸、高寒草甸草原、高寒草原表层土壤有机碳含量分别提高了11.37%、3.26%和2.21%;高寒草甸草原和高寒草甸微生物量碳含量分别增长2.89%和12.04%,而高寒草原降低40.36%。(2)从围栏内外土壤剖面来看,土壤有机碳、微生物量碳含量随着土壤深度的增加依次降低,微生物熵也随土壤深度的增加呈现降低的趋势。(3)微生物量碳含量与土壤速效钾、全磷含量达到极显著负相关(P〈0.01),与速效磷含量达到极显著正相关(P〈0.01),与土壤有机碳、全氮、全钾含量呈显著正相关(P〈0.05)与土壤速效氮含量正相关,但不显著。  相似文献   

3.
对重庆市中梁山低山岩溶区角砾状白云质灰岩的黄色石灰土剖面进行研究.结果表明:土地利用方式明显地影响了土壤微生物量碳、微生物商、可矿化碳和硫酸钾浸提碳的含量,微生物商能更准确的反映土壤有机碳库对土地利用方式的响应,微生物商依次为:菜地橘林地耕地草地灌丛,平均值分别为3.09,2.46.1.92.1.55和1.14.土壤微生物量碳和微生物商在土壤0-30 cm范围内的变化规律不明显,仅在灌丛中的变化相似;而可矿化碳和硫酸钾浸提碳基本上随土壤深度的增加而降低,规律性明显.相关分析说明,硫酸钾浸提碳与全氮、水解氮和速效钾相关极显著,与全磷相关显著,相关系数分别为0.421,0.375,0.576和0.274,可以作为土壤肥力变化的重要指标;机械组成分析中砂粒对土壤有机碳组分的分布和含量影响相对比较明显,与土壤微生物量碳相关极显著(0.355),与土壤可矿化碳相关显著(0.313).  相似文献   

4.
为研究不同植被恢复模式对高寒沙化草地治理过程中土壤微生物量及酶活性的影响,以川西北高寒沙化草地为研究区,以未恢复沙化草地为对照(CK),通过野外试验与室内分析相结合的方法对围栏禁牧布设沙障恢复模式(WLCD)、围栏禁牧布设沙障撒播草种(RGCD)和围栏禁牧布设沙障混播燕麦草种(YMCD)3种植被恢复模式下沙化草地的土壤微生物量以及土壤酶活性的变化规律和相互关系的研究。结果表明:(1)3种植被恢复模式下土壤微生物量碳氮、多酚氧化酶、蔗糖酶、脲酶与硝酸还原酶活性均显著高于CK(P0.05),其中YMCD变化最显著。与CK相比,YMCD土壤微生物量碳氮、多酚氧化酶、蔗糖酶、脲酶与硝酸还原酶活性均增加了217.52%,725.26%,130.88%,387.78%,300.33%,192.32%;(2)随着土层的加深,微生物量碳氮、脲酶、蔗糖酶、多酚氧化酶与硝酸还原酶活性显著减小(P0.05),尤其是0—20cm土层;(3)微生物量碳氮与多酚氧化酶、蔗糖酶、脲酶、硝酸还原酶间呈极显著正相关(P0.01);(4)多酚氧化酶与蔗糖酶、脲酶、硝酸还原酶呈极显著正相关(P0.01),蔗糖酶与脲酶、硝酸还原酶呈极显著正相关(P0.01),脲酶与硝酸还原酶呈极显著正相关(P0.01);(5)研究表明土壤多酚氧化酶、蔗糖酶、脲酶与硝酸还原酶可敏感地反映植被过程中土壤质量的变化,植被恢复措施可改善表层与深层土壤的生物学性质。  相似文献   

5.
采用氯仿熏蒸浸提-紫外分光光度法和消化法比较测定了田间定位试验不同施肥处理土壤、添加植物残体土壤、添加葡萄糖土壤的微生物生物量碳、氮(SMBC,SMBN)。结果表明,当土壤微生物生物量氮含量较高时(>20 mg kg-1),采用分光光度法与消化法测定的SMBN具有显著正相关关系(P<0.05),但当SMBN量较低时(<20 mg kg-1)时,分光光度法测定与消化法测定的SMBN没有显著相关性。当土壤中添加麦秸和玉米秸时,土壤浸提液颜色较深(黄色),不适合采用分光光度法测定SMBN。因此,熏蒸提取–分光光度法测定SMBN,仅适于土壤浸提液无色透明、且SMBN含量较高的土壤。  相似文献   

6.
东祁连山高寒草地土壤微生物三大类群的时空动态特征   总被引:6,自引:1,他引:5  
通过对2005年和2006年东祁连山高寒草地4种不同草地类型(珠芽蓼草地、禾草草地、沼泽草地、嵩草草地)土壤3大类群微生物(真菌、细菌、放线菌)数量的时空动态进行研究。结果表明:(1)不同空间层次草地土壤3大类群微生物数量变化均较大,0-10 cm土层的数量为10-20 cm土层的1.02~3.89倍;(2)不同植被下土壤3大类微生物数量季节变化各有其自身的特点,年际变化也不一致;(3)不同植被下同一时间草地土壤三大类群微生物总数量差异较大,为0.83×107~4.71×107个/g;(4)三大类微生物中,细菌数量最大,放线菌次之,真菌最小,分别占微生物总数的48.9%~67.69%,32.18%~48.96%和0.08%~0.25%。  相似文献   

7.
《土壤通报》2019,(5):1108-1115
灌丛化是草地生态系统面临的重大生态环境问题之一,是影响高寒草地土壤碳库储量的重要因素。采集青藏高原灌丛化和未灌丛化草地土壤样本,用Cambardella和Elliott湿筛法和沉降虹吸法测定土壤团聚体含量及其稳定性、有机碳(SOC)和全氮(TN)含量,分析了草地灌丛化对土壤团聚体数量及其稳定性的影响。结果表明,灌丛化和未灌丛化草地土壤团聚体以2~0.25 mm粒径为主,但灌丛化草地土壤微团聚体(≤0.053 mm)含量显著低于未灌丛化草地,表明草地灌丛化主要影响土壤微团聚体而对大团聚体含量影响不显著。灌丛化草地土壤团聚体稳定性低于未灌丛化草地土壤,表明草地灌丛化后土壤结构稳定性降低。灌丛化草地土壤SOC和TN含量显著低于未灌丛化草地土壤,说明在气候变化影响下高寒草地灌丛化可能会降低土壤碳库储量。  相似文献   

8.
不同土壤类型和农业用地方式对土壤微生物量碳的影响   总被引:23,自引:0,他引:23  
通过野外调查与室内分析,研究了山东桓台县3种土壤类型(潮土、褐土和砂姜黑土)与农业用地方式(林地、菜地和粮田)对土壤表层(0—10.cm)微生物量碳的影响。结果表明,不同农业用地方式对微生物量碳的影响较大,3种利用方式的微生物量碳含量差异显著,依次为:粮田>菜地>林地;土壤类型不同,土壤微生物量碳含量也不相同。任何一种土壤,菜地的N、P、K含量都高于粮田和林地;有机质含量粮田>菜地>林地;pH值林地>粮田>菜地。全N、有机质与土壤微生物量碳呈极显著正相关,有效P与微生物量碳呈弱负相关,速效K、pH值和微生物量碳不相关。不同用地方式下土壤养分与微生物量碳的相关程度不同。秸秆还田和施用有机肥有利于提高土壤中微生物量碳水平,施用化肥在一定程度上能够增加微生物量碳。  相似文献   

9.
鄂东南弃耕地自然恢复过程中微生物碳动态变化   总被引:1,自引:0,他引:1  
耕地弃耕后植被次生演替过程中土壤微生物碳的大小和活性的研究结果表明,土壤有机碳和微生物碳呈现先下降后增大的趋势;在75 a的弃耕地中,有机碳和微生物碳的含量达到天然植被的115%和82.9%,而且有机碳与微生物碳呈现显著正相关(P<0.05);微生物代谢熵与微生物碳呈现极显著负相关(P<0.01),呈现先上升后下降的趋势;在次生演替初期,土壤有效基质逐渐降低,而在演替后期有效基质不断增加,有益于土壤有机碳和微生物碳的提高,有利于土壤肥力的提高.  相似文献   

10.
东北寒温带永久冻土区森林沼泽湿地生态系统碳储量   总被引:1,自引:0,他引:1  
摘 要 湿地在全球碳循环中具有重要作用,但目前湿地碳储量估算仍存在诸多不确定性。利用相对生长方程与碳/氮分析仪测定法,同步测定寒温带大兴安岭永久冻土区沿过渡带环境梯度依次分布的7种典型天然沼泽类型(草丛沼泽-C、灌丛沼泽-G、毛赤杨沼泽-M、白桦沼泽-B和落叶松苔草沼泽-LT、落叶松藓类沼泽-LX、落叶松泥炭藓沼泽-LN)的生态系统碳储量(植被和土壤)、植被净初级生产力与年净固碳量,定量评价各沼泽类型的生态系统碳库及植被固碳能力,并揭示两者沿过渡带环境梯度的空间分布规律性。结果表明:①其植被碳储量(3.60~62.18 t·hm-2)沿过渡带环境梯度呈先上升后降低的偏态型分布趋势;②土壤碳储量(179.47~320.81 t·hm-2)呈森林沼泽(M除外)与灌丛沼泽显著高于C (56.4%~78.8%,P<0.05)和M (32.0%~50.9%,P<0.05)的变化规律性;③生态系统碳储量(183.07~347.14 t·hm-2)也呈现森林沼泽(M除外)与灌丛沼泽显著高于C (64.0%~89.6%,P<0.05)和M (28.1%~48.1%,P<0.05)的变化规律性,但森林沼泽土壤碳储量占比(82.1%~96.4%)要低于C和G (98.0%~98.3%);④植被净初级生产力(6.76~11.22 t·hm-2·a-1)和年净固碳量(2.97~5.37 t·hm-2·a-1)均呈现森林沼泽(LN除外)显著高于C和G (26.9%~61.4%和30.5%~66.0%;38.6%~77.2%和41.4%~80.8%,P<0.05)的变化规律性。因此,寒温带永久冻土区各类型沼泽湿地的生态系统碳储量均相对较低(仅相当于北方泥炭地碳储量(390~1 395 t·hm-2)下限值的46.9%~89.0%),且沿过渡带环境梯度总体上呈递增趋势;森林沼泽(LN除外)的植被固碳能力强于灌丛沼泽与草丛沼泽,且前者略高于全球陆地植被年均净固碳量估计值(4.1 t·hm-2·a-1),而后两者仅相当于其3/4。  相似文献   

11.
为探究不同间伐强度对杉木人工林土壤碳氮及其组分特征的影响,以福建省三明市官庄国有林场11年生杉木(Cunninghamia lanceolata)人工林为研究对象,采用弱度间伐(LIT)、中度间伐(MIT)、强度间伐(HIT)等3种间伐强度,研究不同间伐强度林分0—10,10—20,20—40,40—60,60—80,80—100 cm土层总有机碳(SOC)、全氮(TN)及易氧化有机碳(ROC)、硝态氮(NO_3~--N)、铵态氮(NH_4~+-N)、微生物量碳(MBC)、微生物量氮(MBN)、微生物熵碳(qMBC)、微生物熵氮(qMBN)的变化特征,以探讨不同间伐强度对杉木人工林土壤碳氮及其组分特征的影响。结果表明:间伐降低了土壤SOC和TN的含量,降低幅度分别为1.4%~36.9%,3.1%~45.7%。间伐增加了土壤MBC、NO_3~--N的含量,而对ROC、NH_4~+-N和MBN的程度在不同土层有差异,qMBC和qMBN随着间伐强度的增加而增大。相关性分析表明,土壤SOC分别与TN、qMBC、ROC、NH_4~+-N、MBC、MBN呈极显著正相关(P0.01);TN与qMBN、ROC、NH_4~+-N、MBC、MBN呈极显著正相关(P0.01)。杉木人工林间伐处理降低了土壤表层SOC和TN含量,增加了土壤SMBC和qMBC、qMBN,同时也增加了土壤表层(0—10 cm)SMBN。抚育间伐导致土壤SOC和TN含量降低主要是由于活性碳、氮含量的增加,提高土壤中有机质分解速率,最终导致土壤SOC和TN含量降低。  相似文献   

12.
Anaerobic decomposition in wetland soils is carried out by several interacting microbial processes that influence carbon storage and greenhouse gas emissions. To understand the role of wetlands in the global carbon cycle, it is critical to understand how differences in both electron donor (i.e., organic carbon) and terminal electron acceptor (TEA) availability influence anaerobic mineralization of soil organic matter. In this study we manipulated electron donors and acceptors to examine how these factors influence total rates of carbon mineralization and the pathways of microbial respiration (e.g., sulfate reduction versus methanogenesis). Using a field-based reciprocal transplant of soils from brackish and freshwater tidal marshes, in conjunction with laboratory amendments of TEAs, we examined how rates of organic carbon mineralization changed when soils with different carbon contents were exposed to different TEAs. Total mineralization (the sum of CO2 + CH4 produced) on a per gram soil basis was greater in the brackish marsh soils, which had higher soil organic matter content; however, on a per gram carbon basis, mineralization was greater in the freshwater soils, suggesting that the quality of carbon inputs from the freshwater plants was higher. Overall anaerobic metabolism was higher for both soil types incubated at the brackish site where SO42− was the dominant TEA. When soils were amended with TEAs in the laboratory, more thermodynamically favorable respiration pathways typically resulted in greater organic matter mineralization (Fe(III) respiration > SO42− reduction > methanogenesis). These results suggest that both electron donors and acceptors play important roles in regulating anaerobic microbial mineralization of soil organic matter.  相似文献   

13.
Land-use type and nitrogen (N) addition strongly affect nitrous oxide (N2O) and carbon dioxide (CO2) production, but the impacts of their interaction and the controlling factors remain unclear. The aim of this study was to evaluate the effect of both factors simultaneously on N2O and CO2 production and associated soil chemical and biological properties. Surface soils (0–10 cm) from three adjacent lands (apple orchard, grassland and deciduous forest) in central Japan were selected and incubated aerobically for 12 weeks with addition of 0, 30 or 150 kg N ha–1 yr–1. Land-use type had a significant (p < 0.001) impact on the cumulative N2O and CO2 production. Soils from the apple orchard had higher N2O and CO2 production potentials than those from the grassland and forest soils. Soil net N mineralization rate had a positive correlation with both soil N2O and CO2 production rates. Furthermore, the N2O production rate was positively correlated with the CO2 production rate. In the soils with no N addition, the dominant soil properties influencing N2O production were found to be the ammonium-N content and the ratio of soil microbial biomass carbon to nitrogen (MBC/MBN), while those for CO2 production were the content of nitrate-N and soluble organic carbon. N2O production increased with the increase in added N doses for the three land-use types and depended on the status of the initial soil available N. The effect of N addition on CO2 production varied with land use type; with the increase of N addition doses, it decreased for the apple orchard and forest soils but increased for the grassland soils. This difference might be due to the differences in microbial flora as indicated by the MBC/MBN ratio. Soil N mineralization was the major process controlling N2O and CO2 production in the examined soils under aerobic incubation conditions.  相似文献   

14.
Elevated pCO2 increases the net primary production, C/N ratio, and C input to the soil and hence provides opportunities to sequester CO2-C in soils to mitigate anthropogenic CO2. The Swiss 9 y grassland FACE (free air carbon-dioxide enrichment) experiment enabled us to explore the potential of elevated pCO2 (60 Pa), plant species (Lolium perenne L. and Trifolium repens L.) and nitrogen fertilization (140 and 540 kg ha−1 y−1) on carbon sequestration and mineralization by a temperate grassland soil. Use of 13C in combination with respired CO2 enabled the identification of the origins of active fractions of soil organic carbon. Elevated pCO2 had no significant effect on total soil carbon, and total soil carbon was also independent of plant species and nitrogen fertilization. However, new (FACE-derived depleted 13C) input of carbon into the soil in the elevated pCO2 treatments was dependent on nitrogen fertilization and plant species. New carbon input into the top 15 cm of soil from L. perennne high nitrogen (LPH), L. perenne low nitrogen (LPL) and T. repens low nitrogen (TRL) treatments during the 9 y elevated pCO2 experiment was 9.3±2.0, 12.1±1.8 and 6.8±2.7 Mg C ha−1, respectively. Fractions of FACE-derived carbon in less protected soil particles >53 μm in size were higher than in <53 μm particles. In addition, elevated pCO2 increased CO2 emission over the 118 d incubation by 55, 61 and 13% from undisturbed soil from LPH, LPL and TRL treatments, respectively; but only by 13, 36, and 18%, respectively, from disturbed soil (without roots). Higher input of new carbon led to increased decomposition of older soil organic matter (priming effect), which was driven by the quantity (mainly roots) of newly input carbon (L. perenne) as well as the quality of old soil carbon (e.g. higher recalcitrance in T. repens). Based on these results, the potential of well managed and established temperate grassland soils to sequester carbon under continued increasing concentrations of atmospheric CO2 appears to be rather limited.  相似文献   

15.
Abstract

To evaluate the carbon budget in soils under different cropping systems, the carbon dioxide (CO2) flux from soils was measured in a total of 11 upland crop fields within a small watershed in central Hokkaido over the no snow cover months for 3 years. The CO2 flux was measured using a closed chamber method at bare plots established in each field to estimate soil organic matter decomposition. Temporal variation in instantaneous soil CO2 fluxes within the sites was mainly controlled by soil temperature and moisture. Annual mean CO2 fluxes and cumulative CO2 emissions had no significant relationship with soil temperature and moisture (P > 0.2). However, there was a significant quadratic relationship between annual mean CO2 flux or cumulative CO2 emission and soil clay plus silt content (%) (R2 = 0.72~0.74, P < 0.0003). According to this relationship, the optimum condition for soil CO2 emission is at a clay plus silt content of 63%. The cumulative CO2 emission during the no snow cover season within each year varied from 1,159 to 7,349 kg C ha?1 at the different sites. The amount of crop residue carbon retained in the soils following a cropping season was not enough to offset the CO2 emission from soil organic matter decomposition at all sites. As a consequence, the calculation of the soil carbon budget (i.e. the difference between the carbon added as crop residues and compost and the carbon lost as CO2 from organic matter decomposition) ranged from –7,349 to –785 kg C ha?1, except for a wheat site where a positive value of 4,901 kg C ha?1 was observed because of a large input of organic carbon with compost. The negative values of the soil carbon budget indicate that these cropping systems were net sources of atmospheric CO2.  相似文献   

16.
NaCl and Na2SO4 often dominate salt compositions in saline soils. While either salt alone affects soil organic matter mineralization, their interactions on soil organic matter dynamics are unknown. This study aimed to investigate interactive effects of the two salts on organic C mineralization and microbial biomass C of the saline soils after addition of maize straws. Both NaCl and Na2SO4 were applied at 0, 40 and 80 mmol Na kg−1 soil and the incubation was undertaken at soil water content of 15% and 20% (w/w) in dark at 28.5 °C for 70 days. The study found significant interactions of NaCl and Na2SO4 on CO2-C evolution during the early incubation periods—a suppressing effect at days 1-2 but a stimulating effect at days 6-8 and 17-20, and thereafter the salt interactions were influenced by water content. The interactions of water content with NaCl or Na2SO4 on CO2-C evolution were observed through the incubation periods except days 1-2, showing that the salt effects were dependent on water content. Total CO2 evolution over the 70-day-long incubation decreased with increasing NaCl but increased with increasing Na2SO4 compared to the nil-salted treatment. Salt interactions on soil microbial biomass C were observed at days 7, 21, but not at day 49. Microbial biomass C increased at day 7 in the soils treated with either NaCl or Na2SO4 but decreased where the two salts were combined. At day 21, microbial biomass C increased with NaCl but decreased with Na2SO4 regardless whether the counterpart salt was added. The results suggest that soil organic C mineralization can be affected by the interactions of NaCl and Na2SO4, possibly through the salt-induced changes in microbial biomass community structure.  相似文献   

17.
农田改为农林(草)复合系统对红壤CO2和N2O排放的影响   总被引:1,自引:0,他引:1  
以鄂南玉米地、紫穗槐/玉米地、香根草/玉米地、紫穗槐林地、香根草草地与撂荒地6种土地利用类型为研究对象,利用静态箱法,对夏玉米生长期间土壤CO2和N2O通量及影响因子进行了测定,研究我国北亚热带丘陵红壤区农田改变为林(草)地和农林(草)复合系统后土壤CO2和N2O排放特征。研究结果表明:(1)土地利用方式改变后,撂荒地土壤CO2排放量明显低于其他5种土地利用类型,但紫穗槐/玉米地、单作玉米地、香根草/玉米地、紫穗槐林地、香根草草地5种土地利用类型之间土壤CO2排放量差异不显著。(2)玉米生长期间,6种不同土地利用方式下,土壤N2O排放总量从高到低依次为紫穗槐/玉米地(508 g·hm-2·a-1)、紫穗槐林地(470 g·hm-2·a-1)、撂荒地(390 g·hm-2·a-1)、香根草/玉米地(373 g·hm-2·a-1)、香根草草地(372 g·hm-2·a-1)、单作玉米地(285 g·hm-2·a-1)。(3)土壤CO2通量与土壤有机碳、土壤微生物生物量碳和土壤含水量无显著相关关系;土壤N2O通量与土壤氮素净矿化率呈显著线性相关,但与土壤无机氮和土壤含水量无显著相关关系。农田改变为农林(草)复合系统可能潜在地增加土壤CO2和N2O排放;农田改变为林(草)地可能潜在地减少土壤CO2排放,增加土壤N2O排放。  相似文献   

18.
Abstract

A study was carried out in the Argentine Pampa. Plots under continuous maize and maize–wheat/soybean–soybean rotation were used. Three control plots on grassland with different undisturbed periods were also used. The objective was to show that C3 and C4 plants have a different effect on the quantity of carbon retained in the soil when different crop sequences are used. Total organic carbon was determined, and mass spectrometry techniques were used to assess the natural variation of the abundance of 13C and 12C to trace carbon fate in the soil. No differences were observed in the carbon stock at 90 cm deep across cultivated plots. Maize monoculture represented an important contribution to the soil organic matter when compared to the grassland areas, but the comparison through the initial δ13C from reference plots did not allow an assessment of the original soil carbon in the plot under rotation.  相似文献   

19.
The roles of microbial biomass (MBC) and substrate supply as well as their interaction with clay content in determining soil respiration rate were studied using a range of soils with contrasting properties. Total organic C (TOC), water-soluble organic carbon, 0.5 M K2SO4-extractable organic C and 33.3 mM KMnO4-oxidisable organic carbon were determined as C availability indices. For air-dried soils, these indices showed close relationship with flush of CO2 production following rewetting of the soils. In comparison, MBC determined with the chloroform fumigation-extraction technique had relatively weaker correlation with soil respiration rate. After 7 d pre-incubation, soil respiration was still closely correlated with the C availability indices in the pre-incubated soils, but poorly correlated with MBC determined with three different techniques—chloroform fumigation extraction, substrate-induced respiration, and chloroform fumigation-incubation methods. Results of multiple regression analyses, together with the above observations, suggested that soil respiration under favourable temperature and moisture conditions was principally determined by substrate supply rather than by the pool size of MBC. The specific respiratory activity of microorganisms (CO2-C/MBC) following rewetting of air-dried soils or after 7 d pre-incubation was positively correlated with substrate availability, but negatively correlated with microbial pool size. Clay content had no significant effect on CO2 production rate, relative C mineralization rate (CO2-C/TOC) and specific respiratory activity of MBC during the first week incubation of rewetted dry soils. However, significant protective effect of clay on C mineralization was shown for the pre-incubated soils. These results suggested that the protective effect of clay on soil organic matter decomposition became significant as the substrate supply and microbial demand approached to an equilibrium state. Thereafter, soil respiration would be dependent on the replenishment of the labile substrate from the bulk organic C pool.  相似文献   

20.
室内恒温条件下稻田土壤中菌渣的分解过程及CO2释放特征   总被引:1,自引:0,他引:1  
菌渣是栽培食用菌后的下脚料,可作为有机肥再利用。本文通过实验室条件下培养不同比例的菌渣和稻田土壤混合物[不施用菌渣(TS),土壤与菌渣质量比为10∶1(SM1)、5∶1(SM2)和2∶1(SM3),全部菌渣(TM)],研究不同处理有机碳和全氮的变化,探讨菌渣在稻田土壤中的分解过程,并分析CO_2释放特征,为菌渣合理利用提供参考。结果表明,在相同培养时间,添加不同比例菌渣处理有机碳和氮含量均比TS处理高,其中TM处理的有机碳和全氮分别比TS处理提高了10.7倍和11.0倍。有机碳、氮含量的提高量主要依赖于菌渣的添加量。总体来说,各处理随培养时间的延长,由于碳氮的分解,有机碳、氮均有下降趋势;在35 d后TM处理有机碳氮下降较快。添加菌渣越多,有机碳残留率也越大。在培养63 d后,菌渣有机碳(YC)和氮(YN)的分解残留率与菌渣添加量(X)的关系式分别为:YC=71.26X-0.607 5,r2=1.000 0**和YN=74.039X-0.413 3,r2=0.999 9**。各处理土壤CO_2释放速率均表现出先增后降然后趋于稳定趋势。菌渣用量越高,CO_2释放速率越高,各处理在不同培养时间CO_2释放速率均表现为TMSM3SM2SM1TS。在第7 d时各处理CO_2释放速率最高,在第14 d时渐渐处于平稳下降状态,培养35 d后,各处理土壤有机碳矿化强度很小,大部分有机碳被固定在土壤中,其中TM处理有机碳矿化强度最小。总之,还田菌渣越多,土壤中被固定的碳越多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号