首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
While testing several samples of onion and of vegetatively propagated garlic, sand leek and shallot from a number of countries, virus isolates with unusually flexuous particles were obtained by mite (Aceria tulipae) or sap transmissions. No aphid-borne poty-or carlavirus was transmitted by mites, and mite-borne virus isolates could not be transmitted by aphids. The mite-borne isolates did not react with antisera to aphid-borne potyviruses ofAllium spp. or with the Agdia potyvirus group monoclonal. In contrast to the mite-borne onion and garlic mosaic viruses reported in the literature, our mite-borne isolates induced no visible or only very mild symptoms inAllium spp., except isolates from shallot ‘Santé’ which caused diffuse striping. Heavily mite-infested test plants or plant samples showed streaking and malformation due to mite feeding (tangle-top). The mite-borne virus isolates could be classified with test plants and a discriminating antiserum into three groups, representing two viruses and a strain of one of them. They are tentatively named onion mite-borne latent virus (OMbLV), garlic strain of this virus (OMbLV-G), and shallot mite-borne latent virus (SMbLV). Mite transmission, length of virus particles (ca. 700 to 800 nm), and the presence of granular inclusion bodies in infected tissue indicate that the viruses belong to the mite-borne genusRymovirus of the familyPotyviridae. OMbLV from shallot and onion, and OMbLV-G from garlic and sand leek, can be assayed onChenopodium murale but differ in their natural hosts. They are very common. SMbLV, to whichC. murale does not react, was isolated from shallot originating from Asia and Russia.  相似文献   

2.
Carlavirus isolates from cultivated Allium species represent three viruses   总被引:3,自引:0,他引:3  
From 12 cultivated and mostly vegetatively propagatedAllium species and varieties tested for carlavirus infections, 94 virus isolates were obtained which varied greatly on indicator hosts.Chenopodium amaranticolor, C. quinoa, Celosia argentea var.plumosa Geisha,Nicotiana hesperis accession 67A andN. occidentalis accession P1 proved valuable for detection, isolation and propagation of part of the isolates. The latter three species are new experimental hosts for carlaviruses ofAllium species. Other isolates could only be transmitted toAllium species such as crow garlic (A. vineale) leek (A. ampeloprasum var.porrum) and onion (A. cepa var.cepa). The isolates were grouped into three viruses by differential hosts and host reactions and their reaction with four antisera.Shallot latent virus (SLV) was found in ever-ready onion (A. cepa var.perutile), grey shallot (unidentifiedAllium species), multiplier onion (A. cepa var.aggregatum), pearl onion (A. ampeloprasum var.sectivum), rakkyo (A. chinense), shallot (A. cepa var.ascalonicum), and Welsh onion (A. fistulosum). Virus isolates from garlic and Asian shallot, fully reacting with antiserum to SLV but differing in host reactions from the SLV type-isolate, are now described as garlic strain (SLV-G) and Asian shallot strain of the virus, respectively. The garlic latent virus from garlic described in Japan is now considered identical with SLV-G.A carlavirus almost universal in garlic, and also found in great-headed garlic (A. ampeloprasum var.holmense), in an unidentifiedAllium species, and occasionally in leek, did not react with the antisera to SLV and the Japanese garlic latent virus, and is now described as the new garlic common latent virus (GCLV). It appeared identical to a virus erroneously identified in Germany as garlic latent virus.The new Sint-Jan's-onion latent virus (SjoLV) from Utrechtse Sint-Jan's onion (unidentifiedAllium species) from the Netherlands and similar crops originating from other countries, did not induce reactions in test plants and could only be detected by electron microscope decoration tests. It reacted equally wellwith the antisera to SLV and GCLV. It was also present together with SLV in ever-ready onion, pearl onion, rakkyo, shallot, and Welsh onion. Garlic latent virus reported in Japan from hosts other than garlic should be regarded as SLV, SjoLV, or a mixture of these viruses.The carlaviruses were not detected in wild plants of ramsons (A. ursinum), and of the predominantly vegetatively propagated crow garlic (A. vineale), field garlic (A. oleraceum), and sand leek (A. scorodoprasum), collected in the Netherlands.Severe reactions in the indicator hosts incidentally revealed soil-borne viruses in shallot (the nepovirusesArabis mosaic virus (ArMV) and tomato black ring virus) and crow garlic (ArMV and the tobravirus tobacco rattle virus). Tobacco necrosis virus (necrovirus) was detected in roots of shallot.  相似文献   

3.
4.
A survey identified viruses infecting garlic, leek and onion crops and wild Allium species in Greece. Virus identification was based on ELISA, immunoelectron microscopy, and occasionally on RT-PCR. Samples of cultivated Allium species were collected from five districts, whereas samples of twenty-seven wild Allium species were also collected from all over Greece. Onion yellow dwarf virus (OYDV) and Leek yellow stripe virus (LYSV) were identified in 98.5% and 83.7% of all samples, respectively, and were found in all regions. Allexiviruses were also detected in all regions and their incidence ranged from 62.5% to 70.5% (depending on region and type of allexivirus). Garlic common latent virus (GCLV) was detected in samples from Arcadia (97.6%) and Evia (18.0%) and in one field in Larissa (23.0%). Shallot latent virus (SLV) was found only in two areas (Evros and Theva) and in fields planted with imported propagative material, from Iran and China. The incidence of virus-like symptoms in leek crops ranged from 10.0% to 90.0% in different regions and fields and all symptomatic plants were found to be infected by LYSV. Onion yellow dwarf virus was only found in seven symptomatic onion samples from southern Greece. Allium ampeloprasum spp. ampeloprasum and Allium flavum, were the only wild Allium species found to be infected with LYSV. Finally Turnip mosaic virus (TuMV) was found in A. sphaerocephalon, A. guttatum, A. subhirsutum, and A. neapolitanum.  相似文献   

5.
Mechanical inoculation tests and ELISA with sap from garlic plants used for sanitation by meristem-tip culture revealed four viruses, viz. garlic common latent virus (GCLV) (carlavirus), the garlic strains of leek yellow stripe virus (LYSV-G), onion yellow dwarf virus (OYDV-G) (aphid-borne potyviruses), and onion mite-borne latent virus (OMbLV-G) (taxonomically unassigned virus). The same tests performed on explants grownin vitro showed elimination efficiencies of 100% for LYSV-G, 92% for OYDV-G, 62% for GCLV, and less then 54% for OMbLV-G.Meristem tips excised from garlic cloves and bulbils, 0.15–1.0 mm in size, were tested for regeneration and efficiency of virus elimination after transfer to Murashige and Skoog medium. Successful regeneration into plantlets was obtained with 71% of the meristems from cloves and 72% of those from bulbils, but virus elimination was easiest from cloves: 38% of all explants from cloves and 25% of those from bulbils were virus-free. The efficiency of elimination increased with increasing weight of the cloves, irrespective of the virus. Small tip size seemed to favour virus elimination, but sizes smaller than 0.4 mm led to increasing failure of regeneration.Micropropagation was most successful when cytokinins were omitted from the medium and the garlic shoot was split. Multiplication factors of 3–6 were obtained.  相似文献   

6.
A survey of wild cherry (Prunus avium) woodland plantations and nurseries was carried out in 2000/01. Trees with symptoms of bacterial canker were found in 20 of the 24 plantations visited and in three of seven nurseries. Fifty-four Pseudomonas syringae isolates from wild cherry together with 22 representative isolates from sweet cherry and 13 isolates from other Prunus spp., pear and lilac were characterised by physiological, biochemical, serological and pathogenicity tests. Isolates from wild cherry were predominantly P. syringae pv. syringae (Pss), but P. syringae pv. morsprunorum (Psm) races 1 and 2 were also found. Physiological and biochemical tests discriminated Psm races 1 and 2 from other P. syringae isolates. Agglutination and indirect-enzyme-linked immunosorbent assay tests with three different antisera showed that Psm race 1 and race 2 were very uniform and indicated high variability amongst other P. syringae isolates. However, pathogenic Pss isolates could not be distinguished from non-pathogenic isolates of P. syringae on the basis of physiological, biochemical or serological tests. Pathogenicity tests on rooted lilac plants and on micropropagated plantlets of lilac and two wild cherry clones differentiated Pss and Psm isolates and demonstrated a range of aggressiveness amongst Pss isolates. Serological tests could be used as an alternative to the classical physiological and biochemical tests to increase the speed of detection and discrimination of isolates, but pathogenicity tests are still necessary to discriminate the pathogenic Pss isolates.  相似文献   

7.
Nearly 5700 plants of 14 cultivated and 8 wildAllium species and varieties from the Netherlands and other parts of the world, were tested for infection with aphid-borne potyviruses by ELISA, electron microscope decoration tests and/or inoculation onto test plants. This resulted in the detection of two known viruses, viz. leek yellow stripe virus (LYSV) and onion yellow dwarf virus (OYDV), and the discovery and characterization of two new viruses, viz. shallot yellow stripe virus (SYSV) and Welsh onion yellow stripe virus (WoYSV), and of six strains of these viruses. ‘Garlic mosaic’, ‘barlic yellow streak’, ‘onion mosaic’, ‘shallot mosaic’, ‘shallot X’, and ‘shallot yellows’ viruses, incompletely described in the literature, are now reidentified as well-known viruses or as strains or mixtures of such viruses. ‘Garlic yellow stripe virus’ is also a complex containing a potyvirus possibly differing from the viruses found in this survey. The symptoms of the potyviruses studied varied widely and ranged from mild to severe chlorotic to yellow striping of leaves, and they are of little diagnostic importance.LYSV was found in vegetatively propagated pearl onion (A. ampeloprasum var.sectivum) from Europe and Asia. It has decreased in leek crops (A. ampeloprasum var.porrum) in the Netherlands since the 1970, apparently due to resistance in new cultivars. OYDV was common in onion (A. cepa var.cepa) from the former USSR and North Africa, and in European cultivars of shallot (A. cepa var.ascalonicum), with the exception of the highly resistant ‘Santé’, but was not detected during this survey in Asian shallot. European samples of ever-ready onion (A. cepa var.perutile), multiplier onion (A. cepa var.aggregatum) and tree onion (A. cepa var.viviparum) contained OYDV. It was also found in sand leek (A. scorodoprasum) from european gene collections. A strain of OYDV from onion and shallot in Morocco and Spain was virulent on onion and shallot cultivars resistant to common OYDV, as reported early for a similar isolate in the USA.Asian shallot appeared generally infected with the new SYSV, similar to OYDV in host range and symptoms but serologically distinct. It was not detected in onion and shallot from Europe or North Africa. A virulent strain of this virus caused striping in sap-inoculated garlic (A. sativum) and Formosan lily (Lilium formosanum). The new WoYSV, infecting Welsh onion in Indonesia and Japan, was earlier described in Japan as OYDV from rakkyo and Welsh onion. It appeared serologically closely related to SYSV and distantly to OYDV, but differed in its host range.Host-specific strains of LYSV and OYDV were detected in garlic, wild garlic (A. longicuspis), an unidentifiedAllium species (suffix-G), and great-headed garlic (A. ampeloprasum var.holmense) (suffix-GhG)., LYSV-G and OYDV-G infected on average 45% and 73%, respectively, of the garlic samples of worldwide origin. Symptoms of isolates of both strains varied in severity, implying the necessity of serological tests for disease diagnosis and health certification. LYSV-GhG was the cause of yellow striping in 93% of the great-headed garlic plants tested, mainly from the Mediterranean area. One sample was also infected with OYDV-GhG.Many samples from vegetatively propagated crops grown from non-certified planting stock contained a few plants free of potyviruses, implying the possibility to obtain healthy (and possibly resistant) selections of such cultivars avoiding meristem-tip culture. Cross-protection of garlic sets by a mild potyvirus isolate seems to be an alternative to the use of vulnerable virus-free sets.Generally, viruses and virus strains could not be transmitted to anyAllium species other than their natural host, except to the highly susceptible crow garlic (A. vineale). This species, and other predominantly vegetatively propagating wildAllium spp. (field garlic,A. oleraceum; ramsons,A. ursinum; sand leek), were found not to be reservoirs of viruses that might infectAllium crops in the netherlands. Streaking in vegetatively propagated wild leeks (A. ampeloprasum and closely related species) originating from the Mediterranean area and Asia was due to an undescribed miteborne virus. The survey confirmed that spread of potyviruses inAllium crops in the Netherlands is from planting sets, and from a neighbouring crop only if of the same species.  相似文献   

8.
Plant virus eradication is a prerequisite for the use of virus-free propagules for sustainable crop production. In contrast, virus preservation is required for all types of applied and basic research of viruses. Shoot tip cryopreservation can act as a double-edged strategy, facilitating either virus eradication or virus preservation in cryoderived plants. Here, we tested the efficacies of shoot tip cryopreservation for virus eradication and preservation in shallot (Allium cepa var. aggregatum). In vitro stock shallot shoots infected with onion yellow dwarf virus (OYDV) and shallot latent virus were thermotreated for 0, 2, and 4 weeks at a constant temperature of 36℃ before shoot tip cryopreservation. Results showed that viruses were preserved in recovered shoots when thermotherapy was not applied. Although thermotherapy lowered the regrowth levels of cryotreated shoot tips, the efficiency of virus eradication increased from 5% to 54%. Immunolocalization of OYDV and histological observation of cryotreated shoot tips showed the high frequency of virus preservation was due to the viral invasion of cells close to the apical meristem and the high proportion of cells surviving. Four weeks of thermotherapy drastically decreased the distribution of OYDV, as well as the percentage of surviving cells within the shoot tips, thereby promoting virus eradication. Virus-free plants obtained from combining thermotherapy with cryotherapy showed significantly improved vegetative growth and bulb production. The present study reports how thermotherapy can act as a trigger to facilitate either the safe preservation of Allium viruses or the production of virus-free shallot plants.  相似文献   

9.
10.
Alstroemeria plants were surveyed for viruses in Japan from 2002 to 2004. Seventy-two Alstroemeria plants were collected from Aichi, Nagano, and Hokkaido prefectures and 54.2% were infected with some species of virus. The predominant virus was Alstroemeria mosaic virus, followed by Tomato spotted wilt virus, Youcai mosaic virus (YoMV), Cucumber mosaic virus (CMV), Alstroemeria virus X and Broad bean wilt virus-2 (BBWV-2). On the basis of nucleotide sequence of the coat protein genes, all four CMV isolates belong to subgroup IA. CMV isolates induced mosaic and/or necrosis on Alstroemeria. YoMV and BBWV-2 were newly identified by traits such as host range, particle morphology, and nucleotide sequence as viruses infecting Alstroemeria. A BBWV-2 isolate also induced mosaic symptoms on Alstroemeria seedlings.  相似文献   

11.
Alstroemeria mosaic virus (AlMV) is one of the viruses known to occur inAlstroemeria spp. Its detection in DAS-ELISA needed improvement. The often simultaneous presence of a second potyvirus has been mentioned by various authors. The recently detected virus inAlstroemeria, tentatively namedAlstroemeria streak virus [AlSV; Wong, 1992] was multiplied in indicator plants and had a host range similar to that of AlMV, although the symptoms in these hosts were less severe. Both viruses reacted with antisera prepared in the Netherlands and in Great Britain to AlMV-isolates purified from infectedAlstroemeria plants, and fromNicotiana clevelandii, respectively. Where AlSV occurs separately, distinction from AlMV is possible by its negative reaction with potyvirus group-specific monoclonal antibodies.  相似文献   

12.
A study was conducted to determine the identity and prevalence of viruses in 455 greenhouses in the main Spanish green bean growing area. Directed surveys were conducted in 422 crops from 2000–2004 to collect samples from diseased plants displaying symptoms that could be attributed to viruses. The samples were analysed to detect any virus by means of dsRNA extraction, mechanical inoculation to test plants, as well as ELISA and/or RT-PCR tests to detect potyviruses, geminiviruses and viruses previously known to infect beans in Spain. Random surveys were conducted in the years 2002 and 2005 (in 21 and 12 greenhouses, respectively) to study the actual incidence of known viruses in the area. Symptoms were recorded in 23,108 plants from which 664 plants were collected and analysed by ELISA or RT-PCR. The results of the directed surveys showed that all the analyzed crops carried the cryptic virus Phaseolus vulgaris endornavirus (PVuV), whereas phytopathogenic viruses appeared in smaller percentages of the crops: Tomato yellow leaf curl virus (TYLCV) 20.4%, Southern bean mosaic virus (SBMV) 9.0%, Tomato spotted wilt virus (TSWV) 4.0%, and the new species Bean yellow disorder virus (BnYDV) that broke out in 2004 with occurrence values higher than 34.3% that year. From 2000–2004 an important decrease in TYLCV was observed, along with a slight increase in SBMV and a consistently low occurrence of TSWV. The results of the random surveys confirmed the increased occurrence of virus detected during the directed surveys, and furthermore demonstrated the percentage of incidence for each virus.  相似文献   

13.
14.
Plant Viruses Transmitted by Whiteflies   总被引:18,自引:0,他引:18  
One-hundred and fourteen virus species are transmitted by whiteflies (family Aleyrodidae). Bemisia tabaci transmits 111 of these species while Trialeurodes vaporariorum and T. abutilonia transmit three species each. B. tabaci and T. vaporariorum are present in the European–Mediterranean region, though the former is restricted in its distribution. Of the whitefly-transmitted virus species, 90% belong to the Begomovirus genus, 6% to the Crinivirus genus and the remaining 4% are in the Closterovirus, Ipomovirus or Carlavirus genera. Other named, whitefly-transmitted viruses that have not yet been ranked as species are also documented. The names, abbreviations and synonyms of the whitefly-transmitted viruses are presented in tabulated form together with details of their whitefly vectors, natural hosts and distribution. Entries are also annotated with references. Whitefly-transmitted viruses affecting plants in the European–Mediterranean region have been highlighted in the text.  相似文献   

15.
Protocols for producing virus-free Allium plants require an indexing system that is more sensitive than DAS-ELISA and can detect low virus concentrations in infected plants. In the present work, degenerate primers were designed and a one-step IC-RT-PCR protocol was developed to differentiate between Leek yellow stripe virus (LYSV) and Onion yellow dwarf virus (OYDV) in single and mixed infections in several Allium spp. A 566-bp band was observed for LYSV, a 489-bp band for OYDV in single infections, and two bands of the same sizes in mixed infections in different species of Alliaceae. A 508-bp band of Shallot yellow stripe virus and a 594-bp band of Turnip mosaic virus were also amplified with the same primers. RT-nested-PCR was also conducted directly in microtitre plate wells after negative or questionable reactions were produced in an ELISA experiment. The detection limit of the DAS-ELISA for LYSV was 16.5–27.3 ng ml−1. The RT-nested-PCR done after DAS-ELISA was 102 times more sensitive than the DAS-ELISA alone. In parallel, an IC-RT-nested-PCR in microcentrifuge tubes was 104 times more sensitive than the DAS-ELISA. The DAS-ELISA-RT-nested-PCR enables the initial screening of samples by DAS-ELISA to eliminate a high percentage of virus-positive plants, considerably reducing the number of plants to analyze further by RT-PCR.  相似文献   

16.
Onion yellow dwarf virus (OYDV) was detected in cloves and aerial bulblets of garlic (Allium sativum) at levels as high as or higher than in leaves of plants grown from tested cloves. It is recommended to test bulblets or a few cloves per bulb before planting to determine if all cloves of a bulb are virus-free. This aids in early detection and allows a more thorough testing of stock than field testing.  相似文献   

17.
Two viruses were found in mosaic-diseased plants ofEucharis grandiflora in a glasshouse of the laboratory. One virus with a normal particle length of 733 nm caused local lesions onHyoscyamus niger and mosaic symptoms in leaves of healthy-lookingEucharis andHippeastrum plants. On the basis of its host range, physical properties and serology it was identified asHippeastrum mosaic virus, a member of the potyvirus group. This was confirmed by the presence of spherical nuclear inclusions and pinwheels in different tissues of diseasedEucharis plants. The second virus with a normal particle length of 598 nm was present in both healthy-looking and mosaic-diseasedEucharis plants, and it inconsistently induced local lesions onGomphrena globosa. According to its morphology and its reaction onGomphrena, it might be identical or related toHippeastrum latent virus. Crystal-like inclusions were observed in the cytoplasm of cells of both healthy-looking and mosaic-showingEucharis leaves. As no virus-free seedlings ofEucharis were available, the virus nature of these inclusions could not be established.  相似文献   

18.
Three viruses collected in southern Yemen in 1990, infecting watermelon, tobacco and tomato were shown to be transmitted by the whiteflyBemisia tabaci and to have particle morphologies typical of geminiviruses. Colonies ofB. tabaci collected from different locations and from different hosts were used in virus transmission tests with the same host range of plants. Colonies established from both watermelon and cotton in the Yemen were identified as the squash silverleaf-inducing B biotype. The culture host of the colony did not influence virus acquisition and transmission efficiencies to and from other hosts. The tobacco and tomato geminiviruses had a similar host range, but differed in their severity in some hosts. Both these viruses differed from the watermelon geminivirus in host range and symptoms.Datura stramonium, an alternative host for all three viruses, could be co-infected by the watermelon and tobacco viruses.B. tabaci was able to acquire both viruses from the co-infectedD. stramonium and infect seedlings of either original host plant species with their respective viruses orD. stramonium with both. The viruses were identified as watermelon chlorotic stunt virus, tobacco leaf curl virus and tomato yellow leaf curl virus and were distinguished by cross hybridisation.  相似文献   

19.
Thirty-two isolates of Fusarium species were obtained from wilted Welsh onion (Allium fistulosum) grown on nine farms from six regions in Japan and identified as F. oxysporum (18 isolates), F. verticillioides (7 isolates), and F. solani (7 isolates). The pathogenicity of 32 isolates was tested on five commercial cultivars of Welsh onion and two cultivars of bulb onion in a seedling assay in a greenhouse. The Fusarium isolates varied in the degree of disease severity on the cultivars. Five F. oxysporum isolates (08, 15, 17, 22, and 30) had a higher virulence on the cultivars than the other isolates. The host range of these five isolates was limited to Allium species. Molecular characterization of Fusarium isolates was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the internal transcribed spacer (ITS) regions of ribosomal DNA. The 32 isolates were grouped into eight types (four types for F. oxysporum, one for F. verticillioides, and three for F. solani). Restriction patterns of the ITS region were not related to pathogenicity. However, the haplotypes obtained with five enzymes (RsaI, HinfI, HaeIII, ScrFI, and MspI) and the phylogenetic analysis permitted the discernment of the three Fusarium species. The PCR-RFLP analysis should provide a rapid, simple method for differentiating Fusaruim species isolated from wilted Welsh onion in Japan.  相似文献   

20.
Twenty-eight Pyricularia isolates from two wild foxtails—green foxtail (Setaria viridis) and giant foxtail (S. faberii)—in Japan were taxonomically characterized by DNA analyses, mating tests, and pathogenicity assays. Although most of the isolates failed to produce perithecia in mating tests with Magnaporthe oryzae, a diagnostic polymerase chain reaction-restriction fragment length polymorphism phenotype of M. oryzae was detected in the beta-tubulin genomic region in all isolates. The pathogenicity assays revealed that host ranges of the isolates were similar to those of isolates from foxtail millet (S. italica), which were exclusively pathogenic on foxtail millet. In addition to the 28 isolates from wild foxtails, 22 Pyricularia isolates from 11 other grasses were analyzed by RFLP using single-copy sequences as probes. In a dendrogram constructed from the RFLP data, isolates that were previously identified as M. oryzae formed a single cluster. All the wild foxtail isolates formed a subcluster with foxtail millet isolates within the M. oryzae cluster. From these results, we conclude that Pyricularia isolates from the wild foxtails are closely related to isolates from foxtail millet and should be classified into the Setaria pathotype of M. oryzae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号