首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi‐electrode soil electrical resistivity (ρ) tomography was used for the non‐invasive study of tree roots in situ and their spatial distribution in an agricultural soil. The quantitative relations of ρ and root biometry and the contribution of different root size classes were investigated with two‐ and three‐dimensional 48‐electrode tomograms in an orchard in southern Italy on a Typic haploxeralf fine, mixed termic soil. Root biomass density (RD) and root length density (RLD) were measured destructively on coarse (>2 mm diameter) and fine roots, and soil paste electrical conductivity, water content, stone content, texture, organic matter and pH were measured on soil samples taken up to 0.48‐m deep. Areas of large ρ values (up to 460 ohm m) were found close to tree trunks and variability in ρ was related to RD (0–0.137 Mg m?3) only; the resistive response was from coarse roots. The effect of other soil variables on ρ was overshadowed by the presence of roots and therefore no significant multivariate relationship was found. A highly significant ρRD gamma GLM model used to fit positively skewed data provides a useful framework for regression analysis when ρ is dominated by roots. Soil electrical resistivity is promising as a proxy for RD in orchards, but not for RLD, and the effect of tree roots on ρ needs to be taken into account in electrical surveys of soils.  相似文献   

2.
Shallow soil A horizon (topsoil) caused by soil erosion and soil movement from cultivation is known to reduce soil and crop productivity. The reduction may be related to limitation of root growth. A field study was conducted to investigate the effects of topsoil thickness on distributions of root density and growth. Soybeans [Glycine max (L.) Merr.] were grown on plots of Mexico silt loam (fine, montmorillonitic, mesic Mollic Endoaqualfs) with topsoil thicknesses of 0, 12.5, 25.0, and 37.5 cm above the Bt horizons. Root density was measured 60 and 90 days after planting using a minirhizotron video‐camera system. Root density was significantly reduced as topsoil thickness decreased from 37.5 to 0 cm. Mean density and net change of the density across profile between 30 and 60 days of growth had a linear function of topsoil thickness. The reduction and lower activity induced by shallow topsoil were attributed to detrimental properties in the Bt horizons. Root distribution pattern and rooting depth were not significantly affected by topsoil thickness. The roots appeared to be accumulated on the upper layers of the Bt horizons. Roots growing in thicker topsoil were more active than roots growing without topsoil. High soil moisture content during the growing season may mitigate the detrimental effects of shallow topsoil, inhibit root penetration, and enhance root activity.  相似文献   

3.
Abstract

Root length and root distribution in the soil profile is important in determining the amount of nutrients and water taken up by the plant. Data about year to year variation of corn (Zea mays L.) root growth and its relation to nutrient uptake are limited. An evaluation of the importance of root system size and distribution on P and K uptake and corn yield was made from samples taken annually from a long‐term fertility experiment on Raub silt loam, fine silty, mixed, mesic Aquic Argiudolls. Root density varied with soil depth among years, whereas P and K fertilizer treatment had no measureable influence on total root length. Ear leaf P concentration was highly correlated with the amount of roots in the 0 to 15 cm layer which contained most of the available P. Since P was not appreciably limiting corn yield, no significant relation was found between yield and P content of the ear leaf. Yields on K deficient plots were positively correlated with root density in the topsoil. Correlations of root densities in the deeper soil layers with both yield and ear leaf nutrient concentration became increasingly smaller with depth in the soil profile. The results indicate that root length plus root distribution in the soil may influence year to year variation in yield particularily on soils having low available nutrient levels. This variation in root growth may be responsible for differences among years in the response of crops to applied P and/or K.  相似文献   

4.
[目的] 探究不同根系构型草本与灌木复合时的根土性质的差异对土壤饱和导水率的影响,并综合考虑根系和土壤性质建立估算土壤饱和导水率的经验方程,为黄土高原植被恢复后的水文模型建立提供理论参考。[方法] 选取不同根系构型草本与灌木的混合样地,分别为柠条锦鸡儿加冰草(须根系)和柠条锦鸡儿加铁杆蒿(直根系)。采用双环刀法测定不同样地土壤饱和导水率。[结果] 样地类型和土层深度对土壤饱和导水率的影响达到显著水平,两者对土壤饱和导水率影响的因子贡献率分别为26%和52%。直根系铁杆蒿与柠条锦鸡儿混合样地的土壤饱和导水率高于须根系冰草与柠条锦鸡儿混合样地,并且不同样地的土壤饱和导水率随土层深度的增加均表现出降低的趋势。根长密度、团聚体以及土壤容重能够较好地模拟土壤饱和导水率,其拟合精度R2可以达到0.86。[结论] 直根系草本与灌木复合时较须根系草本与灌木复合相比具有更高的饱和导水率。在不同样地中,根长密度、团聚体以及土壤容重是影响饱和导水率的主要因素。  相似文献   

5.
To assess the potential effects of Al toxicity on the roots of young European beech (Fagus sylvatica L.), seeds were sown in soil monoliths taken from the Ah and B horizons of forest soils with very low base saturation (BS) and placed in the greenhouse. The Ah horizons offered a larger supply of exchangeable cation nutrients than the B horizons. After 8 weeks of growth under optimal moisture conditions, the seedlings were further grown for 14 d under drought conditions. Root‐growth dynamics were observed in rhizoboxes containing soils from the Ah and B horizons. The concentrations of Al3+, base cations, and nitrate in the soil solution and element concentrations in the root tissue were compared with above‐ and belowground growth parameters and root physiological parameters. There was no strong evidence that seedling roots suffered from high soil‐solution Al3+ concentrations. Within the tested range of BS (1.2%–6.5%) our results indicated that root physiological parameters such as O2 consumption decreased and callose concentration increased in soils with a BS < 3%. In contrast to the B horizons, seedlings in the Ah horizons had higher relative shoot‐growth rates, specific root lengths, and lengths and branching increments, but a lower root‐to‐shoot ratio and root‐branching frequency. In conclusion, these differences in growth patterns were most likely due to differences in nutrient availability and to the drought application and not attributable to differences in Al3+ concentrations in the soil solution.  相似文献   

6.
7.
Studies aiming at quantification of roots growing in soil are often constrained by the lack of suitable methods for continuous, non‐destructive measurements. A system is presented in which maize (Zea mays L.) seedlings were grown in acrylic containers — rhizotrons — in a soil layer 6‐mm thick. These thin‐layer soil rhizotrons facilitate homogeneous soil preparation and non‐destructive observation of root growth. Rhizotrons with plants were placed in a growth chamber on a rack slanted to a 45° angle to promote growth of roots along the transparent acrylic sheet. At 2‐ to 3‐day intervals, rhizotrons were placed on a flatbed scanner to collect digital images from which root length and root diameters were measured using RMS software. Images taken during the course of the experiment were also analyzed with QUACOS software that measures average pixel color values. Color readings obtained were converted to soil water content using images of reference soils of known soil water contents. To verify that roots observed at the surface of the rhizotrons were representative of the total root system in the rhizotrons, they were compared with destructive samples of roots that were carefully washed from soil and analyzed for total root length and root diameter. A significant positive relation was found between visible and washed out roots. However, the influence of soil water content and soil bulk density was reflected on seminal roots rather than first order laterals that are responsible for more than 80 % of the total root length. Changes in soil water content during plant growth could be quantitifed in the range of 0.04 to 0.26 cm3 cm—3 if image areas of 500 x 500 pixel were analyzed and averaged. With spatial resolution of 12 x 12 pixel, however, soil water contents could only be discriminated below 0.09 cm3 cm—3 due to the spatial variation of color readings. Results show that this thin‐layer soil rhizotron system allows researchers to observe and quantify simultaneously the time courses of seedling root development and soil water content without disturbance to the soil or roots.  相似文献   

8.
黄土丘陵区主要植物根系对土壤有机质和团聚体的影响   总被引:10,自引:3,他引:7  
植物根系是植物与土壤进行物质交换的通道,在土壤侵蚀严重、生态脆弱的黄土丘陵区,深入认识根系对土壤物理化学性质的影响具有重要意义。选取了白羊草(Bothriochloa ischaemum)、苔草(Carex lanceolata)、茭蒿(Artemisia leucophylla)、铁杆蒿(Artemisia sacrorum)、狼牙刺(Sophora viciifolia)、柠条(Caragana intermedia)6种植物作为研究对象,取0—10,10—20,20—30,30—40,40—50,50—60 cm土层根系和土样,分析不同土层各物种根长密度、根表面积密度、平均根直径、土壤有机质(SOM)、土壤容重以及各级水稳性团聚体重量百分含量。结果表明:所研究植物根系以细根为主。在0—20 cm土层中,白羊草、苔草根长密度显著大于其余植物(P0.05),表现为苔草白羊草铁杆蒿茭蒿狼牙刺柠条,平均根直径则相反。根系能不同程度地增加SOM含量,SOM含量与根系平均直径和根系表面积密度呈极显著的正相关关系(P0.01)。在土壤剖面上,水稳性团聚体重量百分含量明显减少的是白羊草、苔草和铁杆蒿样地,水稳性团聚体重量百分含量随土层深度变化不明显的是茭蒿、狼牙刺和柠条样地。根表面积、根长密度能够显著增加0.5~2 mm水稳性团聚体重量百分含量(P0.05),说明根系能够使小粒径团粒凝聚成更大粒径的土壤团粒。根系能够提高土壤有机质含量,增加中等粒径团聚体含量,改善土壤结构,提高土壤稳定性,对增加土壤抗蚀性起到重要作用。  相似文献   

9.
Abstract

Studies of pedogenesis in basaltic soils within the cool, temperate zone were fairly limited. This study looked at pedogenesis and root development in Norðradalur of the Faroe Islands. To a large extent, soil physical and chemical characteristics were determined by sedimentological rather than pedological processes. Wind erosion plays an important role, and in spite of the homogeneity of the parent material, soil pedogenesis is highly varied. Soils were high in cation exchange capacity (CEC) and generally have a low base saturation, and the major soil‐forming processes were strong weathering, intensive leaching, gleying, and humification. Decomposition of the organic material was good overall. Nitrogen content was low to medium in the mineralogic horizons but high in the peaty horizons. Total phosphorus was within the range typical of soils with a high organic fraction, and previous theories explaining the low carrying capacity regarding grazing as a result of a low nutrient content do not seem to apply. Root densities were as expected for grazing areas, but there was a huge variation in the root diameters as a consequence of microclimatic differences and associated differences in vegetation.  相似文献   

10.
The availability of nitrogen (N) contained in crop residues for a following crop may vary with cultivar, depending on root traits and the interaction between roots and soil. We used a pot experiment to investigate the effects of six spring wheat (Triticum aestivum L.) cultivars (three old varieties introduced before mid last century and three modern varieties) and N fertilization on the ability of wheat to acquire N from maize (Zea mays L.) straw added to soil. Wheat was grown in a soil where 15N‐labeled maize straw had been incorporated with or without N fertilization. Higher grain yield in three modern and one old cultivar was ascribed to preferred allocation of photosynthate to aboveground plant parts and from vegetative organs to grains. Root biomass, root length density and root surface area were all smaller in modern than in old cultivars at both anthesis and maturity. Root mean diameter was generally similar between modern and old cultivars at anthesis but was greater in modern than in old cultivars at maturity. There were cultivar differences in N uptake from incorporated maize straw and the other N sources (soil and fertilizer). However, these differences were not related to variation in the measured root parameters among the six cultivars. At anthesis, total N uptake efficiencies by roots (total N uptake per root weight or root length) were greater in modern than in old cultivars within each fertilization level. At maturity, averaged over fertilization levels, the total N uptake efficiencies by roots were 292?336 mg N g?1 roots or 3.2?4.0 mg N m?1 roots for three modern cultivars, in contrast to 132?213 mg N g?1 roots or 0.93?1.6 mg N m?1 roots for three old cultivars. Fertilization enhanced the utilization of N from maize straw by all cultivars, but root N uptake efficiencies were less affected. We concluded that modern spring wheat cultivars had higher root N uptake efficiency than old cultivars.  相似文献   

11.
The underlying question of these investigations asked, how and to which extent rape plants react with transpiration and soil water uptake to different degrees of nitrogen fertilization. Therefore repeated campaigns with concurrent measurements of plant surfaces (leaves, stems, pods), diurnal courses of leaf transpiration and root length density of rape plants growing on heavily (240 kg ha—1), moderately, (120 kg ha—1), and nil N‐fertilized plots of an experimental field in northern Germany were performed during two growing seasons. Additionally, matric potentials at different soil depths were measured. In the first year (1994) investigations were concentrated primarily on shoot area development and transpiration, whereas in the subsequent year (1995) root measurements were mainly undertaken. Also, the influence of soil management (ploughing, conservation tillage) was taken into consideration. The plots where the shoot measurements were carried out were ploughed in 1994 and rotovated in 1995. Matric potentials were measured in both years in ploughed soil and, for comparison, also in soils with conservation tillage. Shoot area index, as measure of the transpiratory capacity of the canopy, increased on ploughed soil and reached a maximum before flowering. Thereafter it decreased until harvest when the relative amount of green stems and pods was increasing. Then, the measured transpiration rate per pod surface area was equal to, or higher than, the transpiration rate per leaf surface area. Plant surface area was smaller in plots with conservation tillage and decreased generally with decreasing N‐fertilization. Increasing plant surface area was joined by an increasing density of plant canopy. Light interception was thus highest in the plots receiving 240 kg N ha—1. Although the shading effect may cause a reduction of transpiration per plant, the total plant mass per area generally resulted in a greater water loss from these plots. Roots reached at least 110 cm depth. Root length density was significantly higher in the upper 10—30 cm of soil than at greater depths. Root mass was smaller in soil with conservation tillage than in ploughed soil. Oscillations of soil matric potentials in the diurnal and long‐term periods were highest in the upper 10 cm of soil. Here, they corresponded well with the cumulative diurnal transpiratory water loss. It is concluded that the soil water dynamics depends largely on the distribution of plant roots. As a result, rape plants did not change their specific transpiration capacity as a response to increased nitrogen fertilization. However, the transpiring plant surface and root length density increased the turnover rate of water by a higher plant density per plot. This effect was more pronounced in ploughed than in rotovated plots.  相似文献   

12.
Abstract

Acid soil limitations to plant growth were assessed In 55 horizons of 14 major Appalachian hill land soils. Aluminum sensitive “Romano” and Al‐tolerant “Dade” snapbeans (Phaseolus vulgaris L.) were grown for 5 weeks in limed and unlimed treatments of the 55 horizons. Shoot and root growth was depressed >20% in unlimed relative to limed treatments in approximately 2/3 of the horizons. Dade snapbeans were generally more tolerant of the acid soil conditions and had higher Ca concentrations in the shoots than Romano snapbeans. However, the sensitive‐tolerant snapbean pair could not consistently be used to identify horizons with soil Al problems. Growth of both snapbeans was generally best in A horizons and worst in E horizons. The E horizons in this study were characterized by low Ca saturation (exchangeable Ca x 100/cation exchange capacity) and high Al saturation (exchangeable Al x 100/cation exchange capacity). Exchangeable Ca, soil Ca saturation and total soil solution Ca were positively correlated (p<0.01) with snapbean root and shoot growth. Soil Al saturation, total soil solution Al and soil solution Al reacting in 15 seconds with 8‐hydroxyquinoline were negatively correlated (p<0.01) with growth. The ratio of Ca/Al in soil solution was more closely related to snapbean growth than the soil solution concentration of any individual element. Soil and soil solution Mn were, in general, not significantly correlated with snapbean growth. Many of the horizons in this study had both Al toxicity and Ca deficiency problems and interaction between Ca and Al affected both snapbean growth and Ca uptake. These findings confirm the importance of considering Ca as well as Al when investigating Al phytotoxicity.  相似文献   

13.
Nitrogen turnover in a loess catena N-mineralization and mineral-N-contents were determined from spring 1993 to autumn 1995 on arable soils from loess (Luvisol, Calcaric Regosol, Gleyic-Calcaric Regosol and Cumulic Anthrosol) of a catchment area called “Bonartshäuser” farm near Gondelsheim in western Kraichgau (SW-Germany). The aim was to find out, whether the course of net-N-mineralization and mineral-N-content of the soil could be explained by the parameters soil temperature and soil moisture. Soil samples were incubated in polyethylene bags on site for mineralization and aliquots analyzed in the laboratory for the determination of the mineral-N-content. In 1993, 55 kg N ha—1 were immobilized and up to 170 kg N ha—1 mineralized depending on the soil type. In 1994, between 181 and 297, and in 1994, between 59 and 230 kg N ha—1 were mineralized annually. Mineral-N-contents of the different soils throughout the experimental period (n = 45) were found to correlate much better (r2 between 0.55 and 0.86) whereas net-N-mineralization (n = 44) showed coefficients of determination (r2) just between 0.08 and 0.53. Except for the Luvisol (37%) only 0 to 8% of net-N-mineralization could be explained by the combined effect of mean soil temperature and soil moisture at the beginning of the incubation using multiple linear regression analysis. Merely 1 up to 9% of mineral-N-content of the soil could be explained by the same effect. The variability and inconsistency shown by net-N-mineralization renders it inappropriate as a tool for predicting nitrogen delivery of the soil and basis for setting rules governing permissible nitrogen amounts in the soil.  相似文献   

14.
Chiselling has been used to alleviate soil compaction but cover crops with deep, vigorous roots can improve root growth and activity of the cash crop for a longer time. The determination of root activity in addition to root mass or length may improve the understanding of plant response to compaction. The objective of this experiment was to evaluate root growth and activity as affected by the alleviation of soil compaction using mechanical and biological methods. The experiment was conducted in Botucatu, São Paulo, Brazil, from 2009 to 2011, on a clay, Typic Rhodudalf soil. Crop rotations including pear millet (Pennisetum glaucum), soybean (Glycine max), grain sorghum (Sorghum bicolor), maize (Zea mays), ruzi grass (Brachiaria ruziziensis) and castor bean (Ricinus communis) in plots, either chiselled or not. Root growth was assessed by core sampling and root activity was determined indirectly using rubidium injected at several depths as a marker. Root activity was instrumental in interpreting the effects of tillage and crop rotations on soil amelioration. Compared with the initial compacted condition, chiselling increased root growth and activity just for the first 18 months of the experiment, but crop rotations, mainly including ruzi grass and castor bean, increased root growth and activity in the soil profile from the second year on. Generally, root mass was poorly correlated with root activity, except in the case of ruzi grass. Introduction of ruzi grass plus castor bean into the cropping system improves not only root growth and activity in the soil profile but also soybean yield.  相似文献   

15.
Solute transport from the bulk soil to the root surface is, apart from changes in soil moisture and plant nutrient uptake, a prerequisite for changes in soil osmotic potential (Ψo). According to the convection‐diffusion equation, solute transport depends on a number of parameters (soil moisture–release curve, hydraulic conductivity, tortuosity factor) which are functions of soil texture. It was thus hypothesized that soil texture should have an effect on the formation of Ψo gradients between bulk soil and the root surface. The knowledge about such gradients is important to evaluate water availability in the soil‐plant‐atmosphere continuum (SPAC). A linear compartment system with maize grown under controlled conditions in two texture treatments (T1, pure sand; T2, 80% sand, 20% silt) under low and high initial application of salts (S1, S2) was used to measure the development of Ψo gradients between bulk soil and the root surface by microscale soil‐solution sampling and TDR sensors. The differences in soil texture had a strong impact on the formation of Ψo gradients between bulk soil and the root surface at high and low initial salt application rate. At high initial salt application, a maximum osmotic‐potential gradient (ΔΨo) of –340 kPa was observed for the texture treatment T2 compared to ΔΨo of –180 in T1. The steeper gradients in osmotic potential in treatment T2 compared to T1 corresponded to higher cumulative water consumption in this treatment which can partly be explained by higher soil hydraulic conductivity in the range of soil matric potentials covered during the duration of the experiments. Differences between texture treatments in Ψo at the root surface did not result in differences in plant‐water relations measured as gas‐exchange parameters (transpiration rate, water‐use efficiency) and leaf osmotic potential. If soil osmotic and matric potential are regarded as additive in calculating the driving force for water movement from the soil into the root, the observed differences in water flux between treatments cannot be explained.  相似文献   

16.
Root proliferation and greater uptake per unit of root in the nutrient‐rich zones are often considered to be compensatory responses. This study aimed to examine the influence of plant phosphorus (P) status and P distribution in the root zone on root P acquisition and root and shoot growth of wheat (Triticum aestivum L.) in a split‐root soil culture. One compartment (A) was supplied with either 4 or 14 mg P (kg soil)–1, whereas the adjoining compartment (B) had 4 mg P kg–1 with a vertical high‐P strip (44 mg kg–1) at 90–110 mm from the plant. Three weeks after growing in the split‐root system, plants with 4 mg P kg–1 (low‐P plants) started to show stimulatory root growth in the high‐P strip. Two weeks later, root dry weight and length density in the high‐P strip were significantly greater for the low‐P plants than for the plants with 14 mg P (kg soil)–1. However, after 8 weeks of growth in the split‐root system, the two P treatments of compartment A had similar root growth in the high‐P strip of compartment B. The study also showed that shoot P concentrations in the low‐P plants were 0.6–0.8 mg g–1 compared with 1.7–1.9 mg g–1 in the 14 mg P kg–1 plants after 3 and 5 weeks of growth, but were similar (1.1–1.4 mg g–1) between the two plants by week 8. The low‐P plants had lower root P concentration in both compartments than those with 14 mg P kg–1 throughout the three harvests. The findings may indicate that root proliferation and P acquisition under heterogeneous conditions are influenced by shoot P status (internal) and soil P distribution (external). There were no differences in the total root and shoot dry weight between the two P treatments at weeks 3 and 5 because enhanced root growth and P uptake in the high‐P strip by the low‐P plants were compensated by reduced root growth elsewhere. In contrast, total plant growth and total root and shoot P contents were greater in the 14 mg P kg1 soil than in the low‐P soil at week 8. The two P treatments did not affect the ratio of root to shoot dry weight with time. The results suggest that root proliferation and greater P uptake in the P‐enriched zone may meet the demand for P by P‐deficient plants only for a limited period of time.  相似文献   

17.
Grass–legume mixtures are suitable for crop rotations in organic farming. However, seasonal development of below‐ground organs of Trifolium pratense in mixtures and on different soils was neglected. We asked (1) how the diameter of the root neck, the maximum order of branching as well as (2) the nodule traits are affected by locality and time, and (3) how above‐ground plant traits of red clover vary in space and time. Red clover was investigated in grass–legume mixtures in the first year of vegetation. Five sites in S Germany were sampled at the day of cut at the end of May, the beginning of July, and at the end of August, respectively. Under similar climatic conditions root traits (diameter of the root neck, order of root branching, size of nodules, and proportion of senescent nodules) differed with soil conditions and time within the season. Root diameter increased during the season. Higher sand content fostered root branching and branched roots developed more nodules. Thinner roots had more active nodules (pink). Root diameter and non‐active senescent (green) or moribund (brown) nodules increased at the end of season. Nodule activity differed more according to season than to soil conditions. The number of nodules per plant (12.5–19.5) decreased from May to August. Cylindrical nodules were found on 85–100% of the plants and branched nodules only on 0–25%. The height of plants was lowest in May and increased in July. The mean number of stems per plant (3.3–6.3) was highest in August. Understanding red clover traits and N2 fixation is interesting scientifically as well as agronomical. Organic and conventional farmers can both benefit of our findings.  相似文献   

18.
Crop species differ in root plasticity response to localised P supply   总被引:1,自引:0,他引:1  
The effect of localised phosphorus (P) fertiliser placement and in particular, deep P fertiliser placement, on the comparative root growth and P uptake of fibrous vs tap‐rooted crops is not known. In this study, we examined the root growth and P uptake of wheat (Triticum aestivum L.), canola (Brassica napus L.), and narrow‐leaf lupin (Lupinus angustifolius L.) in a split‐root system and in columns with deep (19 cm) or shallow (5 cm) P fertiliser sources in glasshouse conditions. In the split‐root system, plants of all three species grown under heterogeneous soil P conditions absorbed more P and produced greater root and shoot biomass than those under homogeneous P supply. Root plasticity differed between species under heterogeneous soil P supply: canola and wheat allocated relatively more root biomass and root length to the high P zone than narrow‐leaf lupin. In the column experiment, there was no difference in the amount of P accumulated in shoots of any crops grown in the deep vs shallow P fertiliser treatments. Root proliferation occurred within the shallow and deep‐P fertiliser bands in all three species; however, root distribution above or below the bands did not differ between deep or shallow P fertiliser treatments in any species. Whilst root plasticity responses to heterogeneous soil P supply differed among species, root architecture (fibrous vs taproot) did not confer any advantage or disadvantage to the acquisition of P from deep vs shallow P fertiliser bands. Moreover, whilst roots proliferate in the vicinity of P fertiliser bands, root distribution outside of the bands appears to remain unaltered in both fibrous and tap‐rooted crops during early growth.  相似文献   

19.
Soil organic carbon (SOC) in eroded soil can be redistributed from upper slope positions and deposited and sequestered in depressional areas. However, the SOC lost from soil erosion is normally not considered when soil carbon budgets are derived and this could result in an overestimation of SOC loss from the agricultural areas. The impact of soil redistribution on the SOC budget of a sloping landscape in the Black soil region in Northeast China was studied using the presence of the 137Cs tracer which has been deposited since 1954 and the fly‐ash tracer, which was deposited in 1903. Five landscape positions (summit, shoulder‐, back‐, foot‐ and toe‐slope) were selected and included in this study. The depths of 137Cs and fly ash and the SOC content of the deposition layers were used to calculate the change in C content of the soil in the various landscape positions over the last century. We found that the most severe soil erosion occurred in soils in the shoulder‐slope position followed by the back‐slope and the summit positions. Soil deposition occurred in the toe‐slope position followed by the foot‐slope position. A total of 683 kg C was eroded from the summit, shoulder‐ and back‐slopes (in a 1 m wide strip) over the past 100 years and 418 kg C (about 61·2 per cent) was deposited in the low‐lying areas (foot‐ and toe‐slopes). Over half (61·5 per cent) of the deposition (257 kg SOC) occurred over the past 50 years. Most of the previously reported loss of C from the upper slope positions in the Black soils was in fact sequestered in the deposition areas in the landscape. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Fragipan is a widely distributed subsoil horizon that induces severe limitations to plant growth and land use, mainly because of its high bulk density. In this work, we evaluated the pore‐size distribution through the analysis of the cumulative curve of intruded mercury volume in some soils with fragipan horizons. This approach provides information also about the arrangement of particles, thus we compared the results obtained for fragipan and nonfragipan horizons to relate porosity and particle arrangement with the specific physical properties of fragipans. The total volume of intruded mercury did not allow to discriminate between fragipan and nonfragipan horizons. However, from the variation of the pore volume as a function of the radius, two modal classes of pores were found, coarse and fine, respectively. The fine‐pore class arose from the arrangement of clay particles, and its volume was correlated to clay contents (r = 0.787) and to clay packing density (r = –0.621). The clay fractions in fragipans were less densely packed than in the other B horizons, even if they had similar clay contents. The coarser‐pore modal class is known to arise from the interactions between clay, silt, and sand particles, and its volume was different among horizons. Fragipan had a low volume of this modal pore class. In addition, a packing density for the coarser phase of 0.74, corresponding to a rhombohedral packing, was found only in fragipans. Thus, the low permeability and high bulk density of fragipans are linked to specific arrangements of the particles: an open packing of the clay phase is associated to an extremely dense packing of silt and sand. This combination is not present in any other soil horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号