首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat (Triticum aestivum L.) yield is directly proportional to physio-morphological traits. A high-density genetic map consisting of 2575 markers was used for mapping QTL controlling stay-green and agronomic traits in wheat grown under four diverse water regimes. A total of 108 additive QTL were identified in target traits. Among them, 28 QTL for chlorophyll content (CC) were detected on 11 chromosomes, 43 for normalized difference vegetation index (NDVI) on all chromosomes except 5B, 5D, and 7D, five for spikes per plant (NSP) on different chromosomes, nine for plant height (PH) on four chromosomes, and 23 for thousand-kernel weight (TKW) on 11 chromosomes. Considering all traits, the phenotypic variation explained (PVE) ranged from 3.61 to 41.62%. A major QTL, QNDVI.cgb-5A.7, for NDVI with a maximum PVE of 20.21%, was located on chromosome 5A. A stable and major PH QTL was observed on chromosome 4D with a PVE close to 40%. Most distances between QTL and corresponding flanking markers were less than 1 cM, and approximately one-third of the QTL coincided with markers. Each of 16 QTL clusters on 10 chromosomes controlled more than one trait and therefore could be regarded as pleiotropic regions in response to different water regimes. Forty-one epistatic QTL were identified for all traits having PVE of 6.00 to 25.07%. Validated QTL closely linked to flanking markers will be beneficial for marker-assisted selection in improving drought-tolerance in wheat.  相似文献   

2.
Quantitative trait locus (QTL) analysis of kernel shape and weight in common wheat was conducted using a set of 131 recombinant inbred lines (RIL) derived from ‘Chuan 35050’ × ‘Shannong 483’. The RIL and their two parental genotypes were evaluated for kernel length (KL), kernel width (KW), thousand-kernel weight (TKW), and test weight (TW) in four different environments. Twenty QTL were located on 12 chromosomes, 1A, 1B, 1D, 2A, 2B, 3B, 4A, 4B, 5D, 6A, 6B, and 7B, with single QTL in different environments explaining 5.9–26.4% of the phenotypic variation. Six, three, four, and seven QTL were detected for KL, KW, TKW, and TW, respectively. The additive effects for 17 QTL were positive with Chuan 35050 increasing the QTL effects, whereas the remaining three QTL were negative with Shannong 483 increasing the effects. Eight QTL (40%) were detected in two or more environments. Two QTL clusters relating to KW, TKW, and TW were located on chromosomes 2A and 5D, and the co-located QTL on chromosome 6A involved a QTL for KW found in two environments and a QTL for TKW detected in four environments.  相似文献   

3.
In wheat, strong genetic correlations have been found between grain yield (GY) and tiller number per plant (TN), fertile spikelet number per spike (FSN), kernel number per spike (KN) and thousand‐kernel weight (TKW). To investigate their genetic relationships at the individual quantitative trait locus (QTL) level, we performed both normal and multivariate conditional QTL analysis based on two recombinant inbred lines (RILs) populations. A total of 79 and 48 normal QTLs were identified in the International Triticeae Mapping Initiative (ITMI)/SHW‐L1 × Chuanmai 32 (SC) populations, respectively, as well as 55 and 35 conditional QTLs. Thirty‐two QTL clusters in the ITMI population and 18 QTL clusters in the SC population explained 0.9%–46.2% of phenotypic variance for two to eight traits. A comparison between the normal and conditional QTL mapping analyses indicated that FSN made the smallest contribution to GY among the four GY components that were considered at the QTL level. The effects of TN, KN and TKW on GY were stronger at the QTL level.  相似文献   

4.
Flag leaf-related traits (FLRTs) are determinant traits affecting plant architecture and yield potential in wheat (Triticum aestivum L.). In this study, three related recombinant inbred line (RIL) populations with a common female parent were developed to identify quantitative trait loci (QTL) for flag leaf width (FLW), length (FLL), and area (FLA) in four environments. A total of 31 QTL were detected in four environments. Two QTL for FLL on chromosomes 3B and 4A (QFll-3B and QFll-4A) and one for FLW on chromosome 2A (QFlw-2A) were major stable QTL. Ten QTL clusters (C1–C10) simultaneously controlling FLRTs and yield-related traits (YRTs) were identified. To investigate the genetic relationship between FLRTs and YRTs, correlation analysis was conducted. FLRTs were found to be positively correlated with YRTs especially with kernel weight per spike and kernel number per spike in all the three RIL populations and negatively correlated with spike number per plant. Appropriate flag leaf size could benefit the formation of high yield potential. This study laid a genetic foundation for improving yield potential in wheat molecular breeding programs.  相似文献   

5.
A wheat (Triticum aestivum L.) recombinant inbred line (RIL) population was used to identify quantitative trait loci (QTL) associated with yield, yield components, and canopy temperature depression (CTD) under field conditions. The RIL population, consisting of 118 lines derived from a cross between the stress tolerant cultivar ‘Halberd’ and heat stress sensitive cultivar ‘Karl92’, was grown under optimal and late sown conditions to impose heat stress. Yield and yield components including biomass, spikes m?2, thousand kernel weight, kernel weight and kernel number per spike, as well as single kernel characteristics were determined. In addition, CTD was measured during both moderate (32–33 °C) and extreme heat stress (36–37 °C) during grain-filling. Yield traits showed moderate to high heritability across environments with a large percentage of the variance explained by genetic effects. Composite interval mapping detected 25 stable QTL for the 15 traits measured, with the amount of phenotypic variation explained by individual QTL ranging from 3.5 to 27.1 %. Two QTL for both yield and CTD were co-localized on chromosomes 3BL and 5DL and were independent of phenological QTL. At both loci, the allele from Halberd was associated with both higher yield and a cooler crop canopy. The QTL on 3BL was also pleiotropic for biomass, spikes m?2, and heat susceptibility index. This region as well as other QTL identified in this study may serve as potential targets for fine mapping and marker assisted selection for improving yield potential and stress adaptation of wheat.  相似文献   

6.
A quantitative trait loci (QTL) analysis of grain yield and yield-related traits was performed on 93 durum wheat recombinant inbred lines derived from the cross UC1113 × Kofa. The mapping population and parental lines were analyzed considering 19 traits assessed in different Argentine environments, namely grain yield, heading date, flowering time, plant height, biomass per plant, and spikelet number per ear, among others. A total of 224 QTL with logarithm of odds ratio (LOD) ≥ 3 and 47 additional QTL with LOD > 2.0 were detected. These QTL were clustered in 35 regions with overlapping QTL, and 12 genomic regions were associated with only one phenotypic trait. The regions with the highest number of multi-trait and stable QTL were 3BS.1, 3BS.2, 2BS.1, 1BL.1, 3AL.1, 1AS, and 4AL.3. The effects of epistatic QTL and QTL × environment interactions were also analyzed. QTL putatively located at major gene loci (Rht, Vrn, Eps, and Ppd) as well as additional major/minor QTL involved in the complex genetic basis of yield-related traits expressed in Argentine environments were identified. Interestingly, the 3AL.1 region was found to increase yield without altering grain quality or crop phenology.  相似文献   

7.
Over recent years, quality has become an important commercial issue for durum wheat breeders. Modern breeding methods are most efficient for producing and supplying the best quality raw materials to the pasta industry. Here we assessed the effectiveness of molecular marker-assisted selection of quality traits in durum wheat. To this end, DNA and quality trait markers were jointly used to analyze quality-related traits in a durum wheat collection. A total of 132 durum wheat (Triticum turgidum ssp. durum) Mediterranean landraces, international lines, and Moroccan cultivars were analyzed for seven important qualityrelated traits including thousand-kernel weight (TKW), test weight (TW), gluten strength, yellow pigment (YP), and grain protein content (GPC). Additionally, 18 simple sequence repeat (SSR) markers previously reported to be associated with different quality traits were analyzed. Of these, 14 (78%) were polymorphic and four were monomorphic. There were between two and seven alleles per locus, with an average of four alleles per locus. The average phenotypic variation value (R2) ranged from 2.81 to 20.43%. Association analysis identified nine markers significantly associated with TKW, TW, and YP, followed by eight markers associated with GPC, six markers associated with yellow index b, four markers associated with brightness L, and three markers associated with SDS-sedimentation volume. This study highlights the efficiency of SSR technology, which holds promise for a wide range of applications in marker-assisted wheat breeding programs.  相似文献   

8.
QTL mapping of yield-related traits in the wheat germplasm 3228   总被引:1,自引:0,他引:1  
The new wheat germplasm 3228, a putative derivative of tetraploid Agropyron cristatum Z559 and the common wheat Fukuhokomugi, has superior features in yield-related traits, particularly in spike morphological traits, such as large spike and superior grain number. To identify favorable alleles of these traits in 3228, 237 F2:3 families were developed from the cross 3228/Jing 4839. A genetic map was constructed using 179 polymorphic SSR and EST-SSR markers. A total of 76 QTL controlling spike number per plant (SNP), spike length (SL), spikelet number per spike (SNS), floret number per spikelet (FNS), grain number per spike (GNS) and thousand-grain weight (TGW) were detected on 16 chromosomes. Each QTL explained 1.24–27.01% of the phenotypic variation, and 9 QTL (28.95%) were detected in two or all environments. Additive effects of 45 QTL were positive with 3228 alleles increasing the QTL effects, 31 QTL had negative effects indicating positive contributions from Jing 4839. Three important clusters involving all traits were located on chromosomes 5A, 6A and 4B, and several co-located QTL were also found. Most of the QTL detected on the three chromosome regions could contribute to the use of 3228 in breeding for grain yield improvement.  相似文献   

9.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:1,自引:0,他引:1  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

10.
小麦籽粒产量及穗部相关性状的QTL定位   总被引:12,自引:7,他引:5  
由小麦品种花培3号和豫麦57杂交获得DH群体168个株系,种植于3个环境中,利用305个SSR标记对籽粒产量和穗部相关性状(穗长、穗粒数、总小穗数、可育小穗数、小穗着生密度、千粒重和粒径)进行了QTL定位。利用基于混合线性模型的QTLNetwork 2.0软件,共检测到27个加性效应和13对上位效应位点,其中 8个加性效应位点具有环境互作效应。相关性高的性状间有一些共同的QTL位点,表现出一因多效或紧密连锁效应。5D染色体区段Xwmc215–Xgdm63,检测到控制籽粒产量、穗粒数、总小穗数、可育小穗数和小穗着生密度5个性状的QTL位点,各位点的遗传贡献率较大且遗传效应方向相同,增效等位基因均来源于豫麦57,适用于分子标记辅助育种和聚合育种。控制千粒重与穗粒数的QTL位于染色体不同区段,有利于实现穗粒数与粒重的遗传重组。  相似文献   

11.
产量及其相关性状如单株有效穗数、千粒重、穗实粒数、穗总粒数和结实率等是水稻重要的农艺性状,了解产量及其相关性状QTL的加性及上位性效应对以分子标记聚合育种改良水稻产量具有重要意义。本文以16个单片段代换系及15个双片段代换系分析了水稻产量相关性状QTL的加性及上位性效应。共检出影响产量及其相关性状的13个QTL,包括产量性状1个、单株有效穗数1个、千粒重4个、穗实粒数4个、穗总粒数2个和结实率1个,分布于第2、第3、第4、第7和第10染色体上。此外,检出12对双基因互作。结果显示,2个正向(或负向)产量性状QTL聚合,往往会产生负向(或正向)的上位性效应,能否产生更大(或更小)的目标性状,取决于双片段遗传效应(加性效应与上位效应代数和)绝对值与单片段最大加性效应绝对值的差。本研究结果对实施高产分子标记聚合育种方法有重要参考价值。  相似文献   

12.
利用BC2F2高代回交群体定位水稻籽粒大小和形状QTL   总被引:6,自引:3,他引:3  
以我国优良籼稻恢复系蜀恢527为轮回亲本, 以来自菲律宾的Milagrosa为供体亲本, 培育了样本容量为199株的BC2F2高代回交群体。选取85个均匀分布在12条染色体上的多态性SSR标记进行基因型分析, 同时对粒长、粒宽、长宽比和千粒重4种性状进行了表型鉴定。采用性状-标记间的单向和双向方差分析对上述性状进行了QTL定位。单向方差分析(P<0.01)共检测到了10个控制粒长、粒宽、长宽比和千粒重的QTL, 其中有3个具有多效性。由于粒长和长宽比的高度相关性, 控制长宽比的2个QTL均能在粒长QTL中检测到。位于第3染色体着丝粒区域的qgl3b是一个控制粒长、长宽比和千粒重的主效QTL, 它可以分别解释粒长、长宽比和千粒重表型变异的29.37%、26.15%和17.15%。该QTL对于粒长、长宽比和千粒重均表现较大的加性效应(来自蜀恢527的等位基因为增效)和负向超显性。位于第8染色体的qgw8位点是一个控制粒宽的主效QTL, 同时也是控制千粒重的微效QTL, 能解释粒宽表型变异的21.47%和千粒重表型变异的5.16%。该QTL对粒宽和千粒重均具有较大的加性效应(来自蜀恢527的等位基因为增效)和正向部分显性。双向方差分析(P<0.005)共检测到61对显著的上位性互作, 涉及54个QTL, 其中23个是能同时影响2~4个性状的多效位点, 且有8个位点与单向方差分析检测到的相同。控制长宽比的13对上位性互作位点中, 与控制粒长的上位性互作位点完全相同的有8对。以上结果为进一步开展水稻籽粒大小和形状有利基因的精细定位、克隆和分子设计育种奠定了基础。  相似文献   

13.
The aim of this work was to map quantitative trait loci (QTLs) associated with flour yellow color (Fb*) and yellow pigment content (YPC) in durum wheat (Triticum turgidum L. var. durum). Additionally, QTLs affecting flour redness (Fa*) and brightness (FL*) color parameters were investigated. A population of 93 RILs (UC1113 × Kofa) was evaluated in three locations of Argentina over 2 years. High heritability values (>94%) were obtained for Fb* and YPC, whereas FL* and Fa* showed intermediate to high values. The main QTLs affecting Fb* and YPC overlapped on chromosome arms 4AL (4AL.2), 6AL (6AL.2), 7AS, 7AL, 7BS (7BS.2) and 7BL (7BL.2). The 7BL.1 QTL included the Psy-B1 locus, but one additional linked QTL was detected. A novel minor QTL located on 7AS affected Fb*, with an epistatic effect on YPC. An epistatic interaction occurred between the 7AL and 7BL.2 QTLs. The 4AL.2 QTL showed a strong effect on Fb* and was involved in two digenic epistatic interactions. The 6AL.2 QTL explained most of the variation for Fb* and YPC. The main QTLs affecting FL* and Fa* were located on 2BS and 7BL, respectively. These results confirm the complex inheritance of flour color traits and open the possibility of developing perfect markers to improve pasta quality in Argentinean breeding programs.  相似文献   

14.
Grain yield and yield components are the main important traits involved in durum wheat (Triticum turgidum L.) improvement programs. The purpose of this research was to identify quantitative trait loci (QTL) associated with yield components such as 1000 grain weight (TGW), grain weight per spike (GWS), number of grains per spike (GNS), spike number per m2 (SN), spike weight (SW), spike harvest index (SHI) and harvest index (HI) using microsatellite markers. Populations of F3 and F4 lines derived from 151 F2 individuals developed from a cross between Oste-Gata, a drought tolerant, and Massara-1, a drought susceptible durum wheat genotypes, were used. The populations were evaluated under four environmental conditions including two irrigation regimes of drought stress at terminal growth stages and normal field conditions in two growing seasons. Two hundred microsatellite markers reported for A and B genomes of bread wheat were used for parental polymorphism analysis and 30 polymorphic markers were applied to genotype 151 F2:3 families. QTL analysis was performed using genome-wide single marker regression analysis (SMA) and composite interval mapping (CIM). The results of SMA revealed that about 20% of the phenotypic variation of harvest index and TGW could be explained by Xcfd22-7B and Xcfa2114-6A markers in different environmental conditions. Similarly, Xgwm181-3B, Xwmc405-7B and Xgwm148-3B and marker Xwmc166-7B were found to be associated with SHI and GWS, respectively. A total of 20 minor and major QTL were detected; five for TGW, two for GWS, two for GNS, three for SN, five for HI, two for SHI and one for SW. The mapped QTL associated with ten markers. Moreover, some of these QTL were prominent and stable under drought stress and non drought stress environments and explained up to 49.5% of the phenotypic variation.  相似文献   

15.
Grain yield and its component trait thousand kernel weight are important traits in triticale breeding programmes. Here, we used a large mapping population of 647 doubled haploid lines derived from four families to dissect the genetic architecture underlying grain yield and thousand kernel weight by multiple‐line cross QTL mapping. We identified 3 QTL for grain yield and 13 for thousand kernel weight which cross‐validated explained 5.2% and 48.2% of the genotypic variance, respectively. Both traits showed a positive phenotypic correlation, and we found two QTL overlapping between them. Full two‐dimensional epistasis scans revealed epistatic QTL for both traits, suggesting that epistatic interactions contribute to their genetic architecture. Based on QTL identified in our results, we conclude that the potential for marker‐assisted selection is limited for grain yield but more promising for thousand kernel weight.  相似文献   

16.
Summary The aim of this investigation was to map quantitative trait loci (QTL) associated with grain yield and yield components in maize and to analyze the role of epistasis in controlling these traits. An F2:3 population from an elite hybrid (Zong3 × 87-1) was used to evaluate grain yield and yield components in two locations (Wuhan and Xiangfan, China) using a randomized complete-block design. The mapping population included 266 F2:3 family lines. A genetic linkage map containing 150 simple sequence repeats and 24 restriction fragment length polymorphism markers was constructed, spanning a total of 2531.6 cM with an average interval of 14.5 cM. A logarithm-of-odds threshold of 2.8 was used as the criterion to confirm the presence of one QTL after 1000 permutations. Twenty-nine QTL were detected for four yield traits, with 11 of them detected simultaneously in both locations. Single QTL contribution to phenotypic variations ranged from 3.7% to 16.8%. Additive, partial dominance, dominance, and overdominance effects were all identified for investigated traits. A greater proportion of overdominance effects was always observed for traits that exhibited higher levels of heterosis. At the P ≤ 0.005 level with 1000 random permutations, 175 and 315 significant digenic interactions were detected in two locations for four yield traits using all possible locus pairs of molecular markers. Twenty-four significant digenic interactions were simultaneously detected for four yield traits at both locations. All three possible digenic interaction types were observed for investigated traits. Each of the interactions accounted for only a small proportion of the phenotypic variation, with an average of 4.0% for single interaction. Most interactions (74.9%) occurred among marker loci, in which significant effects were not detected by single-locus analysis. Some QTL (52.2%) detected by single-locus analysis were involved in epistatic interactions. These results demonstrate that digenic interactions at the two-locus level might play an important role in the genetic basis of maize heterosis.  相似文献   

17.
The major vernalisation genes of VRN1 are well understood at the molecular level. However, their quantitative contributions to flowering time and grain yield related traits are not clear. In this study, we used a double haploid population (225 lines) of Westonia × Kauz in which the Vrn-A1a (Westonia), Vrn-B1a (Westonia) and Vrn-D1a (Kauz) were segregating, and a high resolution genetic map of 1,159 loci, to determine the quantitative contributions of Vrn-A1a, Vrn-B1a and Vrn-D1a for the days to anthesis and grain yield related traits in diverse environments. The major quantitative trait loci (QTL) of spikelet number per spike and days to anthesis were contributed by the winter alleles of VRN1. The QTL of the time of grain filling were contributed by the spring alleles of VRN1. The wild genotype (vrn-A1vrn-B1vrn-D1) showed the latest flowering, the highest spikelet number per spike, lowest peduncle proportion and thousand grain weight in three environmental analyses, and the largest spikelet number per spike, which resulted in high kernel number per spike (KN) and grain weight (GW) in well-watered environments. One QTL of KN was located on 5B, contributed by winter allele of vrn-B1 in three environmental analyses, and one GW QTL was detected on 5A, contributed by the spring allele of Vrn-A1a in a drought environment. The results indicated that the genotype Vrn-A1avrn-B1Vrn-D1a would shorten the time to anthesis and give high GW and KN in drought environments. The early anthesis associated phenotype, peduncle proportion would provide an indicator in breeding programs.  相似文献   

18.
Parental, F1, F2, BC1, BC2, BC11, BC12, BC21, BC22, BC1 self and BC2 selfed generations of three crosses involving six cultivars of durum wheat (Triticum durum Desf.) were studied for grains per spike under normal and late sown environments to analyze the nature of gene effects. A 10-parameter model did not fully account for the differences among the generation means. In two cases more complex interactions or linkage were involved in the inheritance of grains per spike in durum. Both digenic and trigenic epistatic interactions had a role in controlling the inheritance of grains per spike, however, trigenic interactions contributed more than digenic interactions. Non-fixable gene effects were many times higher than fixable ones in all three crosses and in both sowing environments indicating a major role of non-additive gene effects in the inheritance of this trait. Duplicate epistasis between sets of three genes under both environments was recorded for the cross Raj 911 × DWL 5002. Epistatic interactions, particularly the trigenic ones, contributed the maximum significant heterosis. Epistatic interactions involving dominance in the F2 generations caused significant inbreeding depression. Selective diallel mating and/or biparental mating could be used for amelioration of grains per spike in durum wheat.  相似文献   

19.
以优质水稻品种越富为遗传背景,具有旱稻品种IRAT109导入片段的271份导入系为材料,在水、旱田2个土壤水分环境下调查糙米率、精米率、整精米率和垩白粒率4个品质性状,研究旱田栽培对稻米品质性状的影响,进行QTL定位及基因型与环境的互作分析。结果表明,整精米率和垩白粒率易受土壤水分环境的影响,糙米率和精米率相对稳定。适当水分胁迫能提高稻米的整精米率,减少垩白粒率。利用混合线性模型,水、旱田条件下共检测到4个品质性状的10个加性QTL和2对上位性互作QTL,分别位于第3、4、7、8和9染色体。3个加性QTL (qMR9、qHMR7和qHMR9)和一对上位性互作QTL (qHMR3~qHMR9)的贡献率大于10%。7个QTL与前人研究结果相一致。第4染色体RM1112~RM1272和第9染色体RM1189~RM410是QTL集中分布的区域。根据不同性状对干旱胁迫的反应特点,分别选择水、旱田条件下贡献率大、稳定的QTL或者具有旱田特异性的QTL,进行标记辅助聚合育种是培育抗旱、优质稻的一个有效途径。  相似文献   

20.
Enhanced root growth in plants is fundamental to improve soil water exploration and drought tolerance. Understanding of the variance components and heritability of root biomass allocation is key to design suitable breeding strategies and to enhance the response to selection. This study aimed to determine variance components and heritability of biomass allocation and related traits in 99 genotypes of wheat (Triticum aestivum L.) and one triticale (X. Triticosecale Wittmack) under drought-stressed and non-stressed conditions in the field and greenhouse using a 10?×?10 alpha lattice design. Days to heading (DTH), days to maturity (DTM), number of tillers (NPT), plant height (PH), spike length (SL), shoot and root biomass (SB, RB), root to shoot ratio (RS), thousand kernel weight (TKW) and yield (GY) were recorded. Analyses of variance, variance components, heritability and genetic correlations were computed. Significant (p?<?0.05) genetic and environmental variation were observed for all the traits except for spike length. Drought stress decreased heritability of RS from 47 to 28% and GY from 55 to 17%. The correlations between RS with PH, NPT, SL, SB and GY were weaker under drought-stress (r?≤???0.50; p?<?0.05) compared to non-stressed conditions, suggesting that lower root biomass allocation under drought stress compromises wheat productivity. The negative association between GY and RS (r?=???0.41 and ??0.33; p?<?0.05), low heritability (<?42%) and high environmental variance (>?70%) for RS observed in this population constitute several bottlenecks for improving yield and root mass simultaneously. However, indirect selection for DTH, PH, RB, and TKW, could help optimize RS and simultaneously improve drought tolerance and yield under drought-stressed conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号