首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Powdery mildew caused by Podosphaera xanthii is a major disease in melon. Here we report two Px race 1 strains named Px1A and Px1B in Xinjiang, which have different pathogenicities. The more pathogenic Px1B made some powdery mildew resistant genes on linkage group V (LGV) lose their resistant traits. The inheritances of resistance to Px1A and Px1B in melon Edisto47 were studied using a BC1 population derived from a cross between the resistant genotype Edisto47 and the susceptible cultivar Queen. The resistance/susceptibility segregation ratios observed in the Px1A-inoculated BC1 population and the loci of polymorphic markers indicated that resistance to Px1A was controlled by two dominant genes. Quantitative trait locus analysis identified two loci mapped on LGII and LGV, respectively, for powdery mildew resistance. However, for resistance to Px1B, Edisto47 was found to bear one dominant gene. A genetic linkage map was constructed using the Px1B-inoculated BC1 population to map the resistant gene. Comparative genomic analyses revealed that the linkage map of Pm-Edisto47-1 was collinear with the corresponding genomic region of the melon chromosome 2. Genetic analysis showed that Pm-Edisto47-1 was located between simple sequence repeat (SSR) markers CMGA36 and SSR252089, at a genetic distance of 2.1 cM to both markers. Synteny analysis showed that two genes named MELO3C015353 and MELO3C015354 were predicted as candidates for Edisto47-1 in this region.  相似文献   

2.
Powdery mildew is one of the most important melon pathogens all over the world. So far, many genes conferring resistance to powdery mildew of melon have been described, but few of these have been finely mapped or cloned. Two F2 populations derived from Ano2 × Hami413 and Ano2 × Queen were used to map the powdery mildew resistance gene by methods of Bulked Segregation Analysis (BSA), comparative genomics and Resistance Gene Analogues (RGA) mapping. It was found that the resistance to powdery mildew in Ano2 was conferred by a dominant gene, and the gene was named Pm-AN. The genetic analysis revealed that Pm-AN located between two codominant markers RPW and MRGH63B in linkage groupV. The genetic distances between Pm-AN and these two markers were 1.4–1.8 and 1.6–2 cM. No recombination was found between Pm-AN and markers ME/E1, SRAP23. Pm-AN was located in a RGA-rich region and cosegregated with the RGA marker MRGH5 and the resistance gene Vat. Synteny analysis showed that markers in this region were collinear between melon and cucumber. Segregation distortion was found in this region using both Ano2 × Hami413 and Ano2 × Queen F2 populations, and the distortion was more distinct in Ano2 × Hami413 F2 population. The center of segregation distortion was located in the RGA rich region harboring Pm-AN.  相似文献   

3.
Identification and mapping new powdery mildew resistance (Pm) genes is important for resistance breeding in wheat. Common wheat (Triticum aestivum L.) line X3986-2 was tested against 27 isolates of Blumeria graminis f. sp. tritici. To identify the Pm gene(s) in X3986-2, an F2 population and its derived F2:3 lines were developed from a cross between X3986-2 and susceptible line Mingxian169. Segregation ratios indicated the presence of a single dominant Pm locus, tentatively designated PmX3986-2. Bulked segregant analysis was applied to screen for molecular markers linked to PmX3986-2. Two sequence characterized amplified region (SCAR) markers SCAR112 and SCAR203, and five simple sequence repeat markers CFD40, CFD78, CFD81, GWM293 and WMC443 on chromosome 5D were linked to PmX3986-2, with CFD81 and SCAR112 flanking PmX3986-2 at 0.6 and 1.5 cM, respectively. This suggests that PmX3986-2 may be a novel allele of loci Pm2, Pm46 and PmLX66 on chromosome arm 5DS. PmX3986-2 with its tightly linked DNA markers should be useful for broadening the genetic basis of Pm and rapidly transferring the resistance gene to susceptible cultivars or for us in gene pyramiding for resistance breeding.  相似文献   

4.
The recessive gene ol-2 confers papilla-associated and race-non-specific resistance to tomato powdery mildew caused by Oidium neolycopersici. In order to facilitate marker assisted selection (MAS) in practical breeding programmes, we identified two simple sequence repeat (SSR) markers and one cleaved amplified polymorphic sequence (CAPS) marker which are linked to the resistance locus and co-dominantly inherited. Aiming to provide a base for ol-2 positional cloning, we used a large segregating F2 population to merge these markers with all the ol-2 linked amplified fragment length polymorphism (AFLP®) markers previously identified in an integrated genetic map. By screening a tomato bacterial artificial chromosome (BAC) library, we detected two BAC clones containing two expressed sequence tags (ESTs) homologous to the gene mlo, responsible for powdery mildew resistance in barley, as well as an ol-2-linked marker. Chromosomal mapping by Fluorescence in situ Hybridization (FISH) revealed major signals of the two BAC DNAs in the pericentromeric heterochromatin of the short arm of chromosome 4, in the same region where the ol-2 gene was previously mapped. The genetic and cytogenetic co-localisation between ol-2 and tomato mlo-homologue(s), in addition to the similarity of ol-2 and mlo resistances for both genetic and phytopathological characteristics, suggests that ol-2 is likely a mlo-homologue. Thus, a homology-based cloning approach could be more suitable than positional cloning for ol-2 isolation.  相似文献   

5.
Resistance to Fusarium oxysporum f.sp. melonis race 2 is conferred by a single dominant gene, Fom-1 in melon. Here, we identified DNA markers tightly linked to Fom-1 that could be used for marker assisted selection in breeding programs. First, we developed 125 F2 plants derived from the cross between melon lines P11 (fom-1fom-1) and MR-1 (Fom-1Fom-1). Using the F2 population, we constructed a linkage map including 14 SSR markers which had not been mapped previously. Fom-1 was confirmed to be allocated to linkage group 7. Then, we identified four AFLP markers using bulked segregant analysis. The AFLP marker TAG/GCC-470 was completely linked to Fom-1 and other three markers were mapped near Fom-1. TAG/GCC-470 and TCG/GGT-400 were respectively converted to STS and CAPS markers. Usefulness of DNA markers was confirmed in the analysis with several melon cultivars and lines.  相似文献   

6.
We recently mapped the Pp523 locus that includes a single, dominant gene conferring resistance to downy mildew expressed in adult plants to a 75.1 cm long linkage group on a genetic linkage map of Brassica oleracea L. More recently, we identified a new AFLP marker 2.8 cm downstream from the resistance gene. The five DNA markers within an 8.5 cm region encompassing the Pp523 gene were cloned and sequenced. Three of these markers were transformed into SCARs (sequence characterised amplified regions), however, two among them were monomorphic and were analysed as CAPS (cleaved amplified polymorphic sequence) markers among the mapping population. Searched against genomic databases, the five B. oleracea DNA-marker sequences matched Arabidopsis thaliana L. gene sequences that delimit a conserved syntenic region in the top arm end of chromosome 1 of this last species. Considering the close genetic relatedness between both species, the information on this specific genomic region in A. thaliana is particularly useful for the construction of a fine-scale map of the corresponding genomic region in B. oleracea. The identified SCAR and CAPS markers can be used for marker assisted selection (MAS) in breeding programs aimed at the introgression of the Pp523 resistance locus, allowing the reliable indirect identification of plants harbouring the resistance gene with a margin of error of approximately six in ten-thousand selected plants.  相似文献   

7.
Melon Fusarium wilt (MFW), caused by Fusarium oxysporum f. sp. melonis (Fom), is one of the most destructive diseases of melon (Cucumis melo L.). The development and deployment of resistant cultivars is generally considered to be the best approach to control MFW. Based on the host resistance genes associated with variants of this pathogen, Fom isolates were classified into four physiological races designated 0, 1, 2, and 1,2. Two dominant resistance genes, Fom-1 and Fom-2, control resistance to races 0 and 2, and 0 and 1, respectively. Fom isolates classified as race 1,2 are able to induce disease in melon lines carrying the above resistance genes. Many sources of resistance to Fom races 0, 1, and 2 have been reported. Partial resistance to race 1,2 controlled by polygenic recessive genes was only detected in a few Far Eastern melon accessions, except for the breeding line BIZ where complete resistance was described. Identification of DNA markers tightly linked to genes conferring resistance to Fom has immediate application in MFW resistance breeding programs. The Fom-2 gene has been cloned, and it encodes a protein with a nucleotide binding site (NBS) and leucine-rich repeats domain (LRR). Based on the sequence of this domain, some molecular markers linked to this gene were developed. Several DNA markers linked to Fom-1 have also been described. However, the usefulness of these markers was variety-dependent. Therefore, their combined use would be very useful in marker assisted selection for introducing resistance to Fom races 0 and 2 in melon. Recently, these markers were used for the positional cloning of this gene, which encoded a protein with a NBS–LRR domains that shows similarity to the toll and interleukin-1 receptores (TIR). Regarding Fom race 1,2, nine QTL were detected on five linkage groups by composite interval mapping. In this paper we review the current knowledge of MFW disease, and focus on genetic resistance to Fom and marker-assisted selection for resistance.  相似文献   

8.
Stripe rust (or yellow rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Growing resistant cultivars is the best approach to control the disease. To identify and map genes for stripe rust resistance in wheat cultivar ‘Wuhan 2', an F2 population was developed from a cross between the cultivar and susceptible cultivar Mingxian 169. The parents, 179 F2 plants and their derived F2:3 lines were evaluated for responses to Chinese races CYR30 and CYR31 of the pathogen in a greenhouse. A recessive gene for resistance was identified. DNA bulked segregant analysis was applied and resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the resistance gene. A genetic map consisting of five RGAP and six SSR markers was constructed. The recessive gene, designated Yrwh2, was located on the short arm of chromosome 3B and flanked by SSR markers Xwmc540 and Xgwm566 at 5.9 and 10.0 cM, respectively. The chromosomal location of the resistance gene and its close marker suggest that the locus is different from previously reported stripe rust resistance genes Yr30, QYr.ucw-3BS, Yrns-B1, YrRub and QYrex.wgp-3BL previously mapped to chromosome 3B. Yrwh2 and its closely linked markers are potentially useful for developing stripe rust resistance wheat cultivars if used in combination with other genes.  相似文献   

9.
Fusarium wilt, caused by Fusarium oxysporum f. sp. melonis is a common vascular wilt fungal disease in melon across the world. The resistance gene to race 1 of this causal agent, Fom-2, has been previously cloned and its sequence is available. The objective of this research was the introgression of Fom-2 from one resistant (Isabelle) genotype into two susceptible cultivars (Garmak and Tile-torogh) via marker assisted backcrossing. First, the leucine-rich repeats (LRR) domain of Fom-2 from resistant and susceptible genotypes was sequenced to develop functional markers. A length of 1274 bp of the 3′ end of this gene was isolated, cloned and sequenced. The difference between resistant and susceptible genotypes in this region was 28 nucleotide substitutions. Two allele specific primer pairs, Fom2-R409 and Fom2-S253, were designed based on nucleotide substitutions to amplify resistant and susceptible alleles, respectively. For introgression of the gene, donor (Isabelle) and recurrent (Garmak and Tile-torogh) parents were crossed. Resistant plants in BC1F1 and BC2F1 generations were first detected using artificial pathogen inoculation and later the plants were genotyped by functional markers to validate their resistance. The resistant plants were also selected phenotypically in each generation for background genome recovery, which conduced to high similarity of BC3 generation with the recurrent parents. It was proved the developed markers are more precise and efficient than inoculation trial and could be used as confident tools for screening of resistant melon genotypes to Fusarium wilt.  相似文献   

10.
Mottled/uniform color at the flower end of immature fruit is a highly important external quality trait that affects the market value of cucumber. Genetic analysis of different F2 and backcross populations revealed that one single recessive gene, u (uniform immature fruit color), determines the uniform immature fruit color trait in cucumber. Based on earlier studies, the u locus is located on chromosome 5 (Chr. 5). By combining bulked segregant analysis using 60 published molecular markers on Chr. 5, we found that eight markers are polymorphic and are linked to the u locus. In addition, we developed five new relevant polymorphic simple sequence repeat (SSR) markers between markers SSR16203 and SSR15818. Subsequently, the F2 population (477 individuals) from the cross of S06 (uniform fruit color line) × S94 (mottled fruit color line) was used for fine mapping of the u gene. The u gene was mapped to a 313.2-kb region between markers SSR10 and SSR27, at a genetic distance of 0.8 and 0.5 cM, respectively. Moreover, validity analysis of the codominant markers SSR10 and SSR27 was performed using 50 lines with mottled/uniform fruit color, demonstrating that these two SSR markers can be used for marker-assisted selection of the mottled/uniform fruit color trait in cucumber breeding. The results of this study will facilitate the cloning of the u gene.  相似文献   

11.
Abstract: A partial linkage map of melon was constructed from a cross between PI414723 and Dulce. Twenty-two SSR, 46RAPD, 2 ISSR markers and four horticultural markers [female flower form (a), Fusarium resistance, striped epicarp (st), and fruit flesh pH (pH)] were analyzed in an F2/F3 population to produce a map spanning 14 linkage groups. We report for the first time map positions for the st, a, and pH genes. One SSR marker was tightly linked to pH. Mapping the a gene for the female flower form to molecular linkage group 4 enabled the merging of the map of horticultural traits with the of molecular markers in this region. Using the 22 SSR markers of this map, two of the three postulated ZYMV resistance genes were located using a BC1 population (PI414723 recurrent parent). One SSR marker was tightly linked to a ZYMV resistance gene, designated Zym-1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
小麦地方品种小白冬麦抗白粉病基因分子标记   总被引:1,自引:0,他引:1  
薛飞  翟雯雯  段霞瑜  周益林  吉万全 《作物学报》2009,35(10):1806-1811
小麦农家品种小白冬麦对小麦白粉病具有良好抗性,对病原菌拥有较广的抗谱,并与其他已知抗白粉病基因的抗谱不同,遗传分析证实小白冬麦的苗期抗性由一个隐性抗白粉病基因控制。为了寻找与小白冬麦所携带抗白粉病基因连锁的分子标记,采用小白冬麦和感病品种Chancellor(CC)正反交组合,在2个F2群体125和107个单株上进行验证。结果显示,抗白粉病基因mlxbd与引物Xgwm577、Xgwm1267等紧密连锁,通过中国春及其第7部分同源群缺体-四体系,双端体系和缺失系将其定位在7B染色体长臂末端区域(7BL-10,Bin 0.78~1.00), 利用与mlxbd最近的引物Xgwm577扩增23个含有已知抗白粉病基因的小麦品种,检测发现这个引物不能单独用于分子标记辅助选择育种。  相似文献   

13.
The present study was carried out with the objective to validate the molecular markers, which have been previously reported to be linked to fertility restorer (Rf) gene(s) for WA-CMS lines of rice. Two mapping populations involving fertility restorer lines for WA-cytoplasm, viz., (i) an F2 population derived from the cross IR58025A/KMR3R consisting of 347 plants and (ii) a BC1F1 population derived from the cross IR62829A/IR10198R//IR62829A consisting of 130 plants were analyzed. Nine SSR and three CAPS markers reported to be linked to Rf genes along with two previously unreported SSR markers were analyzed in the mapping populations. In both the populations studied, the trait of fertility restoration was observed to be under digenic control. Eight SSR markers (RM6100, RM228, RM171, RM216, RM474, RM311, MRG4456 and pRf1&2) showed polymorphism between the parents of the F2 population, while the SSR markers RM6100 and RM474 showed polymorphism between the parents of both the F2 and BC1F1 populations. Only one CAPS marker, RG146FL/RL was polymorphic between the parents of the BC1F1 population. RM6100 was observed to be closely segregating with fertility restoration in both the mapping populations and was located at a distance of ~1.2 cM. The largest phenotypic variation was accounted for the region located between RM311 and RM6100. Using the marker-trait segregation data derived from analysis of both the mapping populations, a local linkage map of the genomic region around Rf-4, a major fertility restoration locus on Chromosome 10 was constructed, and RM6100 was observed to be very close to the gene at a distance of 1.2 cM. The accuracy of the marker RM6100 in predicting fertility restoration was validated in 21 restorers and 18 maintainers. RM6100 amplified the Rf-4 linked allele in a majority of the restorers with a selection accuracy of 94.87%. Through the present study, we have established the usefulness of the marker RM6100 in marker-assisted selection for fertility restoration in segregating populations and identification of restorers while screening rice germplasm for their fertility restoration ability.  相似文献   

14.
V97‐3000 is a maturity group (MG) V soybean breeding line derived from SS 516 × V90‐2592 (Vance × V81‐1325) with high stachyose, small seed and powdery mildew resistance. A total of 53 F2:3 families were derived from a cross between V97‐3000 and a powdery mildew susceptible line V99‐5089. The 53 F2:3 families, each with 30 plants, were grown in the greenhouse for powdery mildew evaluation, and the corresponding 53 F2 plants were genotyped using simple sequence repeat (SSR) markers. Results showed that the 53 F2:3 families segregated in ratio of one resistant : two segregating : one susceptible (13 : 26 : 14) and the 26 segregating F2:3 families each exhibited a good fit to three resistant : one susceptible, indicating that resistance to powdery mildew is conditioned by a single dominant gene. The gene for powdery mildew resistance in V97‐3000 was mapped on chromosome 16 [linkage group (LG) J] flanked by Satt547 and Sat_396 on one side and Sat_393 on the other side with 3.8 cM and 3.9 cM distance, respectively. This study provides a new source of powdery mildew resistance and information of genetic location of the resistance gene and linked markers, which is useful for breeders selecting powdery mildew resistance through marker‐assisted selection (MAS) in soybean breeding programmes.  相似文献   

15.
Black spot disease, which is caused by the Japanese pear pathotype of the filamentous fungus Alternaria alternata (Fries) Keissler, is one of the most harmful diseases in Japanese pear cultivation. We mapped a gene for susceptibility to black spot disease in the Japanese pear (Pyrus pyrifolia Nakai) cultivar ‘Kinchaku’ (Aki gene) at the top of linkage group 11, similar to the positions of the susceptibility genes Ani in ‘Osa Nijisseiki’ and Ana in ‘Nansui’. Using synteny-based marker enrichment, we developed novel apple SSR markers in the target region. We constructed a fine map of linkage group 11 of ‘Kinchaku’ and localized the Aki locus within a 1.5-cM genome region between SSR markers Mdo.chr11.28 and Mdo.chr11.34. Marker Mdo.chr11.30 co-segregated with Aki in all 621 F1 plantlets of a ‘Housui’ × ‘Kinchaku’ cross. The physical size of the Aki region, which includes three markers (Mdo.chr11.28, Mdo.chr11.30, and Mdo.chr11.34), was estimated to be 250 Kb in the ‘Golden Delicious’ apple genome and 107 Kb in the ‘Dangshansuli’ Chinese pear genome. Our results will help to identify the candidate gene for susceptibility to black spot disease in Japanese pear.  相似文献   

16.
The powdery mildew resistance gene Pm6, transferred to common wheat from the tetraploid Triticum timopheevii, is effective in most epidemic areas for powdery mildew in China. RFLP probe BCD135 was previously associated with Pm6. In the present research, four STS primers (NAU/STSBCD135-1, NAU/STSBCD135-2, STS003 and STS004) were designed from the sequence data of BCD135. These primers were used for PCR amplification using the genomic DNA of resistant near-isogenic lines with Pm6 and their recurrent parent, cv. Prins. No polymorphic product was observed using primers STS003 and STS004; however, primers NAU/STSBCD135-1 and NAU/STSBCD135-2 amplified two and one bands, respectively, polymorphic between the resistant near-isogenic-lines and Prins. The two primers were then used to amplify the F2 population from the cross IGV1-465 (FAO163b/7*Prins) × Prins. The amplification and the powdery mildew resistance identification data were analyzed using the software Mapmaker 3.0. The results indicated that both NAU/STSBCD135-1 and NAU/STSBCD135-2 were closely linked to Pm6 with a genetic distance of 0.8 cM. A total of 175 commercial varieties without Pm6 from different ecological areas of China were tested using marker NAU/STSBCD135-2 and none of them amplified the 230 bp-specific band. This marker thus has high practicability and can be used in MAS of Pm6 in wheat breeding programs for powdery mildew resistance. Jianhui Ji and Bi Qin contributed equally to this work.  相似文献   

17.
A genetic map was developed with microsatellite (simple sequence repeat, SSR) markers and 148 recombinant inbred lines (RILs) derived from a cross between two cultivated cucumber (Cucumis sativus L.) inbred lines 9110Gt and 9930, which was also segregating for seven horticulturally important traits including bitterfree foliage (bi), gynoecious sex expression (F), uniform immature fruit color (u), glossy fruit skin (d), heavy netting of mature fruit (H), no fruit ribbing (fr), and virescent leaf (v-1). Linkage analysis placed 248 microsatellite loci into seven linkage groups spanning 711.9?cM with a mean marker interval of 2.8?cM. Based on shared markers with an early cucumber genetic map, the 7 linkage groups could be assigned to seven cucumber chromosomes. The four fruit epidermal feature-related genes, u, d, H and fr were found to be tightly linked loci in Chromosome 5, and the other three (F, bi and v-1) were placed in different locations of Chromosome 6. It was the first time to map the four genes H, fr, bi and v-1 with molecular markers. In addition, this is the first report of the inheritance of fruit ribbing in cucumber, which was controlled by a single, dominant gene designated as Fr. Mapping information from this study opens the way for marker-assisted selection and map-based cloning of these horticulturally important genes in cucumber.  相似文献   

18.
An SSR-based molecular genetic map of cassava   总被引:7,自引:2,他引:7  
E. Okogbenin  J. Marin  M. Fregene 《Euphytica》2006,147(3):433-440
Summary Microsatellites or simple sequence repeats (SSR) are the markers of choice for molecular genetic mapping and marker-assisted selection in many crop species. A microsatellite-based linkage map of cassava was drawn using SSR markers and a F2 population consisting of 268 individuals. The F2 population was derived from selfing the genotype K150, an early yielding genotype from an F1 progeny from a cross between two non-inbred elite cassava varieties, TMS 30572 and CM 2177-2 from IITA and CIAT respectively. A set of 472 SSR markers, previously developed from cassava genomic and cDNA libraries, were screened for polymorphism in K150 and its parents TMS 30572 and CM 2177-2. One hundred and twenty two polymorphic SSR markers were identified and utilized for linkage analysis. The map has 100 markers spanning 1236.7 cM, distributed on 22 linkage groups with an average marker distance of 17.92 cM. Marker density across the genome was uniform. This is the first SSR based linkage map of cassava and represents an important step towards quantitative trait loci mapping and genetic analysis of complex traits in M. esculenta species in national research program and other institutes with minimal laboratory facilities. SSR markers reduce the time and cost of mapping quantitative trait loci (QTL) controlling traits of agronomic interest, and are of potential use for marker-assisted selection (MAS).  相似文献   

19.
普通小麦品种Brock抗白粉病基因分子标记定位   总被引:4,自引:2,他引:2  
为明确利用Brock转育成的小麦抗白粉病品系3B529(京411*7//农大015/Brock, F6)抗性的遗传基础,将高感白粉病小麦品系薛早和3B529杂交,获得F1代、F2分离群体和F2:3家系。抗病性鉴定和遗传分析结果表明,3B529对E09小种的抗性受1对显性基因控制,暂被定名为MlBrock。利用BSA和分子标记分析,获得了与MlBrock连锁的3个SSR标记Xcfd81、Xcfd78、Xgwm159和2个SCAR标记SCAR203和SCAR112,根据SSR和SCAR标记在中国春缺体四体、双端体和缺失系的定位结果,将MlBrock定位在小麦染色体臂5DS Bin 0~0.63区间上。MlBrock与Xcfd81和SCAR203共分离,与SCAR112的遗传距离为0.5 cM。这些分子标记的建立有利于今后Brock抗白粉病基因分子标记辅助选择和基因聚合。综合抗白粉病基因MlBrock的染色体定位和抗谱分析结果,推测MlBrock很可能是Pm2基因。  相似文献   

20.
The Swedish winter wheat (Triticum aestivum L.) cultivar Folke has a long record of partial and race non-specific resistance to powdery mildew (caused by Blumeria graminis f. sp. tritici) in the field. The aim of the present study was to map the main genetic factors behind the partial resistance in Folke and identify molecular markers for use in marker-assisted selection. A population of 130 recombinant inbred lines was developed from a cross between Folke and the moderately susceptible spring wheat line T2038. The population was tested for powdery mildew resistance over two years at two locations in Norway and genotyped with DArT and SSR markers. Composite interval mapping detected a total of eight quantitative trait loci (QTL) for powdery mildew resistance; six with resistance from Folke on 2BS, 2DL, 5AL, 5BS and 6BS and two with resistance from T2038 on 5BS and 7AL. None of the loci with resistance from Folke mapped to chromosomal regions with known race-specific resistance genes, which confirmed the race non-specific nature of the resistance in this cultivar. The molecular markers linked to the reported QTL will be useful as a tool for selecting partial and potentially durable resistance to powdery mildew based on the resistance in Folke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号