首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil moisture availability is the main limiting factor for growing second crops in rainfed rice fallows of eastern India. Only rainfed rice is grown with traditional practices during the rainy season (June–October) with large areas (13 m ha−1) remaining fallow during the subsequent dry season (November–March) inspite of annual rainfall of the order 1000–2000 mm. In this study an attempt was made to improve productivity of rainfed rice during rainy season and to grow second crops in rice fallow during dry (winter) season with supplemental irrigation from harvested rainwater. Rice was grown as first crop with improved as well as traditional farmers’ management practices to compare the productivity between these two treatments. Study revealed that 87.1–95.6% higher yield of rice was obtained with improved management over farmers’ practices. Five crops viz., maize, groundnut, sunflower, wheat and potato were grown in rice fallow during dry (winter) season with two, three and four supplemental irrigations and improved management. Sufficient amount of excess rainwater (runoff) was available (381 mm at 75% probability level) to store and recycle for supplementary irrigation to second crops grown after rice. Study revealed that supplemental irrigation had significant effect (P < 0.001) on grain yield of dry season crops and with two irrigation mean yields of 1845, 785, 905, 1420, 8050 kg ha−1 were obtained with maize (grain), groundnut, sunflower, wheat and potato (tuber), respectively. With four irrigations 214, 89, 78, 81, 54% yield was enhanced over two irrigations in respective five crops. Water use efficiency (WUE) of 13.8, 3.35, 3.39, 5.85 and 28.7 kg ha−1 was obtained in maize, groundnut, sunflower, wheat, potato (tuber), respectively with four irrigations. The different plant growth parameters like maximum above ground biomass, leaf area index and root length were also recorded with different levels of supplemental irrigation. The study amply revealed that there was scope to improve productivity of rainfed rice during rainy season and to grow another profitable crops during winter/dry season in rice fallow with supplemental irrigation from harvested rainwater of rainy season.  相似文献   

2.
The productivity of rice in rainfed upland soils of eastern India is very low (<1 t/ha) and unstable because of erratic monsoon, moisture deficit during dry spells, light textured with less fertile soils and several biological constraints (weeds, pests and diseases). Keeping the urgent need of augmenting the productivity of vast rainfed upland rice ecosystem of eastern India (4.3 million ha), crop diversification technology was generated through on-farm research trials in representative upland rice soils of eastern India after analyzing agro-climatic (rainfall variability, probability and onset of effective monsoon) and edaphic (soil water retention properties) constraints and prospects. Based on rainfall analysis, direct seeded, low water requiring, rice substituted alternative upland crops namely maize, groundnut, pigeonpea, greengram and blackgram (sole or intercropping) was sown in light textured upland rice soils on 24th meteorological weeks (11–17 June) in 3 years 2000–2002 with two to three summer ploughings during pre-monsoon shower (May). Study revealed that in deficit rainfall years (2000 and 2002), when rice yield was affected adversely in light textured upland, higher rice equivalent yield and rain water use efficiency were obtained from groundnut+pigeonpea intercropping followed by sole groundnut and sole pigeonpea. Study also revealed that productivity of rice substituted crops in the same upland did not fluctuate much between rainfall excess (2001) and rainfall deficit years (2002 and 2000). Double cropping in rainfed upland rice soils was also explored through maize–horsegram/sesamum rotation with increased productivity and rainwater use efficiency. The crop diversification technology was found to be very effective for drought mitigation.  相似文献   

3.
In arid and semi-arid regions, effluent from sub-surface drainage systems is often saline and during the dry season its disposal poses an environmental problem. A field experiment was conducted from 1989 to 1992 using saline drainage water (EC=10.5–15.0 dS/m) together with fresh canal water (EC=0.4 dS/m) for irrigation during the dry winter season. The aim was to find if crop production would still be feasible and soil salinity would not be increased unacceptably by this practice. The experimental crops were a winter crop, wheat, and pearl-millet and sorghum, the rainy season crops, grown on a sandy loam soil. All crops were given a pre-plant irrigation with fresh canal water. Subsequently, the wheat crop was irrigated four times with different sequences of saline drainage water and canal water. The rainy season crops received no further irrigation as they were rainfed. Taking the wheat yield obtained with fresh canal water as the potential value (100%), the mean relative yield of wheat irrigated with only saline drainage water was 74%. Substitution of canal water at first post-plant irrigation and applying thereafter only saline drainage water, increased the yield to 84%. Cyclic irrigations with canal and drainage water in different treatments resulted in yields of 88% to 94% of the potential. Pearl-millet and sorghum yields decreased significantly where 3 or 4 post-plant irrigations were applied with saline drainage water to previous wheat crop, but cyclic irrigations did not cause yield reduction. The high salinity and sodicity of the drainage water increased the soil salinity and sodicity in the soil profile during the winter season, but these hazards were eliminated by the sub-surface drainage system during the ensuing monsoon periods. The results obtained provide a promising option for the use of poor quality drainage water in conjunction with fresh canal water without undue yield reduction and soil degradation. This will save the scarce canal water, reduce the drainage water disposal needs and associated environmental problems.  相似文献   

4.
应用“坑测法”测定了旱稻需水量 ,结果表明 :中亚热带丘陵红壤地区旱稻需水量为 5 14 .0 mm。该需水量约为同期降雨量的 6 1% ,一般年景不用灌溉。过多过少水量都影响旱稻生长 ;低于 35 0 .0 mm不能成穗。旱稻根系发达 ,吸水吸肥和抗旱能力强 ,特别适宜丘陵地区种植。  相似文献   

5.
An experiment was conducted in diked rice fields with various weir heights (6 cm to 30 cm at an interval of 4 cm) for three consecutive years in the sub-humid climate of eastern India. The results reveal that about 56.75% and 99.5% of the seasonal rainfall can be stored in 6 cm and 30 cm weir height plots, respectively. Sediment losses of 347.8 kg/ha and 3.3 kg/ha have been recorded in runoff water coming out of 6 cm and 30 cm weir height plots, respectively in a cropping season. Similarly, total Kjeldahl nitrogen loss in runoff water from rice fields ranged from 4.23 kg/ha (6 cm weir height plots) to 0.17 kg/ha (26 cm weir height plots). The available K loss ranged from 2.20 kg/ha (6 cm weir height plots) to 0.04 kg/ha (30 cm weir height plots). Keeping in mind the aspects of conserving rainwater, sediment and nutrient and minimizing irrigation requirement, 22–26 cm of dike height is considered to be suitable for rice fields of the Bhubaneswar region during the Kharif (rainy) season. A lumped water balance model for diked rice field was developed and used for the present investigation. The computed values of runoff obtained from the simulation model are in close agreement with the observed values obtained in an experiment using higher weir heights (22 cm and above). The temporal distribution of runoff and irrigation requirement at fortnight intervals reveal that highest irrigation requirement is found during the first half of November followed by the second half of October and the first half of October. Rice fields up to a weir height of 18 cm produced about 20% of the total runoff in each of the first three fortnights. A gradual reduction in runoff was observed in the remaining fortnights. The least runoff was noticed in the month of November (during the first fortnight).  相似文献   

6.
Scarcity of water is a critical limitation to adoption of modern technology for increasing productivity of traditional rainfed rice growing areas of eastern Madhya Pradesh, India. The shortage of water results from uneven distribution of rains, significant gaps between rain events and field water losses rather than from low seasonal or annual rainfall totals. A feasible strategy to alleviate this limitation is to harvest excess rainwater in a farm pond during the wet season and use the conserved water for crop production in both wet (as insurance against drought) and dry seasons by adopting suitable crop and cropping systems. The results of water balance in a 1.05 ha field, on which a farm pond was built using 0.09 ha area, showed that 28–37% of seasonal rainfall was available as surface runoff from microcatchment (0.66 ha growing soybean, peanut and pigeonpea) for collection in the pond. This was sufficient for saving rice in a 0.30 ha area (in the lower side of the field) from drought stress, and for establishment of chickpea and mustard (in 0.90 ha) in the post-rainy season after harvest of rainy season crops. Soybean, peanut and pigeonpea, grown in the microcatchment during the rainy season, utilized respectively 371–726, 364–733 and 535–920 mm water in evapotranspiration (E,) and deep percolation (P). Rice grown below the pond required 28–317 mm water in different seasons to save the crop from in-season drought stress which commonly occurred during vegetative and reproductive stages. Water requirement (E, + P) of rice was 816–1342 mm in different seasons. Residual soil moisture after rainy season soybean, peanut and rice was sufficient (172–203 mm) to support post rainy season crops of chickpea and mustard. However, the losses of moisture from the soil surface layer after harvest of rainy season crops were rapid (7–23 mm), which necessitated a light irrigation (21–45 mm) for establishment of chickpea and mustard in the post-rainy season. The water balance results of soybean-mustard, peanut-mustard and peanut-chickpea were near identical to soybean-chickpea cropping. Similarly the water balance of rice-mustard was identical to Corresponding author. rice-chickpea in the vertisols. Soybean-mustard and rice-chickpea were the suitable and economical cropping systems for the microcatchment and service area of the farm pond.  相似文献   

7.
《Agricultural Systems》2007,92(1-3):91-114
Water-saving irrigation regimes are needed to deal with a reduced availability of water for rice production. Two important water-saving technologies at field scale are alternately submerged–nonsubmerged (SNS) and flush irrigated (FI) rice. SNS allows dry periods between submerged soil conditions, whereas FI resembles the irrigation regime of an upland crop. The effects of these regimes on the water balance and water savings were compared with continuously submerged (CS) and rainfed (RF) regimes.The crop growth model ORYZA2000 was used to calculate seasonal water balances of CS, SNS, FI, and RF regimes for two locations: Tuanlin in Hubei province in China from 1999 to 2002 during summer seasons and Los Baños in the Philippines in 2002–2003 during dry seasons. The model was first parameterized for site-specific soil conditions and cultivar traits and then evaluated using a combination of statistical and visual comparisons of observed and simulated variables. ORYZA2000 accurately simulated the crop variables leaf area index, biomass, and yield, and the soil water balance variables field water level and soil water tension in the root zone.Next, a scenario study was done to analyse the effect of water regime, soil permeability, and groundwater table depth on irrigation requirement and associated rice yield. For this study historical weather data for both sites were used.Within seasons, the amount of irrigation water application was higher for CS than for any of the water-saving regimes. It was found that groundwater table depth strongly affected the water-yield relationship for the water-saving regimes. Rainfed rice did not lead to significant yield reductions at Tuanlin as long as the groundwater table depth was less than 20 cm. Simulations at Los Baños with a more drought tolerant cultivar showed that FI resulted in higher yields than RF thereby requiring only 420 mm of irrigation.The soil type determined the irrigation water requirement in CS and SNS regimes. A more permeable soil requires around 2000 mm of irrigation water whereas less permeable, heavy soil types require less than half of this amount. We conclude that water savings can be considerable when water regimes are adapted to soil characteristics and rainfall dynamics. To further optimize water-saving regimes in lowland rice, groundwater table dynamics and soil permeability should be taken into account.  相似文献   

8.
Overland water and salt flows in a set of rice paddies   总被引:1,自引:0,他引:1  
Cultivation of paddy rice in semiarid areas of the world faces problems related to water scarcity. This paper aims at characterizing water use in a set of paddies located in the central Ebro basin of Spain using experimentation and computer simulation. A commercial field with six interconnected paddies, with a total area of 5.31 ha, was instrumented to measure discharge and water quality at the inflow and at the runoff outlet. The soil was classified as a Typic Calcixerept, and was characterized by a mild salinity (2.5 dS m−1) and an infiltration rate of 5.8 mm day−1. The evolution of flow depth at all paddies was recorded. Data from the 2002 rice-growing season was elaborated using a mass balance approach to estimate the infiltration rate and the evolution of discharge between paddies. Seasonal crop evapotranspiration, estimated with the surface renewal method, was 731 mm (5.1 mm day−1), very similar to that of other summer cereals grown in the area, like corn. The irrigation input was 1874 mm, deep percolation was 830 mm and surface runoff was 372 mm. Irrigation efficiency was estimated as 41%. The quality of surface runoff water was slightly degraded due to evapoconcentration and to the contact with the soil. During the period 2001–2003, the electrical conductivity of surface runoff water was 54% higher than that of irrigation water. However, the runoff water was suitable for irrigation. A mechanistic mass balance model of inter-paddy water flow permitted to conclude that improvements in irrigation efficiency cannot be easily obtained in the experimental conditions. Since deep percolation losses more than double surface runoff losses, a reduction in irrigation discharge would not have much room for efficiency improvement. Simulations also showed that rice irrigation performance was not negatively affected by the fluctuating inflow hydrograph. These hydrographs are typical of turnouts located at the tail end of tertiary irrigation ditches. In fact, these are the sites where rice has been historically cultivated in the study area, since local soils are often saline-sodic and can only grow paddy rice taking advantage of the low salinity of the irrigation water. The low infiltration rate characteristic of these saline-sodic soils (an experimental value of 3.2 mm day−1 was obtained) combined with a reduced irrigation discharge resulted in a simulated irrigation efficiency of 60%. Paddy rice irrigation efficiency can attain reasonable values in the local saline-sodic soils, where the infiltration rate is clearly smaller than the average daily rice evapotranspiration.  相似文献   

9.
Field experiments were conducted in a deep Vertisol at the Indian Institute of Soil Science, Bhopal during the years 2001–2005 to assess the effect of five different irrigation strategies through combinations of sprinkler and flood irrigation and two N application methods on yield and water use efficiency of wheat (cv WH 147). The amount of irrigation applied each year differed according to the availability of water in the water harvesting pond to simulate the actual water crisis faced by the farmers in this region during these years due to monsoon failure. Results indicated that when wheat was grown only with 8-cm irrigation at sowing or 14 cm up to the crown root initiation stage, dry sowing of wheat immediately followed by sprinkler and subsequent irrigation through flooding produced the highest yield and water and nitrogen use efficiencies. However, when 20-cm irrigation was supplied up to the flowering stage or 14-cm irrigation was supplied up to tillering stage through sprinkler in 4 and 3 splits, respectively, at critical growth stages, maximized the grain yield and water and nitrogen use efficiencies. Across the years, the crop yield and water and nitrogen use efficiencies increased with increase in water supply.  相似文献   

10.
Alternate wetting and drying (AWD) irrigation in lowland rice has been successfully implemented in farmers’ fields to reduce water input, and thereby increasing water productivity. Reported effects on grain yield were, however, contradictory: yield was reduced, maintained, or even increased when compared with continuously flooded (CF) conditions. This study was conducted in heavy clay soil to investigate yield variation among a range of genotypes grown under AWD and to determine some aboveground traits related to crop adaptation. The effect of AWD on grain yield, with a critical threshold of soil water potential for irrigation fixed at −30 kPa, varied among the 10 genotypes evaluated. Two adapted genotypes were identified with similar grain yield under CF and AWD in both experimental seasons. The grain yield of the aerobic-adapted cultivar included in the study was also maintained under AWD, however, its yield was comparatively low. The reduction in grain yield of the non-adapted genotypes ranged from 9 to 13% in the 2006 dry season and from 6 to 17% in the 2008 dry season. None of the yield components could explain by itself the variability in genotype response: in adapted genotypes, grain yield was maintained because of compensation from or maintenance of yield components, whereas, in non-adapted genotypes, grain yield reduction was not due to the decrease of one component only. Modified biomass partitioning appeared as a main driver for adaptation to AWD: adapted genotypes were characterized by larger sink size at flowering, and weaker stems and less unfilled grain number at maturity, suggesting an increase in the sink strength of the filling spikelets. The aboveground traits identified here will be of great help to further increase water productivity under the AWD strategies set up previously by IRRI water scientists.  相似文献   

11.
Summary Development of a ploughpan has been reported in Bangladesh for almost all ploughed soils which are puddled for transplanted rice cultivation. Field information on the water requirement of dryland crops such as wheat and the effects of loosening the dense layer on crop yield and water use efficiency are very limited. Field experiments were, therefore, conducted in the grey floodplain soil of Sonatala series (Aeric Haplaquept) to study the irrigation and tillage effects on the yield and water relations of wheat (Triticum aestivum L. cv. Sonalika). The split plot design experiment comprised four irrigation treatments in the mainplots viz. W0 = no irrigation, W1 = irrigation of 5 cm at 4 weeks after planting, W2-W1 + irrigation(s) of 5 cm each at irrigation water to cummulative pan evaporation (IW/CPE) ratio of 0.75 and W3- W1 + irrigation(s) of 5 cm eacht at IW/CPE ratio of 0.50. The sub-plot tillage depth treatments were: A-7.5 cm (traditional), B-15 cm, C-22.5 cm, D-22.5 cm practised in alternate wheat seasons. Measurements were made of grain and straw yield, soil water depletion and water expense efficiency.Irrigation had no effect on grain or straw yield. Tillage to 15 cm increased wheat yield by about 15% over traditional depth to ploughing. In general, deep tillage coupled with one irrigation at four weeks after planting produced the largest wheat yield.Soil water depletion (SWD) in the 0–90 cm profile was greatest in the treatment receiving two irrigations, one at 4 weeks and again at IW/CPE ratio of 0.50. The average SWD in this treatment was 113 in 1982–83 and 82 mm in 1983–84. Plots receiving traditional tillage (7.5 cm) had the greatest SWD. Total water expense were the greatest in treatments receiving three irrigations. The maximum water expense efficiency (WEE) of wheat was observed in the non-irrigated plots in 1982–83 and 1983–84, respectively. Deep tillage treatments, in general, had significantly greater WEE than those under traditional ploughing. Intensive irrigation and efficient soil and water management are important factors in enhancing crop productivity. The former not only permits judicious water use but also better utilization of other production factors thereby leading to increased crop yield which, in turn, helps stabilize the farming economy. The best way to meet increasing demand for water is to adopt efficient water management practices to increase water use efficiency.Irrigation should aim at restoring the soil water in the root zone to a level at which the crop can fully meet its evapo-transpiration (ET) requirement. The amount of water to be applied at each irrigation and how often a soil should be irrigated depend, however, on several factors such as the degree of soil water deficit before irrigation, soil types, crops, and climatic conditions (Chaudhury and Gupta 1980).Knowledge of movement of water through the soil is imperative to efficient water management and utilization. The presence of a dense pan impedes water movement into the sub-soil. As a result, the top soil becomes saturated by irrigation and sensitive dryland crops can fail as this plough layer impedes the penetration of roots into deeper soil layers and decreases water extraction. Crops growing in these soils often undergo severe water stress within 5–8 days after rainfall or irrigation (Lowry et al. 1970). Due to decrease rates of water flow, the lower soil layer may remain unsaturated and as a result, the recharge and soil water storage in the profile are considerably decreased (Sur et al. 1981).In Bangladesh, ploughpans develop to varying degree in almost all ploughed soils (Brammer 1980). They are particularly marked in soils which are puddled for transplanted rice cultivation where the pan is usually only 8–10 cm below the soil surface and 3–5 cm thick. Its presence is generally regarded as advantageous for cultivation of transplanted rice in that it prevents excessive deep percolation losses of water. But in the same soil this cultivation for a subsequent dryland crop would adversely affect yield. A slight modification of the plough layer could enable good yields of both rice and a dryland crop to be obtained in the same soil in different seasons (Brammer 1980). The sub soils have a good bearing capacity, both when wet and dry and the pan can easily be reformed, if desired, for cultivating transplanted rice after a dryland crop like wheat.Professor of Soil Science, Dhaka University, Dhaka, Bangladesh  相似文献   

12.
About half of the total fresh water used for irrigation in Asia is used for rice production. Decreasing water resources and increasing water costs necessitates increasing water use efficiency for rice. The most common method of irrigation in northwestern India is through alternate wetting and drying with a fixed irrigation interval, irrespective of soil type and climatic demand resulting in over-irrigation or under-irrigation under different soil and weather situations. Soil matric potential may be an ideal criterion for irrigation, since variable atmospheric evaporativity, soil texture, cultural practices and water management affect rice irrigation water requirements. A 4-year field study was conducted to assess the feasibility of rice irrigation scheduling on the basis of soil matric potential and to determine the optimum matric potential so as to optimize irrigation water without any adverse effect on the yield. The treatments included scheduling irrigation to rice with tensiometers installed at 15–20 cm soil depth at five levels of soil matric suction viz. 80, 120, 160, 200 and 240±20 cm, in addition to the recommended practice of alternate wetting and drying with an interval of 2 days after complete infiltration of ponded water. The grain yield of rice remained unaffected up to soil moisture suction of 160±20 cm each year. Increasing soil matric suction to 200 and 240±20 cm decreased rice grain yield non-significantly by 0–7% and 2–15%, respectively, over different years compared to the recommended practice of the 2-day interval for scheduling irrigation. Irrigation at 160±20 cm soil matric suction helped save 30–35% irrigation water compared to that used with the 2-day interval irrigation. With a soil matric potential irrigation criterion the total amount of irrigation water used was a function of the number of rainy days and evaporation during the rice season.  相似文献   

13.
【目的】探讨江汉平原地区适雨灌溉条件下不同施肥模式对机插稻稻田水环境及水稻生长的影响,为当地机插稻水肥管理措施的改善提供理论和数据支撑。【方法】采用田间小区试验,研究了适雨灌溉条件下,农民习惯施肥(FFP)、70%控释掺混肥+30%尿素(70%CRF+30%N)和有机无机复混肥(OIF)对稻田降雨利用率、田面水氮磷质量浓度的动态变化与径流流失量、干物质积累及水稻产量的影响。【结果】适雨灌溉下,返青期、分蘖期、拔节孕穗期和灌浆成熟期的降雨利用率分别为17.5%、100%、100%和84.2%;基肥和分蘖肥施用过后,FFP、70%CRF+30%N和OIF处理田面水TN、NH4+-N和TP质量浓度迅速提高,在第1天达到峰值,水稻移栽后30 d内70%CRF+30%N处理田面水TN、NH4+-N和TP的平均质量浓度较FFP处理分别降低40.4%、47.4%和0.5%;稻田氮磷径流流失量的90%左右在返青期,10%左右在灌浆成熟期,70%CRF+30%N处理TN、NH4+-N和TP径流损失量较FFP处理分别降低31.4%、30.9%、1.9%;70%CRF+30%N处理在返青期干物质积累量显著低于FFP和OIF处理,移栽-返青期阶段干物质积累量占总积累量比例表现为FFP处理>OIF处理>70%CRF+30%N处理,成熟期OIF处理干物质积累量显著高于70%CRF+30%N和FFP处理,实际产量表现为OIF处理>70%CRF+30%N处理>FFP处理。【结论】适雨灌溉条件下,70%CRF+30%N处理有助于减少稻田氮素流失,OIF处理有助于机插稻干物质积累与产量的增加。  相似文献   

14.
Extensive subsurface drainage system was installed in districtMardan in the North West Frontier Provinceof Pakistan in 1987 to control increasingwater logging and salinity problems due tocanal irrigation. Several recentlycompleted fields studies have indicatedthat subsurface drainage system hasenormously lowered watertable in certainareas due to extensive drainage network. Therefore, a study of controlled subsurfacedrainage technique was initiated in MardanScarp area to observe the temporal andspatial variations in water table depths ofthis specific case under various modes ofcanal irrigation and monsoon rains. Twoartificially drained areas, consisting of40 ha and 160 ha respectively, werecontrolled and selected for extensivemonitoring. A total of 98 observationswells (7.6 cm dia. and 4.1 m depth) wereinstalled in between lateral drains toobserve water table fluctuation. Theresults of this study are very interesting.Each of the two areas monitored in thestudy behaved differently. It was observedthat in one of the areas design water tabledepth at 1.1 m was maintained with properfunctioning of the controlled techniqueapplied to the subsurface drainage system. The results from this area showed that 25to 55% of the time throughout the yearachieved this objective whereas in thesecond area desired water table could notbe maintained and water table depth in thisarea remained between 2.0 to 2.7 m causingunnecessary water stress to plants. Alsoit was observed that watertable in theformer area is mostly controlled by thefunctional behavior of the irrigationcanal. In addition, the proper functioningof controlled techniques in subsurfacedrainage system supplemented veryefficiently to retain the groundwater levelto the optimal limits in dry season and tothe design ones in the others for timelyneeds of the crops. Also rainfalls havesignificant impact on the spatial andtemporal behaviors of water table depths inboth the areas during the monsoon season.  相似文献   

15.
加气灌溉对麦秸秆还田后土壤还原性与水稻生长的影响   总被引:1,自引:0,他引:1  
为揭示添加微纳米气泡的加气灌溉对秸秆还田条件下稻麦轮作区水稻生长的影响,并提出合理进气量的加气灌溉方式,设置6个处理(无秸秆还田不加气灌溉(CK)、小麦秸秆还田不加气灌溉(ST)、小麦秸秆还田+进气量0.3L/min加气灌溉(SO1)、小麦秸秆还田+进气量0.5L/min加气灌溉(SO2)、小麦秸秆还田+进气量0.7L/min加气灌溉(SO3)和小麦秸秆还田+进气量0.9L/min加气灌溉(SO4))开展水稻盆栽试验,观测不同处理下的土壤还原性状况以及水稻生长规律。结果表明:秸秆还田会显著增强土壤的还原性状况,微纳米加气灌溉可以改善土壤还原性,且随着进气量的增加改善效果逐渐增强,当进气量为0.9L/min时,土壤活性还原性物质含量、Fe2+含量、Mn2+含量最高可降低48.66%、56.11%和42.76%;进气量在0.5~0.7L/min时的加气灌溉能够促进水稻的生长发育,缓解秸秆还田带来的水稻生长前期生长受到抑制的问题,促进水稻根系良好生长,利于水稻光合作用的有效性,促进干物质积累,从而提高水稻产量,微纳米加气灌溉处理较无秸秆还田以及秸秆还田不加气灌溉处理最高可增产19.7%。综合考虑添加微纳米气泡的加气灌溉对于改善秸秆还田后土壤的还原性以及对水稻生长发育的影响,推荐使用溶解氧质量浓度为8.06mg/L的微纳米气泡水(SO3处理)对稻麦轮作区秸秆还田后的水稻进行灌溉。  相似文献   

16.
Two experiments, one in each of the 1991 and 1992 rice growing seasons, were conducted at the Sakha Agricultural Research Station in the Nile Delta to determine the effect of irrigation scheduling on grain and straw yield of transplanted rice. The drought tolerant variety ITT, showed no significant difference in yield due to irrigation interval ranging from 6 to 10 days. For the lowland variety Giza 172, one of the common varieties in Egypt, irrigation intervals should be every 6 days for approximately one month after transplanting. Irrigation intervals can then be extended to 10 days until the end of the growing season without decreasing yield.  相似文献   

17.
The actual water management practices, in terms of the volumes and intervals of delivery, are examined in a rice-based irrigation subsystem where crop diversification is practised. A simulation model (WACCROD) is used to generate the hypothetical water requirements of the changing crop mixture at quartenary and tertiary levels.Crops other than rice were planted in the dry season to reduce the need for water. Then, as the available water supplies diminished, the volume and timing of water deliveries changed based on the time, hydraulic location and relative importance of the crop.  相似文献   

18.
赣抚平原灌区双季稻优化灌溉方式研究   总被引:2,自引:0,他引:2  
采用田间对比试验的方法,测定双季早、晚稻的耗水量,研究2012年赣抚平原灌区不同灌溉方式下双季早、晚稻的水量与产量之间的相互关系。结果表明,间歇灌溉方式下早、晚稻本田期的腾发量、地下渗漏量、作物系数均低于淹水灌溉;与淹水灌溉方式相比,早、晚稻间歇灌溉处理本田期的耗水量分别减少4.35%和4.61%,作物系数(Kc)分别减少4.00%和3.45%,水分利用效率分别提高1.37%和2.96%,产量分别增加3.30%和1.40%。  相似文献   

19.
《Agricultural Systems》2001,69(3):165-182
Using daily water balance simulation in rainfed ricelands, the study estimates the probable supplemental irrigation (SI) requirement to meet the water deficits during the reproductive stage of rice and surface runoff (SR) generated that can be harvested in OFR for meeting the aforesaid SI. Value of SI of rice during reproductive stage at 25% probability of exceedence (PE) was found to be 144 mm, neglecting distribution and application losses. Water harvesting potential of the study area indicates that at 50% PE, 85% of SI of rice can be met from the SR generated from the ricelands and stored in OFR. Rest amount of SI can be met from the direct conservation of rainfall in a lined OFR of 2 m depth with 1:1 side slope occupying 9% ricelands. Economic analysis of OFR irrigation system reveals that OFR of 9% ricelands gives net profit (NP) of Indian Rupees (Rs.) 13445 (US $295.49) for 1 ha sown with dry seeded rainfed upland rice with benefit–cost ratio (BCR) of 1.25. Values of NP and BCR indicate that investment in OFR irrigation system is profitable in the study region.  相似文献   

20.
Summary The effect of the soil water potential on pod yield of snap beans grown with a series of irrigation frequencies was studied over two seasons. The treatments were to furrow-irrigate either weekly or fortnightly during the preflowering period, and each treatment then received weekly or fortnightly irrigations to harvest. These treatments were compared with trickle irrigation applied daily in the first season and every second day in the second season. The irrigation frequencies during the pre-flowering period did not influence the pod yield. However, in the second season plants given the trickle irrigation treatment produced more early flowers and set pods earlier than those in the other treatments. Consequently the pods were harvested three days earlier from plants on this treatment.Pod yield was determined by the irrigation treatments applied after flowering. The highest yield was similar in each season (16.7 t ha–1) and was produced under trickle irrigation. Fortnightly irrigations during the pod-fill phase reduced yield by 56% in the first season and 41% in the second season when compared with trickle irrigation. The pod yield was reduced by 0.5 t ha–1 each day the soil water potential at 30 cm depth was less than –50 kPa. This relationship accounted for about 77% of the variation in pod yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号