首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The different gluten subunits, gliadins, LMW glutenins, and HMW glutenins have been reported to play different key roles in different type of wheat products. This paper studied the interaction between gliadin, LMW and HMW glutenins in soft, hard and durum semolina flour doughs during different stages of mixing. In order to see how do the gluten subunits (gliadin, LMW glutenin and HMW glutenin) redistribute during mixing, dough samples were taken at maximum strength and 10 min after maximum strength. The doughs have been mixed with the same level of added water (55%), therefore they all have different strengths values due to their changes in proteins content. Oscillatory rheological measurements were performed on the doughs. It has been found that HMW glutenins are relatively immobile because of their less molecular mobility and do no redistribute themselves especially at high strength for doughs such as hard wheat flour. LMW glutenins and gliadins on the other hand redistribute themselves at even at high dough strengths forming a more stable network. In weaker doughs such as soft wheat, the breakdown of the three proteins subunits is responsible for the decay in dough strength. We have also visualized how the greater amount of LMW glutenins in semolina is in constant interaction with HMW glutenins and gliadins allowing the dough to maintain a stable strength for an extended mixing time. Finally, we have found the ‘in situ’ detection and quantitative analysis techniques to be more sensitive to the changes occurring in the gluten network of the dough than the oscillatory rheological analysis.  相似文献   

2.
Gliadin prepared from gluten of the cultivar Rektor by extraction with 70% (v/v) aqueous ethanol adjusted to pH 5.5 was separated by RP-HPLC. Amongst 23 components obtained, two α-type gliadins (α3- and α8-gliadin) were selected for the determination of disulphide bonds. After both proteins were digested with thermolysin, differential RP-HPLC (chromatography prior to and after reduction of disulphide bonds) was used for the detection of cystine peptides. Two cystine peptides from α3-gliadin and three cystine peptides from α8-gliadin were isolated by RP-HPLC. The resulting peptides were reduced and alkylated with 4-vinylpyridine, separated by RP-HPLC and their amino acid sequences determined. The cystine peptides from both α-type gliadins had similar structures, and the corresponding fragments had homologous sequences. One cystine peptide of each gliadin was composed of three fragments linked by two disulphide bonds. The second cystine peptide consisted of two fragments linked by one disulphide bond. The third cystine peptide derived from α8-gliadin was different from the second peptide in one position of the sequences (glutamic acid instead of glutamine). Comparing complete sequences of α-type gliadins described in the literature, the cystine peptides from α3- and α8-gliadins were identical with corresponding sequences of clones A1235 and A212, respectively11. The structures of the cystine peptides analysed indicate one intramolecular disulphide bond within domain III of α-type gliadins and two disulphide bonds between domains III and V. The linkages found correspond to homologous linkages determined for low Mr subunits of glutenin and glutenin-bound γ-type gliadins6. Obviously, these intramolecular disulphide bonds are not linked randomly, but are strongly directed.  相似文献   

3.
Flour samples of 14 wheat cultivars previously characterised by rheological measurements and by baking tests on a micro-scale (Kieffer et al.: Journal of Cereal Science27 (1998) 53–60) were analysed for the relative amounts of gluten protein types using a combined extraction/HPLC procedure. Regression analysis was used to find relations between wheat properties and protein quantities. The results indicated that the maximum resistance of dough and gluten and the gluten index were strongly dependent on the quantity of glutenin subunits (GS) in flour; additionally they were influenced by the ratio of gliadin to glutenin subunits. Within the family of glutenin proteins, the correlation coefficients for high-molecular-weight (HMW) and low-molecular-weight (LMW) GS were in a similar range, but twice the amount of LMW GS was necessary to get the same resistance as with HMW GS. Among HMW GS, the contribution of x-type GS was more important than those of y-type GS. The extensibility of dough and gluten was mainly dependent on the ratio of gliadin to total glutenin subunits, to HMW GS and LMW GS. Dough development time showed the highest correlation with total HMW GS and x-type HMW GS. Bread volume was influenced by the total amount of gluten protein more than by the amount of protein in different groups or of different types, probably because of the rather low range of flour protein content (8·7–12·0 %) within the set studied. Significant differences between gliadins and glutenins with respect to their effects on bread volume could not be detected. The correlation between bread volumes and the quantity of gluten proteins was higher, when dough was mixed to optimum.  相似文献   

4.
Ascorbic acid (AA) is used as bread improver, as its addition to dough causes an increase in loaf volume and an improvement in crumb structure. To explain these effects we review the stereospecificity of the improver action and the properties of ascorbate oxidase and glutathione dehydrogenase and the occurrence of low molecular thiols in flour and their concentration changes during dough mixing in the presence and absence of AA. On the basis of the results the improver action of AA is explained by a reaction sequence leading to a rapid removal of endogenous GSH, which otherwise would cause dough weakening by sulphhydryl/disulphide interchange reactions with gluten proteins. To test this hypothesis the binding sites of endogenous GSH in gluten proteins have been determined by the addition of35S-labelled GSH as a tracer to flour before dough mixing. The distribution of radioactivity in the gliadin and glutenin fractions of gluten obtained from dough indicates that the major portion of GSH is bound to glutenins. The isolation and sequence analysis of radioactive cystine peptides from an enzymatic digest of glutenins demonstrates that GSH is almost exclusively linked to those cysteine residues of LMW subunits that have been proposed to form intermolecular disulphide bonds.  相似文献   

5.
Protein-bound glutathione (PSSG) and protein-bound related thiol compounds, i.e. cysteine (PSSCys), glutamyl-cysteine (PSSGlu-Cys) and cysteinyl-glycine (PSSCys-Gly), were analysed in proteins of Osborne fractions, i.e. gliadin, glutenin and gliadin-, glutenin-subfractions separated by gel filtration chromatography, gel protein and the total gluten proteins separated from wheat varieties with varying breadmaking performances. The results showed that PSSG and some protein-bound related thiol compounds were found in monomeric gliadins, indicating that glutathione and some related thiol compounds are able to form disulphide bonds (SS) with sulphydryl group (SH) of those proteins and the formation of those disulphide bonds may prevent those monomeric proteins from binding to other proteins. It was also observed that a larger amount of PSSG in glutenin proteins was negatively correlated with the molecular weight (Mw) distribution of glutenin polymers, suggesting that PSSG and protein-bound related thiol compounds may play an important role in controlling polymerisation of glutenin. Furthermore, it was found that the level of PSSG in gel protein from flours with poor breadmaking performances was constantly higher and significantly different (p<0.05) from that of flours with good breadmaking performance. The same trend was observed with gluten samples from breadmaking and biscuitmaking flours.  相似文献   

6.
In this study, the possible roles of three well-characterised model prolamins in the structure of the glutenin macropolymer were examined. Model prolamins were labelled with fluorescein isothiocyanate (FITC), and incorporated into the glutenin macropolymer of a base flour using a partial reduction-oxidation scheme. The effect of incorporation of the model prolamins on dough behaviour was determined by assessing differences in polymer size distribution, mixing properties, and distribution of the model prolamins in a dough after incorporation. Using this approach, the prolamins capable of forming inter-chain disulphide bonds were shown to be incorporated into the glutenin macroÍpolymer, while prolamins that were not capable of forming inter-chain disulphide bonds were retained as monomers. The distribution of fluorescently-labelled prolamins after their incorporation into the glutenin macropolymer of the dough was examined by confocal light scanning microscopy, in order to determine the possible roles of ω-gliadins and glutenin-like subunits with varied cysteine residue compositions in the structural organisation. The role of the model prolamins was a function of the disulphide-bonding capabilities of the polypeptides. Model ω-gliadins were retained as monomers and functioned as space fillers; model glutenin-like subunits containing a single cysteine residue incorporated into the glutenin macropolymer but functioned as chain terminators; and model glutenin-like subunits containing two cysteine residues incorporated into the glutenin macropolymer and acted as chain extenders.  相似文献   

7.
The effects of thermostable ice structuring proteins (TSISPs) extracted from Chinese privet (Ligustrum vulgare) leaves on water molecular state, dehydration of gluten proteins, secondary structure of proteins, glutenin subunit of glutenin macropolymer (GMP) and rheological properties of gluten doughs during frozen storage were investigated by nuclear magnetic resonance (NMR), attenuated total reflectance-Fourier transform infrared reflectance (ATR-FTIR), reversed phase-high performance liquid chromatography (RP-HPLC) and dynamic rheometry. After frozen storage for 5 weeks, the control sample showed dehydration of gluten proteins and mobility of water molecules in gluten dough increased, significantly indicating ice formation and water redistribution. Secondary structure of gluten proteins changed significantly, α-helix decreased and β-sheet increased. Glutenin subunits depolymerized, indicated by the decrease in high molecular weight glutenins/low molecular weight-glutenins (HMW/LMW) ratio. The decrease in elastic moduli (G′) and viscous moduli (G′') showed the deterioration of rheological properties of gluten dough. The addition of TSISPs inhibited the dehydration of gluten proteins, decrease in α-helix, increase in β-sheet and HMW/LMW ratio, resulting in improved rheological properties of gluten dough.  相似文献   

8.
This study aimed at elucidating SS-bonds of HMW-gliadins (HGL) from wheat with the focus on terminators of glutenin polymerisation. HGL from wheat flour extracts non-treated or treated with the S-alkylation reagent N-ethylmaleinimide (NEMI) were compared. HGL from wheat flour Akteur were isolated, hydrolysed with thermolysin and the resulting peptides pre-separated by gel permeation chromatography and analysed by liquid chromatography/mass-spectrometry using alternating electron transfer dissociation/collision-induced dissociation. Altogether, 22 and 28 SS-peptides from samples without and with NEMI treatment, respectively, were identified. Twenty-six peptides included standard SS-bonds of α- and γ-gliadins, high-molecular-weight and low-molecular-weight glutenin subunits. Eleven SS-bonds were identified for the first time. Fifteen peptides unique to HGL contained cysteine residues from gliadins with an odd number of cysteines (ω5-, α- and γ-gliadins). Thus, gliadins with an odd number of cysteines, glutathione and cysteine had acted as terminators of glutenin polymerisation. Decisive differences between samples without and with NEMI treatment were not obvious showing that the termination of polymerisation was already completed in the flour. The two HGL samples, however, were different in the majority of ten peptides that included disulphide-linked low-molecular-weight (LMW) thiols such as glutathione and cysteine with the former being enriched in the non-treated HGL-sample.  相似文献   

9.
During the determination of the HMW glutenin subunit composition of Finnish varieties, the variety Ulla was observed to contain two biotypes which differed from each other at two loci:Glu-A1andGlu-A3/Gli-A1. One of them, called Ulla 1, contained subunit 2* (Glu-A1b) andGlu-A3o/Gli-A1o, and Ulla 2 contained the null allele (Glu-A1c) andGlu-A3a/Gli-A1c. In order to determine the effect of this allelic variation on quality, the two biotypes were crossed and random lines were produced from the progeny by single seed descent. In total, 95 F6 lines were analysed from four bulked Ulla progeny lines. Significant interaction between the allelic variants of HMW glutenins and LMW gluten proteins affected the SDS-sedimentation volume at the mean flour protein level of 13·1% (dmb); the effect of LMW gluten variants was larger in the lines deficient of a HMW glutenin subunit than in lines having a HMW glutenin subunit (2*). At the higher flour protein levels (mean=15·1%, dmb) the effect on SDS-sedimentation volume was additive; progeny carrying alleles b (subunit 2*) and o/o atGlu-A1andGlu-A3/Gli-A1had significantly greater sedimentation volumes than the progeny carrying alleles c (no subunit) and a/c, respectively. The SDS-sedimentation volumes indicated differences in the quantities of the polymeric glutenins, gel proteins which have been shown to reflect dough strength. In the four bulked Ulla progeny lines, the variation in HMW glutenin subunits affected the dough strength values of the Extensigraph. However, the variation in LMW glutenin subunits did not affect Extensigraph dough strength values, as was predicted by SDS-sedimentation volumes. In the Ulla progeny, adding a HMW glutenin subunit affected Extensigraph dough strength more than adding a LMW glutenin subunit, although both increased the SDS-sedimentation volumes. Moreover, the variation in LMW gluten proteins affected the dough mixing stability in the Farinograph and test baking results of the Ulla progeny.  相似文献   

10.
A highly repetitiveMr58 000 peptide based on residues 102 to 643 of subunit 1Dx5 and forms containing one to four cysteine residues were expressed inE. coliand purified to homogeneity. Incorporation into dough using a 2 g Mixograph showed that most peptides resulted in reduced strength, which was possibly due to dilution or chain termination of glutenin polymers. However, a form containing four cysteines (two each close to the N-terminus and C-terminus) resulted in increased strength, indicating that the repetitive domains of the HMW subunits are sufficient to contribute to dough strength when incorporated into glutenin polymers.  相似文献   

11.
小麦贮藏蛋白特性及其遗传转化   总被引:13,自引:7,他引:13  
小麦籽粒贮藏蛋白由醇溶蛋白和谷蛋白组成。醇溶蛋白在组成上以单体形式存在 ,具有高度的异质性和复杂性。它决定小麦面筋的粘性。谷蛋白是由多个亚基组成的高分子聚合体 ,决定面筋的弹性。它可分为低分子量谷蛋白亚基和高分子量谷蛋白亚基 (HMW- GS)。HMW- GS具有相似的分子结构 ,即由中央重复序列、无重复的 N端和 C端组成。HMW- GS对小麦烘烤品质起着决定性作用 ,但因 HMW- GS类型不同而对加工品质的贡献大小各异。许多 HMW- GS基因已被揭示。实践证明 ,利用基因枪法 ,将 HMW- GS基因导入普通小麦的细胞核内 ,能够达到改良小麦烘焙品质的目的。随着分子生物学技术的不断发展 ,可望从营养和加工角度来改良小麦品质的特性  相似文献   

12.
Although different supplies of sulphur (S) during wheat growth are known to influence the quantitative composition of gluten proteins in flour, an effect on the amount and on the proportions of single protein types has yet not been determined. Therefore, wholemeal flours of the spring wheat ‘Star’ grown on two different soils and at four different levels of S fertilisation (0, 40, 80, 160 mg S per container) were analysed in detail using an extraction/HPLC procedure. The results demonstrated that the amount of total gluten proteins as well as of the crude protein content of flour was little influenced, whereas amounts and proportions of single protein types were strongly affected by the different S fertilisation. The changes were clearly dependent on the Cys and Met content of each protein type. The amount of S-free ω-gliadins increased drastically, and that of S-poor high-molecular-weight (HMW) glutenin subunits increased moderately in the case of S deficiency. In contrast, the amounts of S-rich γ-gliadins and low-molecular-weight (LMW) glutenin subunits decreased significantly, whereas the amount of α-gliadins was reduced only slightly. S deficiency resulted in a remarkable shift of protein proportions. The gliadin/glutenin ratio increased distinctly; ω-gliadins became major components, and γ-gliadins minor components, whereas the ratio of HMW to LMW glutenin subunits was well-balanced.  相似文献   

13.
小麦高、低分子量麦谷蛋白亚基对品质性状的影响   总被引:2,自引:0,他引:2  
为给小麦品质改良提供理论依据,以6个国家的532个品种(系)为材料,分析了小麦高、低分子量麦谷蛋白亚基与品质性状的关系。结果表明,各位点上不同的等位变异对品质性状的效应存在显著差异,亚基1、2*、17+18、5+10、GluA3f、GluB3b和GluB3g对面团形成时间和稳定时间具有显著的正向效应;亚基N、1、14+15、17+18、7+8、2+12、3+12、4+12、GluB3d、GluB3f、GluB3h和GluB3g对蛋白质和湿面筋含量具有显著正向效应;从亚基对品质性状的综合影响来看,1、17+18、GluA3f、GluB3g和GluB3f可作为优势亚基。具有1、17+18、2+12和1、17+18、5+10高分子量麦谷蛋白亚基组合的品种(系)综合品质性状显著优于含有N、14+15、2+12亚基组合的品种(系);具有低分子量麦谷蛋白亚基组合GluA3c、GluB3g,GluA3d、GluB3g和GluA3f、GluB3b品种(系)的综合品质性状显著优于含有GluA3b、GluB3j亚基组合的品种(系)。  相似文献   

14.
Putative continuous epitopes, recognised by five panels of monoclonal antibodies (MAb) with differing specificities for gliadins and glutenin subunits, were identified using overlapping nonapeptides. These peptides corresponded to the entire sequence of an α/β-gliadin, a γ-gliadin, an ω-prolamin (homologous to ω-gliadin), a low molecular weight glutenin subunit (L MrGS) and several high molecular weight glutenin subunits (HMr GS). Antibodies that bound to γ- or ω-gliadins, L MrGS or HMr GS bound to the peptides at similar concentrations used normally in direct ELISA, but little binding to the peptides was seen for several antibodies that bound specifically to small groups of α/β-gliadins. Epitopes for these antibodies in α/β-gliadin may be discontinuous (i.e. derived from amino acid residues that are brought together by folding of the polypeptide chain or by juxtaposition of two polypeptide chains), since binding of these antibodies to gliadins was greatly decreased following the reduction of intra-molecular disulphide bonds. While some regions in particular subunits were immunodominant, such as the cysteine–cysteine containing peptide found in the central domain of many prolamins, a diversity of reaction patterns was found. Cross-reaction of antibody with peptides from other prolamin families was often due to binding to a peptide having significant sequence homology, but in some cases no homology was obvious. Some major trends were as follows. Antibodies which bound to most or all H MrGS recognised the central repeat region, while those that were selective for one or two subunits bound to epitopes in the unique N- and/or C-terminal domains. A high proportion of the epitopes recognised by MAb to α-, β-, ω-gliadins and L MrGS contained cysteine; these MAb may be useful in detecting covalent binding sites within or between subunits. Although a number of MAb bound a wide range of gliadins and GS, several of these recognised single (and differing) epitopes in the target proteins. However, comparatively few MAb recognised epitopes from either the N- or C-terminal regions of the target proteins. Several explanations are possible; either these regions are buried in the immunogen and not accessible for antibody production or alternatively the repeat sequences are immunodominant.  相似文献   

15.
Flours from wheat varieties of differing bread-making quality were fractionated using a sequential salt precipitation technique. The gluten fractions in the different varieties varied in the proportion of HMW, LMW glutenins and gliadins. Their rheological behaviour was examined using constant strain (2%) small deformation oscillation tests over frequencies ranging from 0.005 to 10 Hz, before and after heating at 90 °C. The fractions containing a higher proportion of HMW glutenins were associated with a predominantly elastic character, whereas fractions containing mostly gliadins exhibited a viscous-like behaviour. The frequency dependent rheological behaviour of fractions containing HMW proteins was less susceptible to heat, and their elastic character was maintained after heating, whereas the rheology of intermediate fractions and fractions containing mostly gliadins was more susceptible to heating, indicating a rapid change from viscous to elastic behaviour after heating.  相似文献   

16.
A new wheat endosperm protein subunit that was found in accessions belonging to different collections was identified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Insoluble in 0·5 M NaCl, 70% ethanol, dimethyl sulphoxide (DMSO) and 50% propan-1-ol, it appeared in the pellet corresponding to the polymeric proteins along with high (HMW) and low molecular weight (LMW) glutenin subunits (GS). In the reduced form, it had an electrophoretic mobility between those two types of glutenin subunits. The apparent Mr of this novel protein was estimated by SDS-PAGE to be 71 000. N-terminal sequence and amino acid analyses indicated a composition similar to the ω-gliadins encoded by genes located on chromosome 1B. This protein can be ascribed to the D-subunits of LMW-GS with at least one cysteine residue that allows it to form part of the polymeric structure of glutenin, as shown by reaction with a fluorogenic reagent specific for sulphydryl groups. Fractions collected after size exclusion high-performance liquid chromatography (SE-HPLC) fractionation and further characterised by SDS-PAGE, confirm that the protein participates in the glutenin polymeric structure. An increase in its concentration was observed in fractions collected within the polymeric peak as elution time increased, implying that a larger amount of this protein is present in small size polymers. The role of this protein in the complex relationship between endosperm proteins and quality parameters is discussed in relation to its likely role as a chain terminator.  相似文献   

17.
Proteomic techniques were applied for the investigation of “avenin-like protein type-B” in tetraploid wheat. Protein was extracted from endosperm, according to a classical chromatographic procedure and its identity confirmed by liquid chromatography-tandem mass spectrometry analysis. The characterization of avenin-like protein type-B was in good agreement with the gene-derived sequence, with the exception of glutamine as N-terminus. The presence in the glutenin extract and the high number of cysteine residues suggested that avenin-like protein type-B is integrated into gluten polymers via inter-chain disulphide bonds. This raises the question of whether the protein could play a role in determining the functional properties of gluten.  相似文献   

18.
The effects of 60Co gamma-irradiation treatments (2·5, 5·0, 10·0 and 20·0 kGy) on the gluten proteins of two bread wheats and one durum wheat cultivar were investigated. Dough rheological properties of the flour processed from the irradiated wheat were also determined using a computerised micromixograph. Irradiation caused a significant deteriorating effect on all mixogram parameters. There was no observable effect of irradiation on gliadin proteins analysed by polyacrylamide gel electrophoresis. The 50% 1-propanol-insoluble (50 PI) glutenin fraction was highly affected by irradiation. By sodium dodecyl sulfate polyacrylamide gel electrophoresis, reduced 50 PI glutenin showed a noticeable reduction in band intensities of both high (HMW) and low molecular weight (LMW) glutenin subunits (GS) with increasing irradiation dosage greater than 5 kGy. The irradiation effect on 50 PI glutenin was further studied and quantified by reversed-phase high-performance liquid chromatography of glutenin subunits; there was a progressive decrease in the quantity of subunits with increasing irradiation dose level. Compared to non-irradiated wheat, the relative decline in total insoluble glutenin at the 20 kGy dosage level ranged from 34–49% depending on cultivar. Increasing levels of irradiation also progressively reduced the ratio of HMW:LMW-GS up to 13–15% at 20 kGy indicating that irradiation had a greater effect on the largest polymers of glutenin. The observed weakening of dough mixing properties and concomitant decline in the quantity of 50 PI glutenin with increasing levels of gamma-irradiation are consistent with a degradation of glutenin to a lower average molecular size by depolymerisation and/or disaggregation.  相似文献   

19.
Wild type and mutant (cysteine-containing) forms of C hordein were expressed inEscherichia coli. Incorporation of a mutant form with N- and C-terminal cysteine residues into dough using a 2 g Mixograph showed similar positive effects on dough strength to the incorporation of HMW subunit 1Bx7. Co-incorporation showed that the effects of the two proteins were additive. In contrast, the incorporation of wild type C hordein or mutants with single cysteines at the N- or C-terminus resulted in decreased dough strength, with the two mutant forms inhibiting the positive effect of 1Bx7. Analysis of total protein extracts from the doughs indicate that the differences resulted from alterations in the proportions of gluten monomers, small gluten polymers and large gluten polymers.  相似文献   

20.
The low-molecular-weight glutenin subunits of wheat gluten   总被引:11,自引:0,他引:11  
Low-molecular-weight glutenin subunits (LMW-GS) are polymeric protein components of wheat endosperm and like all seed storage proteins, are digested to provide nutrients for the embryo during seed germination and seedling growth. Due to their structural characteristics, they exhibit features important for the technological properties of wheat flour. Their ability to form inter-molecular disulphide bonds with each other and/or with high-molecular-weight glutenin subunits (HMW-GS), is important for the formation of the glutenin polymers, which are among the biggest macromolecules present in nature, and determine the processing properties of wheat dough. Explanation of the structural basis for these correlations continues to intrigue researchers and, while earlier emphasis had been on HMW-GS, considerable attention is now being focused on the LMW-GS.LMW-GS are a highly polymorphic protein complex, including proteins with gliadin-type sequences. Difficulty in separating single components, arising from the complexity of the group, has limited the characterisation of the individual proteins and the establishment of clear-cut relationships with quality parameters.Here we review results concerning different aspects of LMW-GS, including their structural characteristics, genetic control, and relationships with quality parameters. In addition, we emphasise the distinction between the components with sequences unique to the LMW-GS fraction and those behaving like glutenin subunits (incorporated into polymers), but with sequences corresponding to gliadins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号