首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Meta‐analysis of marine biological resources can elucidate general trends and patterns to inform scientists and improve management. Crustacean stocks are indispensable for European and global fisheries; however, studies of their aggregate development have been rare and confined to smaller spatial and temporal scales compared to fish stocks. Here, we study the aggregate development of 63 NE Atlantic and Mediterranean crustacean stocks of six species (Nephrops norvegicus, Pandalus borealis, Parapenaeus longirostris, Aristeus antennatus, Aristaeomorpha foliacea and Squilla mantis) in 1990–2013 using biomass index data from official stock assessments. We implemented a dynamic factor analysis (DFA) to identify common underlying trends in biomass indices and investigate the correlation with the North Atlantic Oscillation (NAO) index. The analysis revealed increasing and decreasing trends in the northern and southern NE Atlantic, respectively, and stable or slowly increasing trends in the Mediterranean, which were not related to NAO. A separate meta‐analysis of the fishing mortality (F) and biomass (B) of 39 analytically assessed crustacean stocks was also carried out to explore their development relative to MSY. NE Atlantic crustacean stocks have been exploited on average close to FMSY and remained well above BMSY in 1995–2013, while Mediterranean stocks have been exploited 2–4 times above FMSY in 2002–2012. Aggregate trends of European crustacean stocks are somewhat opposite to trends of fish stocks, suggesting possible cascading effects. This study highlights the two‐speed fisheries management performance in the northern and southern European seas, despite most stocks being managed in the context of the European Union's Common Fisheries Policy.  相似文献   

2.
Maintaining fish stocks at optimal levels is a goal of fisheries management worldwide; yet, this goal remains somewhat elusive, even in countries with well‐established fishery data collection, assessment and management systems. Achieving this goal often requires knowledge of stock productivity, which can be challenging to obtain due to both data limitations and the complexities of marine populations. Thus, scientific information can lag behind fishery policy expectations in this regard. Steepness of the stock–recruitment relationship affects delineation of target biomass level reference points, a problem which is often circumvented by using a proxy fishing mortality rate (F) in place of the rate associated with maximum sustainable yield (FMSY). Because MSY is achieved in the long term only if an F proxy is happenstance with FMSY, characterizing productivity information probabilistically can support reference point delineation. For demersal stocks of equatorial and tropical regions, we demonstrate how the use of a prior probability distribution for steepness can help identify suitable F proxies. F proxies that reduce spawning biomass per recruit to a target percentage of the unfished quantity (i.e., SPR) of 40% to 50% SPR had the highest probabilities of achieving long‐term MSY. Rebuilding was addressed through closed‐loop simulation of broken‐stick harvest control rules. Similar biomass recovery times were demonstrated for these rules in comparison with more information‐intensive rebuilding plans. Our approach stresses science‐led advancement of policy through a lens of information limitations, which can make the assumptions behind rebuilding plans more transparent and align management expectations with biological outcomes.  相似文献   

3.
The appropriateness of three official fisheries management reference points used in the north‐east Atlantic was investigated: (i) the smallest stock size that is still within safe biological limits (SSBpa), (ii) the maximum sustainable rate of exploitation (Fmsy) and (iii) the age at first capture. As for (i), in 45% of the examined stocks, the official value for SSBpa was below the consensus estimates determined from three different methods. With respect to (ii), the official estimates of Fmsy exceeded natural mortality M in 76% of the stocks, although M is widely regarded as natural upper limit for Fmsy. And regarding (iii), the age at first capture was below the age at maturity in 74% of the stocks. No official estimates of the stock size (SSBmsy) that can produce the maximum sustainable yield (MSY) are available for the north‐east Atlantic. An analysis of stocks from other areas confirmed that twice SSBpa provides a reasonable preliminary estimate. Comparing stock sizes in 2013 against this proxy showed that 88% were below the level that can produce MSY. Also, 52% of the stocks were outside of safe biological limits, and 12% were severely depleted. Fishing mortality in 2013 exceeded natural mortality in 73% of the stocks, including those that were severely depleted. These results point to the urgent need to re‐assess fisheries reference points in the north‐east Atlantic and to implement the regulations of the new European Common Fisheries Policy regarding sustainable fishing pressure, healthy stock sizes and adult age/size at first capture.  相似文献   

4.
Analysis of spawning biomass per‐recruit has been widely adopted in fisheries management. Fishing mortality expressed as spawning potential ratio (SPR) often requires a reference point as an appropriate proxy for the fishing mortality that supports a maximum sustainable yield—FMSY. To date, a single generic level between F30% and F40% is routinely used. Using records from stock assessments in the RAM Legacy Database (RAMLD), we confirm that SPR at MSY (SPRMSY) is a declining function of stock productivity quantified by FMSY. We then use general linear models (GLM) and Bayesian errors‐in‐variables models (BEIVM) to show that SPRMSY can be predicted from life‐history parameters (LHPs, including maximum lifespan, age‐ and length‐at‐maturation, growth parameters, natural mortality, and taxonomic Class) as well as gear selectivity. The calculated SPRMSY ranges from about 13% to 95% with a mean of 47%. About 64% of the stocks in the RAMLD require SPRMSY > 40%. Modelling SPRMSY reveals that LHPs plus Class explain 61% of the deviance in SPRMSY. Faster‐growing, low‐survival, and short‐lived species generally require a high SPR. With equal LHPs, elasmobranchs require about 20% higher SPRMSY than teleosts. When FMSY is estimated from fisheries that harvest older fish, increasing the vulnerable age by one year leads to about an 8% increase in SPRMSY. The BEIVM yields smaller variance and bias than the GLM. The models developed in this study could be used to predict SPRMSY reference points for new stocks using the same LHPs for calculating Fx%, but without knowledge of the stock‐recruitment parameters.  相似文献   

5.
Meta‐analyses of stock assessments can provide novel insight into marine population dynamics and the status of fished species, but the world’s main stock assessment database (the Myers Stock‐Recruitment Database) is now outdated. To facilitate new analyses, we developed a new database, the RAM Legacy Stock Assessment Database, for commercially exploited marine fishes and invertebrates. Time series of total biomass, spawner biomass, recruits, fishing mortality and catch/landings form the core of the database. Assessments were assembled from 21 national and international management agencies for a total of 331 stocks (295 fish stocks representing 46 families and 36 invertebrate stocks representing 12 families), including nine of the world’s 10 largest fisheries. Stock assessments were available from 27 large marine ecosystems, the Caspian Sea and four High Seas regions, and include the Atlantic, Pacific, Indian, Arctic and Antarctic Oceans. Most assessments came from the USA, Europe, Canada, New Zealand and Australia. Assessed marine stocks represent a small proportion of harvested fish taxa (16%), and an even smaller proportion of marine fish biodiversity (1%), but provide high‐quality data for intensively studied stocks. The database provides new insight into the status of exploited populations: 58% of stocks with reference points (n = 214) were estimated to be below the biomass resulting in maximum sustainable yield (BMSY) and 30% had exploitation levels above the exploitation rate resulting in maximum sustainable yield (UMSY). We anticipate that the database will facilitate new research in population dynamics and fishery management, and we encourage further data contributions from stock assessment scientists.  相似文献   

6.
This study presents a Monte Carlo method (CMSY) for estimating fisheries reference points from catch, resilience and qualitative stock status information on data‐limited stocks. It also presents a Bayesian state‐space implementation of the Schaefer production model (BSM), fitted to catch and biomass or catch‐per‐unit‐of‐effort (CPUE) data. Special emphasis was given to derive informative priors for productivity, unexploited stock size, catchability and biomass from population dynamics theory. Both models gave good predictions of the maximum intrinsic rate of population increase r, unexploited stock size k and maximum sustainable yield MSY when validated against simulated data with known parameter values. CMSY provided, in addition, reasonable predictions of relative biomass and exploitation rate. Both models were evaluated against 128 real stocks, where estimates of biomass were available from full stock assessments. BSM estimates of r, k and MSY were used as benchmarks for the respective CMSY estimates and were not significantly different in 76% of the stocks. A similar test against 28 data‐limited stocks, where CPUE instead of biomass was available, showed that BSM and CMSY estimates of r, k and MSY were not significantly different in 89% of the stocks. Both CMSY and BSM combine the production model with a simple stock–recruitment model, accounting for reduced recruitment at severely depleted stock sizes.  相似文献   

7.
The European eel, Anguilla anguilla (L.), has a complex life history and many aspects of the biology and population dynamics of this species remain unknown or, at best, poorly understood. Relatively little is also known about the status of the stocks and fisheries, but available data suggest that recruitment of glass eels has been falling for the last 20 years and is at historically low levels. Yellow and silver eel catches have also been falling in many parts of the species range over a similar time‐scale. Re‐examination of the principles applied to fisheries management over recent years has resulted in the adoption of a ‘precautionary approach’ to the conservation, management and exploitation of fish stocks, and in an explicit need to take account of uncertainties in management to reduce risks to stocks and their environment. Such an approach is highly relevant to the management of the European eel and requires that urgent consideration is given to harvest strategies and decision structures for the national and international management of stocks and fisheries. Provisional biological reference levels should be established to provide an equable assessment of the status of stocks in all parts of Europe and to evaluate the need for management measures in all fisheries. These will need to be reviewed as further information comes available. Monitoring and research on eel stocks should therefore be enhanced and co‐ordinated to improve our understanding of the status of stocks throughout Europe and the biology of the species.  相似文献   

8.
In Mediterranean European countries, 85% of the assessed stocks are currently overfished compared to a maximum sustainable yield reference value (MSY) while populations of many commercial species are characterized by truncated size‐ and age‐structures. Rebuilding the size‐ and age‐structure of exploited populations is a management objective that combines single species targets such as MSY with specific goals of the ecosystem approach to fisheries management (EAF), preserving community size‐structure and the ecological role of different species. Here, we show that under the current fishing regime, stock productivity and fleet profitability are generally impaired by a combination of high fishing mortality and inadequate selectivity patterns. For most of the stocks analysed, a simple reduction in the current fishing mortality (Fcur) towards an MSY reference value (FMSY), without any change in the fishing selectivity, will allow neither stock biomass nor fisheries yield and revenue to be maximized. On the contrary, management targets can be achieved only through a radical change in fisheries selectivity. Shifting the size of first capture towards the size at which fish cohorts achieve their maximum biomass, the so‐called optimal length, would produce on average between two and three times higher economic yields and much higher biomass at sea for the exploited stocks. Moreover, it would contribute to restore marine ecosystem structure and resilience to enhance ecosystem services such as reservoirs of biodiversity and functioning food webs.  相似文献   

9.
《Fish and Fisheries》2018,19(2):225-243
Marine recreational fishing (MRF) is a high‐participation activity with large economic value and social benefits globally, and it impacts on some fish stocks. Although reporting MRF catches is a European Union legislative requirement, estimates are only available for some countries. Here, data on numbers of fishers, participation rates, days fished, expenditures, and catches of two widely targeted species were synthesized to provide European estimates of MRF and placed in the global context. Uncertainty assessment was not possible due to incomplete knowledge of error distributions; instead, a semi‐quantitative bias assessment was made. There were an estimated 8.7 million European recreational sea fishers corresponding to a participation rate of 1.6%. An estimated 77.6 million days were fished, and expenditure was €5.9 billion annually. There were higher participation, numbers of fishers, days fished and expenditure in the Atlantic than the Mediterranean, but the Mediterranean estimates were generally less robust. Comparisons with other regions showed that European MRF participation rates and expenditure were in the mid‐range, with higher participation in Oceania and the United States, higher expenditure in the United States, and lower participation and expenditure in South America and Africa. For both northern European sea bass (Dicentrarchus labrax, Moronidae) and western Baltic cod (Gadus morhua, Gadidae) stocks, MRF represented 27% of the total removals. This study highlights the importance of MRF and the need for bespoke, regular and statistically sound data collection to underpin European fisheries management. Solutions are proposed for future MRF data collection in Europe and other regions to support sustainable fisheries management.  相似文献   

10.
《Fisheries Research》2007,83(1-3):221-234
A Management Strategy Evaluation framework is used to evaluate management strategies based on input controls for the fishery for two tiger prawn species (Penaeus esculentus and Penaeus semisulcatus) in Australia's Northern Prawn Fishery. Three “assessment procedures” are considered and two forms of decision rule. The performance of the management strategies is evaluated in terms of whether stocks are left at (or above) the spawning stock size at which Maximum Sustainable Yield is achieved (SMSY), the long-term discounted total catch and the extent of inter-annual variation in catches. The focus of the analysis is on management strategies based on the current method of stock assessment because an alternative method of assessment based on a biomass dynamics model is found to be highly variable. None of the management strategies tested is able to leave the spawning stock size of P. esculentus near SMSY if the target effort level used in the management strategy is set to EMSY. Accounting for stock structure through the application of a spatially- (stock-) structured assessment approach fails to resolve this problem. Since the assessment method is generally close to unbiased, the failure to leave the stocks close to SMSY is because the measure of control is total effort and the two species are found (and caught) together. Reducing the target effort level to below EMSY increases the final stock size, but the reduced risk comes at a cost of reduced catches. The best management strategy in terms of leaving both species close to SMSY is found to be one that changes the timing of the fishing season so that effort is shifted from P. esculentus to P. semisulcatus and sets more precautionary effort targets for P. esculentus.  相似文献   

11.
Annual fish landings for the Greek seas were analysed for the period 1982–2007 and classified into exploitation categories based on a catch‐based stock classification method. In 2007, about 65% of the Greek stock were characterised as overfished, 32% as fully exploited and only 3% were characterised as developing; collapsed stocks were not recorded. The cumulative percentage of fully exploited and overfished stocks has been increasing over the past 20 years suggesting overexploitation of resources. The results were contrasted against total landings, the fishing‐in‐balance index (FiB) and fishing effort, and some irregularities on the dataset were explained based on current legislation and management measures. A positive correlation between FiB and total fishing effort confirmed the expansion of the Greek fisheries up to 1994, but contraction thereafter. The results suggest that the apparently stable overall catches and decreasing effort may be deceiving, as they hide an underlying pattern of overexploitation in some of the stocks. It was concluded that the Greek fisheries are no longer sustainable and radical management measures are needed.  相似文献   

12.
The Law of the Sea requires that fish stocks are maintained at levels that can produce the maximum sustainable yield (MSY). However, for most fish stocks, no estimates of MSY are currently available. Here, we present a new method for estimating MSY from catch data, resilience of the respective species, and simple assumptions about relative stock sizes at the first and final year of the catch data time series. We compare our results with 146 MSY estimates derived from full stock assessments and find excellent agreement. We present principles for fisheries management of data‐poor stocks, based only on information about catches and MSY.  相似文献   

13.
Sustainability indices are proliferating, both to help synthesize scientific understanding and inform policy. However, it remains poorly understood how such indices are affected by underlying assumptions of the data and modelling approaches used to compute indicator values. Here, we focus on one such indicator, the fisheries goal within the Ocean Health Index (OHI), which evaluates the sustainable provision of food from wild fisheries. We quantify uncertainty in the fisheries goal status arising from the (a) approach for estimating missing data (i.e., fish stocks with no status) and (b) reliance on a data‐limited method (catch‐MSY) to estimate stock status (i.e., B/BMSY). We also compare several other models to estimate B/BMSY, including an ensemble approach, to determine whether alternative models might reduce uncertainty and bias. We find that the current OHI fisheries goal model results in overly optimistic fisheries goal statuses. Uncertainty and bias can be reduced by (a) using a mean (vs. median) gap‐filling approach to estimate missing stock scores and (b) estimating fisheries status using the central tendency from a simulated distribution of status scores generated by a bootstrap approach that incorporates error in B/BMSY. This multitiered approach to measure and describe uncertainty improves the transparency and interpretation of the indicator and allows us to better understand uncertainty around our OHI fisheries model and outputs for country‐level interpretation and use.  相似文献   

14.
Fisheries management typically aims at controlling exploitation rate (e.g., Fbar) to ensure sustainable levels of stock size in accordance with established reference points (e.g., FMSY, BMSY). Population selectivity (“selectivity” hereafter), that is the distribution of fishing mortality over the different demographic components of an exploited fish stock, is also important because it affects both Maximum Sustainable Yield (MSY) and FMSY, as well as stock resilience to overfishing. The development of an appropriate metric could make selectivity operational as an additional lever for fisheries managers to achieve desirable outcomes. Additionally, such a selectivity metric could inform managers on the uptake by fleets and effects on stocks of various technical measures. Here, we introduce three criteria for selectivity metrics: (a) sensitivity to selectivity changes, (b) robustness to recruitment variability and (c) robustness to changes in Fbar. Subsequently, we test a range of different selectivity metrics against these three criteria to identify the optimal metric. First, we simulate changes in selectivity, recruitment and Fbar on a virtual fish stock to study the metrics under controlled conditions. We then apply two shortlisted selectivity metrics to six European fish stocks with a known history of technical measures to explore the metrics’ response in real‐world situations. This process identified the ratio of F of the first recruited age–class to Fbar (Frec/Fbar) as an informative selectivity metric for fisheries management and advice.  相似文献   

15.
Floodplain fisheries were monitored from 1992 until 2000 in the Compartmentalization Pilot Project in Tangail, Bangladesh. In permanent floodplains about 165 ± 28 kg ha?1 of fish was caught annually. For seasonal floodplains, this figure was 83 ± 23 kg ha?1 yr?1. The fish catch exhibited a strong seasonal variation, with the highest catch in October, when the floodwater recedes towards the river, and the lowest catch during the dry season in April/May. The annual catch varied with the extent of flooding, with high catches in wet years and low catches in dry years. The extent of flooding was quantified through a Flood Index. Plotting the annual yields against this Flood Index provided a significant relation (P < 0.05), confirming the existence of a flood pulse. The fishing effort (f) and the catch‐per‐unit‐effort (CPUE) were significantly related (P < 0.05), whereby the fishing effort increased with increasing CPUE. The results are discussed within the frame of fisheries management in Bangladesh and highlight the need for long‐term data for proper evaluation of fisheries projects and the development of management schemes, and the difficulty of applying standard surplus production models in floodplain fisheries.  相似文献   

16.
The UK coastal trap fisheries target two key species, European lobster Homarus gammarus (L.) and brown crab Cancer pagurus L. Their stock status is assessed periodically using size‐based, yield‐per‐recruit analysis. Fishery trends are described using landings and, where available, effort data to estimate catch per unit of effort (CPUE), nominally proportional to abundance. Despite being caught together, assessments assume that concurrent capture of these species does not distort their individual CPUE estimates. Here, an in situ experiment tested impacts of inter‐specific and intra‐specific interactions by pre‐loading baited traps with different species and observing subsequent catches. Pre‐loaded European lobster significantly reduced brown crab catches, whereas, other species produced no such effects. The findings highlight the likely inconsistency of using CPUE as an index of abundance if landings data originate from a mixed‐species fishery in which species interactions and targeting behaviour of fishers are unknown or un‐quantified.  相似文献   

17.
Maximum Sustainable Yield (MSY) is a common target for fisheries aiming to achieve long‐term ecological sustainability. Although achieving MSY may ensure the long‐term sustainability of fish populations, we ask whether it will provide economic security for fishers. Here we use 16 years of daily landing records to estimate potential catches and revenues per capita if fisheries were exploited at MSY in 11 subregions across Mexico. We then compare fishers’ estimated revenues per capita against national poverty limits at the household level. Our results show that even if MSY is reached in artisanal fisheries, the overcapacity of fleets and the dissipation of rents threatens the economic well‐being of fishers and their families, pushing revenues per capita below poverty levels. Our work demonstrates the importance of resolving the trade‐offs between achieving economic, social and environmental objectives when managing for the long‐term sustainable use of natural resources.  相似文献   

18.
Commercial tunas and billfishes (swordfish, marlins and sailfish) provide considerable catches and income in both developed and developing countries. These stocks vary in status from lightly exploited to rebuilding to severely depleted. Previous studies suggested that this variability could result from differences in life‐history characteristics and economic incentives, but differences in exploitation histories and management measures also have a strong effect on current stock status. Although the status (biomass and fishing mortality rate) of major tuna and billfish stocks is well documented, the effect of these diverse factors on current stock status and the effect of management measures in rebuilding stocks have not been analysed at the global level. Here, we show that, particularly for tunas, stocks were more depleted if they had high commercial value, were long‐lived species, had small pre‐fishing biomass and were subject to intense fishing pressure for a long time. In addition, implementing and enforcing total allowable catches (TACs) had the strongest positive influence on rebuilding overfished tuna and billfish stocks. Other control rules such as minimum size regulations or seasonal closures were also important in reducing fishing pressure, but stocks under TAC implementations showed the fastest increase of biomass. Lessons learned from this study can be applied in managing large industrial fisheries around the world. In particular, tuna regional fisheries management organizations should consider the relative effectiveness of management measures observed in this study for rebuilding depleted large pelagic stocks.  相似文献   

19.
Understanding the impacts of recreational fishing on commercially fished stocks is becoming increasingly relevant for fisheries managers. However, data from recreational fisheries are not commonly included in stock assessments of commercially fished stocks. Simulation models of two assessment methods employed in Australia's Commonwealth fisheries were used to explore how recreational fishery data can be included, and the likely consequences for management. In a data‐poor management strategy for blue eye trevalla, Hyperoglyphe antarctica (Carmichael), temporal trends in recreational catch most affected management outcomes. In a data‐rich age‐structured stock assessment for striped marlin, Kajikia audax (Philippi), estimates of stock status were biased when recreational catches were large or when the recreational fishery targeted different size classes than the commercial fishery and these data were not integrated into the assessment. Including data from recreational fishing can change perceptions of stock status and impact recommendations for harvest strategies and management action. An understanding of recreational fishery dynamics should be prioritised for some species.  相似文献   

20.
Status, trends and management of sturgeon and paddlefish fisheries   总被引:6,自引:0,他引:6  
The 27 extant species of sturgeons and paddlefishes (Order Acipenseriformes) represent a unique and relict lineage of fishes. Producers of coveted black caviar, sturgeons are one of the most valuable wildlife commodities on earth. The group is among the most endangered fishes with all species listed under Convention on International Trade in Endangered Species (CITES) Appendix I (two species) or II (25 species), only two species considered Lower Risk by IUCN, four of the nine US taxa and one Caspian species protected under the Endangered Species Act, and local extinctions recorded for 19 of 27 species. Despite their well‐publicized imperilled status, commercial pressure on 15 species persists. Here, after reviewing the biological characteristics of sturgeons and paddlefishes and their commercial use, an overview of global fisheries is presented. The synopsis demonstrates that, with few exceptions, sturgeon and paddlefish are imperilled across the globe and long‐term survival in the wild is in jeopardy. All major sturgeon fisheries have surpassed peak productivity levels, with 70% of major fisheries posting recent harvests <15% of historic peak catches and 35% of the fisheries examined crashing within 7–20 years of inception. Even in Caspian Sea fisheries, the most important globally, present catches are below 10% of historic peak landings. Improved domestic and international fisheries management and attention to habitat and species restoration is now needed. Although captive rearing offers promise for caviar alternatives and endangered species restoration, it must advance cautiously to avoid environmental harm. To ensure a continued supply of caviar and the survival of these unique fishes we offer recommendations for priority conservation action for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号