首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
驴,马卵泡发育及黄体形成的超声显像初步研究   总被引:1,自引:0,他引:1  
本实验采用实时B型超声显像法,初步观察了16头母驴和17匹马发情期卵泡发育及黄体形成。卵泡为一轮廓完整的液性器官,卵泡液呈无回声(暗区)。卵泡壁在排卵前变薄,回声增强,轮廓更加清晰。75%的马卵泡在排卵前2天由椭圆形变为梨形或锥形,大部分驴的卵泡始终保持椭圆形。90%以上的驴和/或马的卵巢上有多个卵泡发育,多卵泡发育比单卵泡发育排卵迟缓。驴的最大卵泡从排卵前5天开始迅速增大,于排卵前1天达到最大(  相似文献   

2.
The aim of this study was to evaluate the effects of different treatments for induction and synchronization of oestrus and ovulation in seasonally anovulatory mares. Fifteen mares formed the control group (C), while 26 mares were randomly assigned to three treatment groups. Group T1 (n = 11) were treated with oral altrenogest (0.044 mg/kg; Regumate®) during 11 days. Group T2 (n = 7) was intravaginally treated with 1.38 g of progesterone (CIDR®) for 11 days. In group T3 (n = 8), mares were also treated with CIDR®, but only for 8 days. All mares received PGF2α 1 day after finishing the treatment. Sonographic evaluation of follicles, pre‐ovulatory follicle size and ovulation time was recorded. Progesterone and leptin levels were analysed. Results show that pre‐ovulatory follicles were developed after the treatment in 88.5% of mares. However, the pre‐ovulatory follicle growth was dispersal, and sometimes it was detected when treatment was not finished. While in mares treated with intravaginal device, the follicle was soon detected (1.5 ± 1.2 days and 2.3 ± 2.0 days in T2 and T3 groups, respectively), in T1 group, the pre‐ovulatory follicle was detected slightly later (3.9 ± 1.6 days). The interval from the end of treatment to ovulation did not show significant differences between groups (T1 = 13.1 ± 2.5 days; T2 = 11.0 ± 3.6 days; T3 = 13.8 ± 4.3 days). The pregnancy rate was 47.4%, similar to the rate observed in group C (46.7%; p > 0.05). Initial leptin concentrations were significantly higher in mares, which restart their ovarian activity after treatments, suggesting a role in the reproduction mechanisms in mares. It could be concluded that the used treatments may be effective for oestrous induction in mares during the late phase of the seasonally anovulatory period. Furthermore, they cannot synchronize oestrus, and then, it is necessary to know the reproductive status of mares when these treatments are used for oestrous synchronization.  相似文献   

3.
This study characterized follicular activity and oestrous behaviour from 5 to 9 days post‐calving up to the 4th ovulation postpartum (pp) in 16 multiparous (range 2–7 parities) Thai swamp buffalo cows (Bubalus bubalis), aged 4–12 years and weighing from 432 to 676 kg. Ovarian follicular activity was examined by transrectal ultrasonography (TUS) every morning. Oestrous detection was performed twice daily by direct personal observation of behaviour and for presence of clear cervical mucus discharge and indirectly by video camera recording during 21 h/day. A follicular wave‐like pattern was present before the 1st ovulation leading to short oestrous cycles. Growth rates and maximum diameters of the ovulatory follicles did not differ between the 1st and 4th ovulations. However, growth rate for non‐ovulatory dominant follicles (DF) before the 1st ovulation was lower than for the ovulatory follicle (p < 0.05). In addition, the diameter of all ovulatory follicles (14.3 ± 0.46 mm, n = 39) was significantly larger (p < 0.01) than those of the preceding last but one non‐ovulatory DF (10.8 ± 0.20 mm, n = 5), but similar to the last preceding non‐ovulatory DF diameter (12.92 ± 0.96 mm, n = 14). Short oestrous cycles were most common between the 1st and 2nd ovulations (93.75%, 15/16 cows, 10.2 ± 0.38 days) decreasing in prevalence thereafter (50%, 3/6 buffaloes, 12.0 ± 1.53 days). Oestrous signs were relatively vague around the 1st ovulation pp to become more easily detectable thereafter. This study suggests that properly fed swamp buffaloes could be mated successfully within 2 months pp, at their 2nd spontaneous ovulation, provided oestrous detection is at least performed daily at 06:00–08:00 hour.  相似文献   

4.
The aim of this study was to predict the ovulation in mares by quantitative analysis of the echotextural changes of preovulatory follicular walls. Four mares of breeding age with 32 preovulatory follicles and 11 anovulatory follicles were observed by ultrasonography. The slope of the regression line of the follicular wall and the echogenicity score of granulosa layer (GL) and anechoic layer (AL) were measured from the images on Days -3 (Day 0 = ovulation), -2, and -1, respectively. GL was scored from 1 (anechoic) to 3 (echoic), and prominence of AL was recorded from 1 (gray and thin) to 3 (black and thick). The results indicated that the regression line of the follicular wall for 81.3% (26/32) of preovulatory follicles had the slope value ≥19.0 on Day -1, in which 4 of the 26 preovulatory follicles were ≥19.0 on Day -2 already. Mean slope value on Day -1 (21.9 ± 1.5) was significantly greater (P < .01) than on Day -2 (15.0 ± 1.4) and Day -3 (14.0 ± 1.1). All of the slope values for the 11 anovulatory follicles were <19.0 on any given day. GL and AL scores of preovulatory follicles were significantly greater (P < .01) than in anovulatory follicles on Days -3, -2 and -1; nevertheless, only 28.1% (9/32) of preovulatory follicles scored 3 for both GL and AL simultaneously on Day -1. All anovulatory follicles scored <2 for both GL and AL on Day -1. It was concluded that the slope of the regression line of the follicular wall is useful in predicting preovulatory follicles within 48 hours of ovulation when the value is ≥19.0. Of these follicles (N = 26), 84.6% (22/26) were predicted to ovulate within 24 hours, and 15.4% (4/26) within 24 to 48 hours.

Introduction

Insemination in mares by accurately predicting the time of ovulation may obtain maximum fertility with minimum use of semen, and therefore would definitely be a profitable advantage in the horse farming business. The optimal time for insemination with frozen-thawed semen usually include a shorter interval than if fresh semen or natural breeding is used. To achieve the maximal pregnancy rates with frozen-thawed semen, it is necessary to inseminate mares during a period between 12 hours pre- and 6 hours post-ovulation.[1] Therefore, if the timing of ovulation could be predicted, it would be helpful for the veterinarian to inseminate a mare only once per cycle if performed very close to the time of ovulation. [2] In recent years, many indicators have been reported for predicting impending ovulation in mares, including measurement of electrical resistance of the vaginal mucus, [3] the distinguishable endometrial folding pattern of uterus in estrus, [4] changes in size and shape of the preovulatory follicles, [5, 6 and 7] and the echotexture changes in the preovulatory follicular wall. [8] The latter has been more efficient for predicting the imminence of ovulation; nevertheless, their assessment of criterions was scored subjectively. The hypothesis for this study was based on the published report from Gastal et al in 1998 [8]; they found that 2 echotexture changes of the preovulatory follicle-increasing echogenicity of the granulosa layer and increasing prominence of an anechoic layer beneath the granulosa, were detected in the follicular wall as ovulation approached in mares. Computer-assisted image analysis is an advanced technology for diagnostic ultrasonography to improve the reproductive management of patients. [9, 10 and 11] The purpose of this study is to quantify the echotextural changes in the preovulatory follicular wall as ovulation approaches using computer-assisted image analysis, so that the quantified echotexture changes could serve as an indicator for prediction of ovulation in mares.

Materials and Methods

Animals and Ultrasonography

Four non-lactating and nonpregnant mixed mares between 4 and 14 years of age and weighing between 450 and 550 kg were studied from January to December 2001. The geographic area of the mares in this study was in subtropical Taiwan of the northern hemisphere. All mares were maintained on alfalfa/grass hay and had access to water and mineralized salt. A teaser stallion was introduced to detect the estrus signs of mares about 2 weeks after the end of the last estrus. Follicular changes were monitored with a real-time B-mode linear assay ultrasound scanner, equipped with a 7.5-MHz transrectal probe (Model Scanner 200 Vet, Pie Medical, The Netherlands). Upon detection of a preovulatory follicle, ultrasound examination was performed daily and continued until ovulation. A total of 32 preovulatory follicles and 11 anovulatory follicles were identified from a retrospective determination.Ultrasonographic images were recorded on Hi-8 MP videotape with a Sony DCR-TRV 120 Digital-8 camera. The brightness and contrast controls of the monitor and the time-gain compensation of the scanner were standardized to constant settings throughout the observation period.

Image Analysis

Still images were subsequently captured and saved as TIF files by computer using a digital image analysis program (Image-Pro Express V4.0 for Windows, Media Cybernetics, L.P., USA) with a resolution of 640 × 480 pixels and 256 shades of gray. Echotexture of the regions of interest was defined in terms of pixel intensity ranging from 0 (black) to 255 (white). Three ultrasonographic images of each preovulatory follicle at its distinctly discernible cross section were subsequently selected. To avoid the enhancement of through-transmission, sampling regions were located within the 10 or 2 o'clock position for measurement of pixel values (Fig 1). The pixel values were measured with the “Line Profile” tool, which involved sampling pixel values along a line traversing the follicle wall from the peripheral antrum, GL, AL, to the stroma. A graph of the pixel intensities along the line was produced ( Fig 2). The GL was defined as the highest pixel after which there was a sequential fall in gray-scale values. The pixel values along the curve (P0, P1, P2) were obtained as an average of 9 measurements (3 images per follicle and 3 lines per image) and were used to measure the slope of a regression line of the fall segment ( Fig 2).  相似文献   

5.
Changes in appearance of preovulatory follicles were observed with real-time ultrasonography prior to and during ovulation in mares. Preovulatory follicles of 15 mares were scanned at < 1 hr intervals for 12 hr or more frequently if displaying signs of impending ovulation. If ovulation was not imminent at the end of 12 hr (n = 2), mares were removed from the trial. Mean follicular diameter decreased 13% from 30 minutes prior to ovulation until the beginning of ovulation. Fifteen to 77 minutes (mean = 41 min) prior to ovulation, a break in or a protrusion of the follicular wall toward the ovulation fossa was visualized in all follicles and was a consistent indicator of impending ovulation. A rapid decrease in size of follicles (ovulation) occurred within a period of 5 to 90 seconds (mean = 42 sec). Little or no fluid remained in the antrum following ovulation. An increase in echogenicity (whiteness) of the follicular wall and echogenic “spots” within the follicle were frequently visualized (13/13, 100% and 7/13, 54% respectively) prior to ovulation; however, prediction of time of ovulation could not be based solely on these individual changes.  相似文献   

6.
Ultrasonography is useful for monitoring the dynamic follicular and luteal changes of equine ovaries, since it permits rapid, visual, non-invasive access to the reproductive tract. A 5 MHz transducer has greater resolving power and is far more suitable for evaluation of ovaries than a 3–3.5 MHz transducer. Follicles as small as 2–3 mm can be seen and the corpus luteum can usually be identified throughout its functional life. In a study involving daily ovarian examinations, there was a pronounced change in shape of the preovulatory follicle from a roughly spherical to a pear-shaped or oblong form in 66% of the ovulatory periods, This change usually occurred on the day preceding ovulation. The occurrence of ovulation was detectable by the disappearance of a large follicle. In addition, the ovulation site on day 0 was characterized by an intense echogenic area in 88% of 32 ovulations. The developing corpus luteum retained the echogenicity for a mean of 2.4 days. In a blind study, the location of the corpus luteum, as determined by ultrasound, agreed with a previous independent determination of the side of ovulation by palpation in 88% of the 40 bred mares on days 0–14. In all of the 12 mares that were in estrus, the location of the corpus luteum could not be ascertained. In another study, the corpus luteum was identified for a mean of 16 days in 14 estrous cycles. One or more days before the corpus luteum became ultrasonically unidentifiable, it developed increased echogenicity in 36% of the mares, indicating greater tissue density. It is concluded that ultrasonic evaluation of the corpus luteum is superior to digital evaluation by rectal palpation. Some of the potential applications of ultrasonic examination of the ovaries include: 1) obtaining important, sometimes definitive, information by a single examination for judging whether a mare has entered the ovulatory season, 2) aiding in estimating the stage of the estrous cycle, 3) detecting double preovulatory-sized follicles which are in close apposition and difficult to discern by palpation, 4) detecting failure of ovulation or anovulatory estrus by the absence of a corpus luteum, 5) differentiating a persistent corpus luteum from anovulatory or anestrous conditions, 6) diagnosing certain pathological conditions such as peri-ovarian cysts and ovarian tumors, and 7) diagnosing anovulatory hemorrhagic follicles.  相似文献   

7.
The incidence of hemorrhagic anovulatory follicles (HAFs) is approximately 5% and 20% of estrous cycles during the early and late ovulatory season, respectively. The structures are more common in old mares (eg, >20 years), tend to occur repeatedly in individuals, and occur most frequently during the late follicular phase. In a recent study, the day of ovulation in controls and the first day of HAF formation, as indicated by cloudiness of follicular fluid, were defined as day 0. On day -1, future ovulating and HAF groups did not differ in follicle diameter or in the frequency of discrete gray-scale ultrasonic indicators of impending ovulation; however, in future HAFs, a greater percentage of the circumference of the follicle exhibited color-Doppler signals of blood flow. No differences were found between the two groups in systemic concentrations of progesterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) on days -4 to 2, but estradiol was elevated in the HAF group on day -3. The wall of the HAFs developed well-vascularized luteal tissue as indicated by echotexture and color Doppler signals and by the production of near normal levels of progesterone. In conclusion, HAFs formed from viable preovulatory follicles that did not differ from ovulatory follicles in diameter or gray-scale echotexture. Estradiol concentrations were elevated a few days before the failure of ovulation, and the wall of the follicle was more extensively vascularized on day -1.  相似文献   

8.
The presence of anovulatory haemorrhagic follicles during the oestrous cycle of mares causes financial impacts, slowing conception and increasing the number of services per pregnancy. Non‐steroidal anti‐inflammatory drugs (NSAIDs) such as meloxicam and phenylbutazone are used in the treatment of several disorders in mares, and these drugs can impair the formation of prostaglandins (PGs) and consequently interfere with reproductive activity. This study aimed to evaluate the effects of treatment with NSAIDs on the development of pre‐ovulatory follicles in mares. In total, 11 mares were studied over three consecutive oestrous cycles, and gynaecological and ultrasound examinations were performed every 12 h. When 32‐mm‐diameter follicles were detected, 1 mg of deslorelin was administered to induce ovulation. The first cycle was used as a control, and the mares received only a dose of deslorelin. In the subsequent cycles, in addition to receiving the same dose of deslorelin, each mare was treated with NSAIDs. In the second cycle, 4.4 mg/kg of phenylbutazone was administered, and in the third cycle, 0.6 mg/kg of meloxicam was administered once a day until ovulation or the beginning of follicular haemorrhage. All of the mares ovulated between 36 and 48 h after the induction in the control cycle. In the meloxicam cycle, 10 mares (92%) did not ovulate, while in the phenylbutazone cycle, nine mares (83%) did not ovulate. In both treatments, intrafollicular hyperechoic spots indicative of haemorrhagic follicles were observed on ultrasound. Thus, our results suggested that treatment with meloxicam and phenylbutazone at therapeutic doses induced intrafollicular haemorrhage and luteinization of anovulatory follicles.  相似文献   

9.
The aim of this study was to characterize ir-IGF-I pattern and its relation to other hormones during the oestrous cycle in mares. Nine non-pregnant non-lactating pluriparous thoroughbred mares were used. The studied mares were examined ultrasonically and bled daily to follow the ovarian changes and the hormonal milieu for a complete Interovulatory interval (IOI). Two (minor and major) follicular waves were characterized per IOI in thoroughbred mares. The largest follicle of the first follicular wave (DF1) was firstly detected at D - 1.75 ± 0.47 with a growth rate of 2.78 ± 0.14mm/day and maximum diameter of 22.45 ± 0.75mm on day 6.65 ± 0.82. The largest follicle of the second follicular wave (DF2) had a growth rate of 2.15 ± 0.29 mm/day, reached a maximum diameter of 42.70 ± 2.63 mm on D 19.25 ± 0.43. Ir-IGF-I increased significantly prior to ovulation and had a similar pattern to oestrogen (r = 0.84, p < 0.05), suggesting that the ovarian follicles are the main source of circulating ir-IGF-I during the oestrous cycle of mares and that ir-IGF-I may be a crucial factor in follicular differentiation and maturation. In conclusion, this study demonstrated that ir-IGF-I is secreted during the oestrous phase of the cycle concomitant with the development of the future ovulatory dominant follicle, and it may act in synergy with other hormones for the selection and differentiation of the dominant follicle.  相似文献   

10.
Breeding records of 48 Thoroughbred and Standardbred mares treated with native GnRH (500μg im, bid) during February—April, 1999 or 2000, on 7 farms in central Kentucky were retrospectively examined. Treated mares were classified as being in anestrus or early transition (n=42; if no signs of estrus occurred within 31/2 weeks and the largest follicle remained ≤25 mm in diameter or the first larger follicle(s) of the season regressed without ovulating), or were classified as being in late transition (n=6; if follicular growth achieved 30-40 mm diameter but ovulation had not yet occurred during the breeding season). Thirty-eight mares (38/48; 79%) ovulated in 13.7 ± 7.4 days. Interval to ovulation was negatively associated with size of follicles at onset of native GnRH therapy (P < 0.01). Per cycle pregnancy rate was 53% (19/36 mares bred). Ovulation inducing drugs were administered to 32 of the native GnRH treated mares (2500 units hCG intravenously, n = 20; deslorelin implant [Ovuplant™] subcutaneously, n=12), while 6 mares were not administered any additional drugs to induce ovulation. Per cycle pregnancy rate did not differ among mares treated only with native GnRH (2/5 mares bred; 40% PR), mares treated with native GnRH plus hCG (12/19 mares bred; 63% PR), or mares treated with native GnRH plus Ovuplant™ (5/12 mares bred; 42% PR) (P > 0.10). Additional treatment with either hCG or Ovuplant™ did not alter mean follicle size at ovulation or interovulatory interval (P > 0.10). The proportion of interovulatory intervals > 25 days was not different between mares receiving no additional treatment to induce ovulation (0/4; 0%) compared to mares receiving hCG to induce ovulation (3/8; 38%) (P > 0.10), but the proportion of interovulatory intervals > 25 days was greater for mares receiving Ovuplant™ to induce ovulation (5/7; 71%) compared to mares receiving no additional treatment to induce ovulation (P < 0.05). The proportion of mares with extended interovulatory intervals (i.e., > 25 days) did not differ between mares with follicles < 15 mm diameter (4/8, 50%) and those with follicles > 15 mm diameter (3/11, 27%) at onset of native GnRH treatment (P > 0.10). While concurrent untreated controls were not used in this study, the 79% response rate to twice daily administration of native GnRH is in agreement with other reports using pulsatile or constant infusion as methods of administration, confirming therapy can hasten follicular development and first ovulation of the breeding season. As with previous reports, follicle size at onset of treatment is an important determinant of interval from onset of native GnRH therapy to ovulation. Use of hCG or Ovuplant™ did not enhance ovulatory response in native GnRH treated mares. Use of Ovuplant™ during native GnRH therapy may increase the incidence of post-treatment anestrus in mares not becoming pregnant.  相似文献   

11.
Although the ovulatory effects of prostaglandins are well documented in several domestic species including horses, there has been little attention paid to the use of this ovulatory effect for clinical purposes. Mares often grow large follicles during the luteal phase that may or may not ovulate before progesterone levels decline. Clinical observations of administering prostaglandins in diestrous mares with large follicles suggest that there may be a negative correlation between follicular diameter and interval from treatment to ovulation. The objectives of this study were twofold: to investigate the cloprostenol dose rate effect on interval to ovulation and to confirm the negative correlation between follicular diameter and interval to ovulation. The hypothesis tested was that high doses of cloprostenol given in diestrus to mares with larger follicles would induce ovulation more rapidly than in mares given lower doses or with smaller follicles. To test the hypothesis, a total of 1,234 estrous cycles were induced with different doses of cloprostenol (ranging from 8.75 to 625 μg). All mares had at least one follicle of 28 mm or larger. Dominant follicles were followed by transrectal ultrasound examinations every other day until ovulation was detected. There was a significant effect of dose (P < .000) and follicular diameter (P < .000) on the interval from treatment to ovulation. The shortest mean interval (2.4 days) was observed after administration of 625 μg in mares with follicles 36 mm or larger, whereas the longest (4.9 days) occurred after 8.75 μg in follicles of 28 to 31 mm.  相似文献   

12.
Follicular estradiol triggers luteolysis in cattle. Therefore, the control of follicle growth and steroidogenesis is expected to modulate luteal function and might be used as an anti‐luteolytic strategy to improve embryo survival. Objectives were to evaluate follicular dynamics, plasma concentrations of estradiol and luteal lifespan in Bos indicus and crossbred cows subjected to sequential follicular aspirations. From D13 to D25 of a synchronized cycle (ovulation = D1), Nelore or crossbred, non‐pregnant and non‐lactating cows were submitted to daily ultrasound‐guided aspiration of follicles >6 mm (n = 10) or to sham aspirations (n = 8). Diameter of the largest follicle on the day of luteolysis (7.4 ± 1.0 vs 9.7 ± 1.0 mm; mean ± SEM), number of days in which follicles >6 mm were present (2.3 ± 0.4 vs 4.6 ± 0.5 days) and daily mean diameter of the largest follicle between D15 and D19 (6.4 ± 0.2 vs 8.5 ± 0.3 mm) were smaller (p < 0.01) in the aspirated group compared with the control group, respectively. Aspiration tended to reduce (p < 0.10) plasma estradiol concentrations between D18 and D20 (2.95 ± 0.54 vs 4.30 ± 0.55 pg/ml). The luteal lifespan was similar (p > 0.10) between the groups (19.6 ± 0.4 days), whereas the oestrous cycle was longer (p < 0.01) in the aspirated group (31.4 ± 1.2 vs 21.2 ± 1.3 days). Hyperechogenic structures were present at the sites of aspiration and were associated with increase in concentration of progesterone between luteolysis and oestrus. It is concluded that follicular aspiration extended the oestrous cycle and decreased the average follicular diameter on the peri‐luteolysis period but failed to delay luteolysis.  相似文献   

13.
One of the most profound theriogenology applications of transrectal diagnostic ultrasonography in mares involves the imaging of ovarian follicles and corpora lutea. The resolving capabilities (frequency) and quality of the scanner directly affect the minimal size of a structure that can be imaged and the quality of the image. High-frequency scanners (5 or 7.5 MHz) of good quality can image a 2-mm follicle and the corpus luteum throughout its functional life. A low-frequency scanner (3 or 3.5 MHz) can image a 6-mm follicle and the corpus luteum for several days after ovulation. Equine follicles are excellent subjects for transrectal imaging because they are large, filled with fluid, and readily accessible. Event the small follicles (less than 10 mm) can be diagnostically important in evaluating whether ovarian infertility has occurred and whether the follicles are responding to treatment for follicular stimulation. The large, preovulatory follicles are of special interest. Averaged over a group of 79 periods, the following significant changes were found in the preovulatory follicle: increasing diameter, shape change from spherical to pear-shaped or conical, and increasing thickness of the follicular wall. No significant changes were found in the echogenicity (gray-scale value) of the wall or fluid. In retrospect, the diameter of the follicle seemed as useful for predicting impending ovulation as any of the other ultrasound criteria. The occurrence of ovulation is readily detected by the disappearance of a large follicle that was present at a recent previous examination. In addition, the ovulation site on the day of ovulation is detectable. In one study, the site was correctly identified in 24 of 24 mares. A small amount of residual follicular fluid can sometimes (7 of 10 in one study) be detected at the site of ovulation. The residual fluid usually disappears over a period of 0.5 to 20 hours. Subsequently, the developing corpus luteum may form a central nonechogenic area with peripheral luteinization or may remain uniformly luteinized. The central areas are of apparently vascular origin (blood or a component of blood) and become clotted and organized. In one study, approximately 50 per cent of the glands developed central areas exceeding 10 per cent of the size of the gland. The central areas began to develop on Day 0 or 1 and continued to enlarge until Day 2 or 3. The relative proportion of the gland containing a central clot decreases after Day 3, but the central area usually remains visible throughout diestrus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
A serial ultrasonographic study was conducted on nine jennies aged 5–15 years from January to April 2008 with the objective of studying ovarian follicular dynamics and estrus manifestations under controlled management. Ovarian follicular activity was determined from the number and size distribution of follicles, length of interovulatory interval (IOI), growth rate of preovulatory follicles, diameter of follicles at the onset of estrus, and incidence of ovulation. Estrus manifestations were characterized using length of estrus and estrous cycle. The mean (±SD) number of follicle detected per ovary was 5.45?±?2.3 (range, 1–16) with sizes ranging from 2.9 to 44 mm. The mean (±SD) size of follicle encountered at the onset of estrus was 25.9?±?3.7 mm (range, 20.9–34.4) while that of the preovulatory follicles at ?1 day before ovulation was 36.81?±?3.78 mm. The mean (±SD) IOI, estrus, and estrous cycle length were 25.4?±?3.6, 7.9?±?2.9, and 24.2?±?7.4 days, respectively. The mean (±SD) growth rate of the preovulatory follicle after the day of divergence was 1.9?±?0.3 mm/day. Serum progesterone profile followed the same patterns of ovarian dynamics with maximum values being detected during midluteal phase. Serum progesterone assay revealed blood progesterone profiles of <1.0 ng/ml during estrus and up to 11 ng/ml during midluteal phase with a pattern following follicular dynamics. Body condition of the study jennies steadily increased and was positively correlated (r?=?0.52, p?<?0.001) with the diameter of the preovulatory follicle. In conclusion, the ultrasonic evaluation has revealed that follicular dynamics of jennies were generally related with body condition which might have been influenced by the type of management.  相似文献   

15.
The period of spring transition, from the anovulatory to the ovulatory season, is characterized in many mares by cyclical growth and regression of large dominant follicles. These follicles produce only low concentrations of estradiol and it is thought that acquisition of steroidogenic competence by large follicles during spring transition is prerequisite in stimulating LH prior to first ovulation. In situ hybridization was used to localize and quantify expression of factors that play a key role in follicular steroidogenesis: StAR, P450scc (CYP11A1), P450c17 (CYP17), P450arom (CYP19), and LH receptor (LHr). One ovary was obtained from mares on the day after detection of an actively growing 30 mm transitional anovulatory follicle (defined as the transitional follicle), and the remaining ovary was removed at the third estrus of the breeding season on the day after the preovulatory follicle reached 30 mm in diameter (defined as the preovulatory follicle). Messenger RNAs encoding StAR, CYP11A1, and CYP17 were detected only in theca cells and CYP19 mRNA was confined to the granulosa layer. There was significantly lower expression of mRNAs for the steroidogenic enzymes, StAR (P<0.001) and LHr (P<0.05) in transitional follicles than in preovulatory follicles. In conclusion, large equine follicles during spring transition have low levels of mRNA encoding steroidogenic enzymes, StAR and LHr which will contribute to the steroidogenic incompetence of dominant follicles during spring transition and their subsequent regression.  相似文献   

16.
Epidermal growth factor (EGF) is one of the important regulatory factors of EGF family. EGF has been indicated to effectively inhibit the apoptosis of follicular cells, to promote the proliferation of granulosa cells and the maturation of oocytes, and to induce ovulation process via binding to epidermal growth factor receptor (EGFR). However, little is known about the distribution and expression of EGF and EGFR in cattle ovary especially during oestrous cycle. In this study, the localization and expression rule of EGF and EGFR in cattle ovaries of follicular phase and luteal phase at different time points in oestrous cycle were investigated by using IHC and real-time qPCR. The results showed that EGF and EGFR in cattle ovary were mainly expressed in granulosa cells, cumulus cells, oocytes, zona pellucida, follicular fluid and theca folliculi externa of follicles. The protein and mRNA expression of EGF/EGFR in follicles changed regularly with the follicular growth wave both in follicular and in luteal phase ovaries. In follicular phase ovaries, the protein expression of EGF and EGFR was higher in antral follicles than that of those in other follicles during follicular growth stage, and the mRNA expression of EGFR was also increased in stage of dominant follicle selection. However, in luteal phase ovaries, the growth of follicles was impeded during corpus luteum development under the action of progesterone secreted by granular lutein cell. The mRNA and protein expressions of EGF and EGFR in ovarian follicles during oestrous cycle indicate that they play a role in promoting follicular development in follicular growth waves and mediating the selection process of dominant follicles.  相似文献   

17.
Luteinizing hormone receptor (LHR) is a specific membrane receptor on the granulosa and theca cells that bind to luteinizing hormone (LH), resulting in androgen and progesterone production. Hence, the regulation of LHR expression is necessary for follicle maturation, ovulation and corpus luteum formation. We examined the immunolocalization of LHR in cyclic gilt ovaries. The ovaries were obtained from 21 gilts aged 326.0 ± 38.7 days and weighing 154.6 ± 15.7 kg. The ovarian tissues were incubated with rabbit anti‐LHR polyclonal antibody. The follicles were categorized as primordial, primary, preantral and antral follicles. Ovarian phase was categorized as either follicular or luteal phases. The immunolocalization of LHR was clearly expressed in primary, preantral and antral follicles. LHR immunostaining was detected in the cytoplasm of granulosa, theca interna and luteal cells. LHR immunostaining was evaluated using imaging software. LHR immunostaining in the theca interna cells in antral follicles was almost twice as intense as that in preantral follicles (65.4% versus 38.3%, < 0.01). LHR immunostaining was higher in the follicular phase than in the luteal phase (58.6% versus 45.2%, < 0.05). In conclusion, the expression of LHR in the theca interna cells of antral follicles in the follicular phase was higher than in the luteal phase. The expression of LHR in all types of the follicles indicates that LHR may impact follicular development from the primary follicle stage onwards.  相似文献   

18.
Haemorrhage into the dominant follicle during the reproductive season is a subtle but definitive cause of infertility in the mare population. This condition however can be of high relevance for an individual in which its incidence is abnormally high. Little is known about the nature and factors affecting the incidence of haemorrhagic anovulatory follicles (HAFs) in the mare. The objectives of the study were to define and characterize the ultrasonographic development and incidence of HAFs and to investigate possible risk factors influencing its occurrence. Detailed reproductive and ultrasound records of seven mares studied during their entire reproductive lives (>10 years and 612 oestrous cycles) were analysed retrospectively and computed into a statistical mixed model. Of all animal studied, two mares were found to have an unusually high incidence of HAFs of approximately 25%. Time of season and use of induction treatments (Cloprostenol) were found to influence its incidence. It appears that early‐enhanced stimulatory effect of LH on an ovary with the presence of small and immature follicles might increase the risk of ovulatory failure of those follicles later in the cycle. Mares during the months of highest follicular activity (May to August) and after treatment with hormones to induce oestrus and ovulation are at greater risk to develop HAFs. The potential relevance of this study is two folds: clinical relevance for the practitioner to better understand this condition and so improve reproductive management of mares with abnormally high incidence; and to provide useful insights for researchers willing to further investigate the nature of this phenomenon.  相似文献   

19.
The use of equine FSH (eFSH) for inducing follicular development and ovulation in transitional mares was evaluated. Twenty-seven mares, from 3 to 15 years of age, were examined during the months of August and September 2004, in Brazil. Ultrasound evaluations were performed during 2 weeks before the start of the experiment to confirm transitional characteristics (no follicles larger than 25 mm and no corpus luteum [CL] present). After this period, as the mares obtained a follicle of at least 25 mm, they were assigned to one of two groups: (1) control group, untreated; (2) treated with 12.5 mg eFSH, 2 times per day, until at least half of all follicles larger than 30 mm had reached 35 mm. Follicular activity of all mares was monitored. When most of the follicles from treated mares and a single follicle from control mares acquired a preovulatory size (≥35 mm), 2,500 IU human chorionic gonadotropin (hCG) was administered IV to induce ovulation. After hCG administration, the mares were inseminated with fresh semen every other day until ovulation. Ultrasound examinations continued until detection of the last ovulation, and embryo recovery was performed 7 to 8 days after ovulation. The mares of the treated group reached the first preovulatory follicle (4.1 ± 1.0 vs 14.9 ± 10.8 days) and ovulated before untreated mares (6.6 ± 1.2 vs 18.0 ± 11.1 days; P < .05). All mares were treated with prostaglandin F (PGF), on the day of embryo flushing. Three superovulated mares did not cycle immediately after PGF treatment, and consequently had a longer interovulatory interval (22.4 vs 10.9 days, P < 0.05). The mean period of treatment was 4.79 ± 1.07 days and 85.71% of mares had multiple ovulations. The number of ovulations (5.6 vs 1.0) and embryos (2.0 vs 0.7) per mare were higher (P < 0.05) for treated mares than control mares. In conclusion, treatment with eFSH was effective in hastening the onset of the breeding season, inducing multiple ovulations, and increasing embryo production in transitional mares. This is the first report showing the use of FSH treatment to recover embryos from the first cycle of the year.  相似文献   

20.
The objectives were to determine: (i) whether intrafollicular administration of PGE2 and PGF2α to mares would hasten follicle collapse and (ii) the differences in reproductive hormone characteristics in mares with spontaneous and prostaglandin‐induced follicle collapses. Six mares were followed for two oestrous cycles each: when the mares reached a follicle diameter of 30–35 mm and showed mild‐to‐moderate endometrial oedema, mares were administered a single 0.5 ml dose containing 500 μg PGE2 and 125 μg PGF2α (treatment cycle) or a placebo (0.5 ml of water for injection; control cycle) into the preovulatory follicle (Hour 0). Blood samples were collected, and serial ultrasound examinations were performed until follicle collapse. Treated mares showed follicle collapse significantly earlier (20.0 ± 5.9 h) than the control mares (72.0 ± 10.7 h). The LH, progesterone, total oestrogens and oestradiol concentrations did not differ between groups; however, the progesterone concentration increased more between 48 and 72 h after follicle injection in the treatment compared to the control cycles (P < 0.05). In conclusion, intrafollicular treatment with PGE2 and PGF2α hastened follicle collapse in mares without the simultaneous use of an inductor of ovulation; despite the early induction of follicle collapse, the profiles of LH and oestradiol were not altered. This study provides information on the role of prostaglandins (PGs) in the process of follicle wall rupture and collapse and suggests that this may happen even before the beginning of the sharp rise in circulating LH at the final stage of the ovulatory surge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号