首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Modifying electrical activation conditions have been used to improve in vitro embryo production and development in pigs. However, there is insufficient information about correlations of porcine embryo development with oocyte pre‐ and post‐activation conditions. The purpose of this study was to compare the developmental rates of porcine oocytes subjected to different mannitol exposure times, either pre‐ or post‐electrical activation, and to elucidate the reason for the optimal mannitol exposure time. Mannitol exposure times around activation were adjusted as 0, 1, 2 or 3 min. Blastocyst development were checked on day 7. Exposure of oocytes to mannitol for 1 or 2 min before electrical activation produced significantly higher blastocyst rates than exposure for 0 or 3 min. There was no significant difference in blastocyst rates when activated oocytes were exposed to mannitol for 0, 1, 2 or 3 min after electrical activation. While exposure of oocytes to mannitol for 1 min pre‐ and 3 min post‐activation showed significantly higher blastocyst development than 0 min pre‐ and 0 min post‐activation. It also showed higher maintenance of normal oocyte morphology than exposure for 0 min pre‐ and 0 min post‐activation. In conclusion, exposure of oocytes to mannitol for 1 min pre‐ and 3 min post‐activation seems to be optimal for producing higher in vitro blastocyst development of porcine parthenogenetic embryos. The higher blastocyst development is correlated with higher maintenance of normal morphology in oocytes exposed to mannitol for 1 min pre‐ and 3 min post‐activation.  相似文献   

2.
The loss of developmental competence and the glutathione (GSH) content of maternally heat‐stressed mouse oocytes and zygotes were determined. In experiment 1, zygotes were collected from female mice that were heat‐stressed at 35°C for 10 h after hCG injection (oocyte maturation stage), or for 12 h on Day 1 of pregnancy (zygote stage), followed by in vitro culture. To minimize the effects of heat stress on the fertilization process, heat‐stressed oocytes that were fertilized in vitro were also included in this experiment. In experiment 2, heat‐stressed oocytes and zygotes were assayed for GSH content. The application of heat stress to the oocytes resulted in a significant decrease in the percentage of zygotes that developed to morulae or blastocysts, both for naturally fertilized oocytes (56.9% for heat‐stressed vs 85.4% for control) or in vitro‐fertilized oocytes (54.5%vs 73.6%). In the heat‐stressed zygotes, the disruption of embryonic development was more drastic (24.3%vs 90.3%), with the majority of zygotes being arrested at the two‐cell stage. In contrast, the GSH content decreased significantly in heat‐stressed zygotes, but not in heat‐stressed oocytes. These results demonstrate that the loss of developmental competence of early embryos is associated with a decrease in the GSH content of maternally heat‐stressed zygotes, but not of maternally heat‐stressed oocytes.  相似文献   

3.
This study examined the presence of immunoreactivity and mRNA for different nitric oxide synthase (NOS) isoforms in immature and in vitro matured oocytes and in embryos at two‐, four‐ and eight‐cell, and morula and blastocyst stages in buffalo. Oocytes obtained from slaughterhouse buffalo ovaries were subjected to in vitro maturation in TCM‐199 + 10% FBS + 5 μg/ml pFSH + 1 μg/ml estradiol‐17β + 0.81 mm sodium pyruvate + 10% buffalo follicular fluid + 50 μg/ml gentamycin sulphate for 24 h in a CO2 incubator (5% CO2 in air) at 38.5°C. Following in vitro fertilization carried out by incubating them with 2–4 million spermatozoa/ml for 18 h, the presumed zygotes were cultured in mCR2aa medium containing 0.6% BSA and 10% FBS for up to 8 days post insemination. Immunofluorescence staining of NOS using antibodies that cross‐reacted either with all the NOS isoforms i.e., universal (uNOS) or specifically with inducible (iNOS) or endothelial (eNOS) isoforms revealed that NOS was present in oocytes and embryos at all the stages examined. Examination of the semi‐quantitative expression of NOS genes by RT‐PCR revealed that the iNOS, eNOS and nNOS mRNA was present in the immature and mature oocytes and in all the embryonic stages examined. In conclusion, it was demonstrated in the present study that immunoreactivity and mRNA for different NOS isoforms was present in buffalo oocytes and pre‐implantation stage embryos.  相似文献   

4.
The objectives of this study were to evaluate if vitrified porcine spermatozoa are able to maintain their capacity to produce zygotes in vitro using intracytoplasmic sperm injection (ICSI) and to evaluate the zygote development in two in vitro atmospheric conditions: 5% CO2 and tri‐gas. A group of porcine oocytes maturated in vitro were injected with vitrified‐warmed sperm (treatment group) and another group, with sperm diluted and conserved at 17°C (control group). To evidence parthenogenetic activation, some oocytes were submitted to a Sham test. The injected oocytes were cultured in G1 medium at 38°C, 100% humidity and 5% CO2 or tri‐gas. No significant differences (> .05) were observed in embryo development between the oocytes injected with vitrified‐warmed sperm (31.8%; 36/113), and those injected with semen diluted and conserved at 17°C (35.5%; 32/90), when cultured in 5% CO2 or under tri‐gas atmosphere (42.9%; 39/91 vs. 34.2%; 26/76, respectively). No significant differences (p > .05) were observed in the percentage of pronuclei (PN) obtained between 5% CO2 and tri‐gas, within each treatment either. Of the 52 oocytes submitted to the Sham test, only two presented a female PN (activation) indicating that the PN observed in the treatment group were a product of fertilization and not parthenogenetic activation. To conclude, porcine sperm vitrified using spheres, at a concentration of 5 × 106 spermatozoa/ml in TALP medium with 1% bovine serum albumin (BSA), conserve condensed and intact chromatin capable of producing early embryo development up to the pronuclear stage.  相似文献   

5.
The objective of this study was to determine the effects of various methods of sperm pre‐treatment on male pronuclear (MPN) formation and subsequent development of ovine embryos derived from in vitro‐matured oocytes and intracytoplasmic sperm injection (ICSI). The effect of treatment of injected oocytes with dithiothreitol (DTT) on embryo development was also assessed. In Exp. 1, the injected oocytes with non‐treated sperm were activated with three different procedures. The cleavage and blastocyst rates in those activated with DTT was lower (p < 0.05) than those activated with either ionomycin (Io) + 6‐dimethylaminopurine (6‐DMAP) or DTT + I + 6‐DMAP. In Exp. 2, the effects of sperm pre‐incubated with DTT, sodium dodecyl sulphate (SDS) or DTT + SDS as well as two‐time frozen/thawed sperm (without cryoprotectant) on MPN formation and oocyte activation were examined. The non‐treated sperm served as controls. The MPN formation in DTT + SDS group was higher (p < 0.05) than other groups except for freeze–thaw group. No difference in the rate of activated ICSI oocytes was observed among groups. In Exp. 3, the effect of pre‐treatment of sperm on subsequent development of ICSI embryos and blastocyst cell numbers were examined. The rates of cleavage and blastocyst formation as well as the blastocyst cell numbers were similar among the pre‐treated and control groups. In conclusion, pre‐treatment of sperm with DTT + SDS positively affected MPN formation, although the subsequent development capacity of the resulting embryos remained limited. Moreover, DTT was not effective on oocyte activation compared with Io + 6‐DMAP after ICSI.  相似文献   

6.
The possibility of producing transgenic buffalo embryos by chimera and nuclear transfer (NT) using buffalo embryonic germ (EG)‐like cells expressing enhanced green fluorescent protein (EGFP) has been explored in this study. Buffalo EG‐like cells and fibroblasts with two to eight passages were transfected with the lined plasmid (pCE‐EGFP‐IRES‐Neo‐dNdB) using LipofectamineTM 2000 and selected by culturing in 200 μg/ml G418 for 6–8 days. G418 resistant fibroblasts and EG‐like cells were used for embryo chimera and NT. To produce blastocysts by chimera, 8–16 cells embryos were injected with EG‐like and fibroblast cells. Then, to produce blastocysts by NT, in vitro maturated oocytes were enucleated and afterwards EG‐like/fibroblast cells transferred into the perivitelline space. No statistical differences were observed for the total blastocyst produced by the chimeric method, using EG‐like and fibroblasts as donor cells, resulting on an accomplishment of 35.6% vs 33.3%, respectively. Nevertheless, besides from the 37 blastocysts produced, 23 (62.2%) from EG‐like cells expressed EGFP, none of blastocysts from foetal fibroblasts expressed this protein. When the NT method was used, no statistical difference among different generations was observed in the percentage of oocytes fused, cleaved, and developed to blastocysts after NT for EG‐like cells. On average, the percentage of oocytes fused, cleaved, and developed to blastocysts after NT was respectively 81.8%, 67.7% and 10.7%. For the expression of EGFP, from the 12 blastocysts produced by NT, 7 of them were positive, while none of NT embryos from EGFP positive fibroblasts developed to blastocysts. Results of the present study clearly demonstrated that gene transfected buffalo EG‐like cells have the ability to form chimeric embryos after injecting into buffalo early embryos and reprogramming ability after NT, which can be employed to produce transgenic buffalos through either embryo chimera or NT.  相似文献   

7.
Most studies of mouse cloning successfully achieved activation of the reconstructed oocytes by strontium (Sr) combined with cytochalasin B (CB) treatment. A protein kinase inhibitor, 6‐dimethylaminopurine (6‐DMAP), was used to inhibit the activity of maturation promoting factor for activation of oocytes, but it has never been successfully applied in mouse cloning. This study investigates the activation efficiency of 6‐DMAP in mouse somatic cell nuclear transfer (SCNT). Higher parthenogenetic blastocyst rates (71–72%, p < 0.05) were achieved in the oocytes treated with Sr6D (10 mM Sr combined with 2 mM 6‐DMAP for 4 h) and Sr6D + SrCB (Sr6D for 2 h then Sr combined with 5 μg/ml CB for another 2 h), and a higher rate of hatching and hatched blastocyst was observed in the Sr6D + SrCB group (31%, p < 0.01) compared with other treatment groups (1–8%). For mouse cloning, cumulus cells of enhanced green fluorescent protein (EGFP)‐expressed ESC chimera F1 were used as donor nuclei. Following activation, better development of the cloned embryos was observed in Sr6D + SrCB treatment. Moreover, different media, i.e. KSOM‐AA, MEM‐α and MK, for culturing cloned embryos were also compared in this study. Better morula/blastocyst (40%) and blastocyst (29%) rates were achieved in the embryos cultured in MEM‐α medium (p < 0.05). Consequently, four EGFP cloned mice were generated in the activation treatment containing 6‐DMAP following embryo transfer. In conclusion, treatment with 6‐DMAP in combination with other activation stimuli successfully activates mouse reconstructed oocytes and support full‐term development of the transgenic SCNT cloned embryos.  相似文献   

8.
Microinjection of exogenous DNA into the cytoplasm of matured oocytes or zygotes is a promising technique to generate transgenic animals. However, the data about the microinjection time and procedure in sheep are limited and have not treated in detail. To obtain more in-depth information, the Sarda sheep oocytes from abattoir-derived ovaries were subjected to IVM and IVF. Then, the GFP plasmid as a reporter gene was injected into the cytoplasm of MII oocytes (n: 95) and zygotes at different post-insemination intervals (6–8 hpi, n: 120; 8–10 hpi, n: 122; 10–12 hpi, n: 110 and 12–14 hpi, n: 96). There were no significant differences in the cleavage rates between the groups. However, blastocyst rate of injected zygotes at all-time intervals was significantly lower than injected MII oocytes and control group (< 0.05). Interestingly, the proportion of GFP-positive embryos was higher at 8–10 hpi compared with other injected groups (4 % versus 0 %, < 0.01). Among these, the proportion of mosaic embryos was high and two of those embryos developed to the blastocyst stage. In conclusion, we settled on the cytoplasmic microinjection of GFP plasmid at 8–10 hpi as an optimized time point for the production of transgenic sheep and subsequent experiments.  相似文献   

9.
The objective of this study was to evaluate the effect of retinol (RT) and retinoic acid (RA) on the in vitro development of pre‐implantation goat embryos cultured in potassium simplex optimized medium or synthetic oviduct fluid or cocultured in oviductal cells monolayer either in potassium simplex optimized medium or synthetic oviduct fluid. A total of 2407 cumulus‐oocyte complexes were aspirated from 2 to 6 mm ovarian follicles from slaughtered animals. Selected cumulus‐oocyte complexes were subjected to in vitro maturation in TCM 199 for 24 h at 39°C in an atmosphere of 5% (v/v) CO2 in humidified air. In vitro fertilization was performed in modified defined medium. Eighteen hours after in vitro fertilization, cumulus cells were removed and presumptive zygotes were randomly distributed into experimental groups. In Experiment 1, presumptive zygotes were cultured in potassium simplex optimized medium, potassium simplex optimized medium + RT, potassium simplex optimized medium + retinoic acid, synthetic oviduct fluid, synthetic oviduct fluid + RT and synthetic oviduct fluid + RA at 39°C in a humidified atmosphere of 5% (v/v) CO2, 5% (v/v) O2 and 90% (v/v) N2. In Experiment 2, presumptive zygotes were cocultured in potassium simplex optimized medium + oviductal cells monolayer, potassium simplex optimized medium + RT + oviductal cells monolayer, potassium simplex optimized medium + RA + oviductal cells monolayer, synthetic oviduct fluid + oviductal cells monolayer, synthetic oviduct fluid + RT + oviductal cells monolayer and synthetic oviduct fluid + RA + oviductal cells monolayer in an atmosphere of 5% (v/v) CO2 in humidified air. In both experiments, media were partially changed on day 2 after in vitro fertilization and unfertilized oocytes were excluded from the experiment. Embryos were cultured or cocultured for 8 days. In Experiment 1, there was no effect of RT or RA supplementation on the proportion of oocytes that reached the morula or blastocyst stages. By contrast, Experiment 2 demonstrated that the addition of 0.28 μg/ml RT and 0.5 μm RA to the embryo culture media stimulated (p < 0.05) development to the morula and blastocyst stages under the coculture conditions tested. In conclusion, retinoids play an important role in pre‐implantation development of goat embryos and can be used to enhance in vitro embryo production.  相似文献   

10.
11.
Our study was conducted to assess the follicular development and availability of sound ovarian oocytes for in vitro production (IVP) of embryos in pre‐pubertal cats. The relationship between body and ovarian weight was examined in 93 cats. The results revealed that ovarian weight rapidly increased until 100 days of estimated age. By histological evaluation of ovaries obtained from 11 pre‐pubertal cats with estimated age of <20, 20–40 and 100–120 days, it was clarified that the increase in ovarian weight during kitten growth accompanied the increase in the number and size of antral follicles. The follicular diameter and percentage of normal oocytes in secondary/antral follicles also increased as estimated age (body weight) increased. The oocytes obtained from pre‐pubertal cats with 100–120 days of estimated age were used for IVP of embryos. The results showed that the success rates of in vitro maturation, in vitro fertilization and development to blastocysts after in vitro culture in pre‐pubertal cats were lower than in sexually mature cats. However, the percentage of blastocysts based on the cleaved embryos and cell number of blastocysts in pre‐pubertal cats were comparable to those in mature cats. In conclusion, these results suggest that the ovaries of pre‐pubertal cats with ≥100 days of age contain oocytes with in vitro developmental competence to blastocysts.  相似文献   

12.
This study detected the distribution of laminin during embryonic formation by immunofluorescence. To determine the possible function of laminin on developmental ability of in vitro fertilized embryos, the presumptive zygotes were divided and transferred to CR1aa medium supplemented with different concentrations (0 μg/ml, 5 μg/ml, 10 μg/ml and 20 μg/ml) of laminin. To explore the association with sperm–oocyte fusion, oocytes and/or sperm were pre‐incubated with laminin or anti‐β1 antibody before insemination. Laminin was absent in mature oocytes and could be detected first at the 8‐cell stage and then displayed an increasing tendency. Adding 10 μg/ml laminin to the culture medium improved embryonic development including cleavage rate, blastocyst rate, total cell numbers in the blastocyst and cell numbers in the inner cell mass. Laminin inhibited sperm–oocyte fusion when incubated with oocytes and/or sperm before in vitro fertilization, and only integrin‐β1 of sperm was involved in sperm–oocyte binding. Inhibition may be caused by blocking β1, but why laminin inhibits fertilization is still unknown. The results suggest that laminin plays an important role during embryonic formation and has a negative function in sperm–oocyte fusion, but improves embryonic development. However, only integrin‐β1 is involved in sperm–oocyte binding.  相似文献   

13.
The developmental kinetics of pig embryos produced by parthenogenetic activation without (PAZF) or with (PAZI) zona pellucida or by handmade cloning (HMC) was compared by time‐lapse videography. After cumulus cell removal, the matured oocytes were either left zona intact (PAZI) or were made zona free by pronase digestion (PAZF) before they were activated (PA). Other matured oocytes were used for HMC based on foetal fibroblast cells. On Day 0 (day of PA or reconstruction), the embryos were cultured for 7 days in vitro in our time‐lapse system. Pictures were taken every 30 min, and afterwards, each cell cycle was identified for each embryo to be analysed. Results showed that the PA embryos (both PAZF and PAZI) had shorter first cell cycle compared with HMC (17.4. 17.8 vs 23.6 h), but had a longer time length from four cell to morula stages (57.9, 53.8 vs 44.9 h). However, at the second cell cycle, PAZF embryos needed shorter time, while PAZI embryos had similar time length as HMC embryos, and both were longer than PAZF (23.4, 24.8 vs 14.6 h). Both PAZF and PAZI embryos used similar time to reach the blastocyst stage, and this was later than HMC embryos. In addition, when all of these embryos were grouped into viable (developed to blastocysts) and non‐viable (not developed to blastocysts), the only difference in the time length was observed on the first cell cycle (18.6 vs 24.5 h), but not on the later cell cycles. In conclusion, our results not only give detailed information regarding the time schedule of in vitro‐handled pig embryos, but also indicate that the first cell cycle could be used as a selecting marker for embryo viability. However, to evaluate the effect of the produced techniques, the whole time schedule of the pre‐implantation developmental kinetics should be observed.  相似文献   

14.
This study investigated the effect of porcine follicular fluid (PFF) and dibutyryl cyclic adenosine monophosphate (dbcAMP) during in vitro maturation (IVM) of porcine oocytes on meiotic maturation, fertilization and embryo development, and compared the effect of supplementing the embryo culture media with PFF or foetal bovine serum (FBS) on embryo development. Oocytes from pre‐pubertal gilts were IVM for 44 h, and parthenogenetically activated or in vitro‐fertilized. Embryos were cultured in porcine zygote medium (PZM3) for 7 days. Cleavage and blastocyst rates were evaluated at 48 h and 7 days of culture. The supplementation of the IVM medium with 25% PFF and 1 mm dbcAMP for the first 22 h resulted in more (p < 0.05) embryos developing to the blastocyst stage as compared with the inclusion of dbcAMP alone. The dbcAMP + PFF combination increased (p < 0.05) the average number of nuclei per blastocyst as compared with either of these components alone or in its absence. A synergistic effect of dbcAMP + PFF during IVM was also reflected in the capacity of oocytes to regulate sperm penetration and prevent polyspermy, as twice as many oocytes from the control group were penetrated by more than one sperm as compared with those matured in the presence of both dbcAMP and PFF. The supplementation of PZM3 with 10% FBS from days 5 to 7 of culture significantly improved the total cell quantity in embryos derived either from control or dbcAMP + PFF matured oocytes. There was no effect on the total cell quantity when FBS was replaced by the same concentration of PFF. These studies showed that dbcAMP, PFF and FBS can improve both the quantity (57.3% vs 41.5%) and quality (74.8 vs 33.3 nuclei) of porcine blastocysts derived from oocytes recovered of pre‐pubertal gilts.  相似文献   

15.
16.
The aim of the present study was to establish the technology of intracytoplasmic sperm injection (ICSI) in rabbit by using the sperm frozen without cryoprotectants. Observation under an electron microscope revealed that the rabbit spermatozoa frozen without cryoprotectants had severe damage especially in the plasma membrane and junction between head and tail. However, after being injected into the oocytes, the sperm frozen without cryoprotectants retained the capability of supporting the cleavage and development of the ICSI oocytes, with no significant difference from that of fresh sperm, although the development of ICSI embryos derived from either frozen sperm or fresh sperm is much lower than that of in vivo‐fertilized zygotes. When additional artificial activation was applied following ICSI, the rates of cleavage and blastocyst formation of ICSI oocytes were significantly increased when compared with the oocytes without additional activation. Yet, the cell numbers in blastocysts were not significantly different between the activation and non‐activation group. After embryo transfer, four offspring were obtained from the oocytes microinjected with the sperm frozen without cryoprotectants. The technology established by this study may facilitate exploring the ICSI‐based transgenic method in rabbit and broaden the application of ICSI technique in related field.  相似文献   

17.
The objective of this study was to find out the impact of L‐carnitine (10 mM) on developmental regulation of preimplantation sheep embryos cultured in vitro when supplemented in maturation medium and post‐fertilization medium separately. Subsequent objective was to observe the L‐carnitine‐mediated alteration in expression of apoptotic genes (Bcl2, Bax, Casp3 and PCNA) in sheep oocytes and developing embryos produced in vitro. Oocytes matured with L‐carnitine showed significantly (p < .05) higher cleavage (67.23% vs 43.12%), morula (47.65% vs 28.58%) and blastocysts (32.12% vs 13.24%) percentage as compared to presumptive zygotes cultured with L‐carnitine during post‐fertilization period. So it is suggested to use L‐carnitine during maturation than post‐fertilization period. Antiapoptotic and proliferative effects of L‐carnitine were confirmed by inducing culture medium with actinomycin D (apoptotic agent) and TNFα (antiproliferative agent), respectively, with and without L‐carnitine. Oocytes and embryos cultured with actinomycin D and TNFα showed developmental arrest with significant (p < .05) decrease in morula and blastocysts percentage but s upplementation of L‐carnitine to actinomycin D and TNFα induced culture medium showed similar result as that of control . L‐carnitine supplementation during IVM significantly (p < .05) upregulated the expression of Bcl2 and PCNA genes in majority of the developmental stages. Although L‐carnitine upregulated the expression of Bax in initial developmental stages but downregulated at latter part, whereas the expression of Casp3 was upregulated upto 16‐cell stage but after that there was no difference in expression. Expression of GAPDH gene was not affected by L‐carnitine supplementation. In conclusion, L‐carnitine acted as an antiapoptotic and proliferative compound during embryo development and supplementation of L‐carnitine during IVM altered the expression of apoptotic genes in the developmental stages of embryos.  相似文献   

18.
Co‐culture of cumulus‐oocyte complexes (COCs) with denuded oocytes (DOs) during in vitro maturation (IVM) was reported to improve the developmental competence of oocytes via oocyte‐secreted factors in cattle. The aim of the present study was to investigate if addition of DOs during IVM can improve in vitro fertilization (IVF) and in vitro culture (IVC) results for oocytes in a defined in vitro production system in pigs. The maturation medium was porcine oocyte medium supplemented with gonadotropins, dbcAMP and β‐mercaptoethanol. Cumulus‐oocyte complexes were matured without DOs or with DOs in different ratios (9 COC, 9 COC+16 DO and 9 COC+36 DO). Consequently; oocytes were subjected to IVF as intact COCs or after denudation to examine if DO addition during IVM would affect cumulus or oocyte properties. After fertilization, penetration and normal fertilization rates of zygotes were not different between all tested groups irrespective of denudation before IVF. When zygotes were cultured for 6 days, no difference could be observed between all treatment groups in cleavage rate, blastocyst rate and cell number per blastocyst. In conclusion, irrespective of the ratio, co‐culture with DOs during IVM did not improve fertilization parameters and embryo development of cumulus‐enclosed porcine oocytes in a defined system.  相似文献   

19.
This study was conducted to evaluate the effects of different concentrations of the antioxidant N‐acetyl‐cysteine (NAC) supplemented to the maturation medium on porcine embryo development. Concentrations of NAC and its synthetic derivative, NAC‐amide (NACA) were evaluated for effects on nuclear maturation, fertilization success and embryo development. Concentrations of NAC (0, 0.5, 1.0, 1.5, 2.0, 2.5 and 5.0 mm ) were supplemented to maturing oocytes, and embryo development was analysed at 48 and 144 h post‐fertilization. There were no differences among cleavage rates for any of the treatment groups. Blastocyst formation for 1.5 mm NAC (56.5 ± 9.2%) was higher (p < 0.05) than all other supplementations. There were no differences in nuclear maturation or fertilization or in cleavage rates when comparing 1.5 mm NAC and 1.5 mm NACA supplementation to the control. Blastocyst formation for 1.5 mm NAC (44.4 ± 4.7%) and 1.5 mm NACA (46.2 ± 3.4%) supplementation were higher (p < 0.05) than the control (32.1 ± 6.2%) oocytes. These results indicate that supplementing 1.5 mm of NAC or NACA to the oocyte maturation medium increased the percentage of viable embryos reaching the blastocyst stage of development.  相似文献   

20.
Assessment of the developmental ability of oocytes following freezing and thawing is an important step for optimizing oocyte cryopreservation techniques. However, the in vitro fertilization of frozen-thawed mouse oocytes is often inefficient because of incomplete capacitation of spermatozoa in the absence of surrounding cumulus cells. This study was undertaken to determine whether the oocyte cryopreservation efficiency of different strains of mice could be assessed from the development of oocytes following parthenogenetic activation and intracytoplasmic sperm injection (ICSI). Oocytes were collected from hybrid (C57BL/6 x DBA/2) F1 or inbred (C57BL/6J, C3H/HeN, DBA/2J and BALB/cA) strains and were vitrified in a solution containing ethylene glycol, DMSO, Ficoll and sucrose. In the first series of experiments, oocytes were activated parthenogenetically by Sr(2+) treatment after warming. The oocytes from the inbred strains, but not those of the F1 hybrid, were diploidized by cytochalasin treatment to obtain a sufficient number of blastocysts. In all strains tested, parthenogenetic embryos derived from vitrified oocytes developed into blastocysts at rates between 23 and 68%. In the second series of experiments, vitrified oocytes from each strain were injected with homologous spermatozoa after warming. Normal offspring were obtained from all strains at rates between 5 and 26% per embryo transferred. Thus, the feasibility of oocyte cryopreservation protocols can be assessed easily by in vitro development of parthenogenetic embryos or by in vivo development of ICSI embryos. Moreover, the oocytes of these four major inbred strains of mice can be cryopreserved safely for production of offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号