首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
参考作物蒸散量是灌溉设计、灌溉计划等的基础数据,利用滇中地区19个气象台站的观测数据,计算了滇中地区的参考作物蒸散量(ET0),分析了ET0时间和空间的变化特征及气象要素对其的影响。结果表明:研究区的ET0于1982年发生突变,1960—1982年变化趋势不明显,1982—2002年呈现下降的趋势,2003—2012年ET0呈现增加的趋势,多年平均ET0约为1 223.7 mm。ET0的空间特征表现为中部高,东西低,春季最大,夏季高于秋季,冬季最小,高值区出现在元谋地区。ET0与风速、气温和日照时数呈现显著的正相关关系,与相对湿度呈现极显著的负相关关系。偏相关分析和逐步回归分析显示在年尺度上,风速、相对湿度和日照时数的组合可以预测ET0的年际变化。  相似文献   

2.
石羊河流域近53 a参考作物蒸散量的敏感性分析   总被引:1,自引:0,他引:1  
利用国家气象信息中心提供的地面气候资料日值数据集,基于FAO Penman-Monteith公式计算了石羊河流域4个测站1959-2011年的逐日参考作物蒸散量(ET0)。利用敏感系数法计算了其对平均最高气温、平均最低气温、风速、平均相对湿度和日照时数的敏感系数,并分析了敏感系数的时空变化特征。结果表明,石羊河流域ET0对相对湿度最敏感,其次为风速和气温,而对日照时数的敏感性最低。由于气象要素分布不均,敏感系数的空间差异显著,相对湿度的敏感系数在上游祁连山区形成高值区,同时,气温在该区的敏感系数也相对较大,而风速的敏感系数在下游民勤盆地较大,日照时数的敏感系数在全区无明显差异。各气象因子的敏感系数均存在一定程度的波动,风速的敏感系数冬高夏低,气温和日照时数的敏感系数均为夏季最高,相对湿度敏感系数的绝对值持续上升在秋季达到最大。53 a来,相对湿度敏感系数波动变化,近20 a来其绝对值上升趋势显著,而风速、日照时数和气温的敏感系数无明显变化趋势。  相似文献   

3.
北京市参考作物蒸散量的时空分布特征   总被引:22,自引:9,他引:22  
利用北京市各气象站点的长期观测资料,使用FAO推荐的Penman-Monteith法,计算了各站点逐月参考作物蒸散量ET0。在此基础上使用插值生成ET0的灰度分布图与等值线图,分析了ET0的时空分布特征。研究结果发现,北京市ET0分布具有2个常年稳定的低蒸发中心及多个随季节变化的高蒸发中心。区域内海拔高度与地形变化造成地表温度和热量平衡变化是导致ET0时空变化特征的主导因素;风速、日照时数和相对湿度等气象因素及其综合作用对ET0也有较大的影响。  相似文献   

4.
河南省参考作物蒸散量变化特征及其气候影响分析   总被引:1,自引:0,他引:1  
基于河南省111个气象站1971-2010年逐日平均气温、最高气温、最低气温、相对湿度、风速和日照时数等气候要素资料,应用Penman-Monteith模型计算各站点逐日参考作物蒸散量(ET0),结合数理统计方法,分析近40a来河南省年ET0的时空变化特征,并对其主要影响因子进行探讨.结果表明,Penman-Monteith模型对河南省ET0的模拟能力较强,模拟值与同期小型蒸发皿蒸发量的相关系数r=0.84(P <0.01).近40a,河南省年ET0平均值为796.1mm(±102.2mm,n=4169),在空间分布上,总体表现出北高南低的特征,并以24.7mm·10a-1(P <0.01)的线性倾向率减少,呈明显减少的站点主要分布在34°N以北地区.偏相关分析表明,全省各地(市)年ETo与各气象要素关系密切,除济源外,年ET0均表现出与风速呈负相关且相关系数最大.逐步回归分析显示,年ETo与平均气温、日照时数、风速和相对湿度的关系密切;风速、日照时数和平均气温对年ET0的贡献为正效应,而相对湿度为负效应.近40a,风速减小是导致河南省年ET0呈显著减小的主要原因;但从综合影响看,这是各气象因素综合作用的效果,且各因子的贡献存在区域差异.  相似文献   

5.
为预测气候因子变化引起的区域参考作物蒸散量(ETo)的变化,以黄土高原地区为研究区,运用FAOPenman-Montieth方程计算了68个站点1961-2010年生长季参考作物蒸散量,并计算其对平均气温、太阳辐射、风速和实际水汽压的敏感系数,最后分析了敏感系数的时空变化特征.结果表明,黄土高原地区生长季ETo对实际水汽压最敏感,其次是太阳辐射和平均气温,对风速的敏感性最低;平均气温的敏感系数和实际水汽压敏感系数绝对值呈单峰型分布,二者分别在7月、9月达到最大值,太阳辐射敏感系数表现为持续上升趋势,风速敏感系数波动幅度最小,其值在4月最大;生长季气候因子敏感系数的空间差异性显著,平均气温敏感系数西部明显大于东部,太阳辐射敏感系数在高海拔地区形成高值区,风速敏感系数在西风带Ⅳ区形成高值区,实际水汽压敏感系数在黄土高原湿润地带最大.  相似文献   

6.
西北地区近49年生长季参考作物蒸散量的敏感性分析   总被引:6,自引:0,他引:6  
基于FAO Penman-Monteith公式计算了西北地区126个站点1961-2009年的生长季参考作物蒸散量(ET0)对气温、风速、相对湿度和太阳总辐射的敏感系数,并对敏感系数的时空变化特征进行分析。结果表明:西北地区生长季ET0对太阳总辐射最敏感,其次是气温和相对湿度,对风速的敏感性最低。气象要素分布的不均匀性导致敏感系数的空间差异显著,气温和风速的敏感系数在西风带气候区较大,相对湿度敏感系数在较湿润地带形成高值区,太阳总辐射敏感系数南部明显大于北部。生长季内,各气象因子的敏感系数均存在一定程度的波动,气温和太阳总辐射的敏感系数呈单峰型分布,风速敏感系数呈单谷型分布,相对湿度敏感系数的绝对值持续上升。49a来,太阳总辐射敏感系数显著上升,相对湿度敏感系数明显下降,其趋势系数均通过0.05水平的显著性检验,而气温和风速的敏感系数以波动为主,无明显变化趋势。  相似文献   

7.
基于阿勒泰地区7个气象站1961—2012年逐日气象资料,采用Penman-Monteith模型计算了逐日参考作物蒸散量,运用Mann-Kendall非参数检验法、小波分析法,并结合ArcGIS软件对作物参考蒸散量的时空变化特征进行了研究。结果表明:阿勒泰年和春季作物参考蒸散量呈增加趋势,而夏季、秋季和冬季作物参考蒸散量呈减少趋势。年和夏季的作物参考蒸散量分别在1994年、1992年发生突变,而春季、秋季和冬季的作物参考蒸散量则没有发生突变。年和四季的作物参考蒸散量都存在27 a的周期。空间分布上,年、春季、夏季和秋季的平均作物参考蒸散量呈自阿勒泰市南部和福海县西北部向东部、南部和西部逐渐递减的变化趋势。而冬季作物潜在蒸散量大致呈现自西向东逐渐递减。变化趋势上,春季潜在蒸散量在空间上都呈增加趋势,而年、夏季、秋季和冬季的潜在蒸散量在阿勒泰的东部呈增加趋势,在西部则呈减少趋势。  相似文献   

8.
黄土高原地区近50年参考作物蒸散量变化特征   总被引:20,自引:4,他引:16  
为了探求黄土高原地区深层土壤干燥化过程及成因和该地区植被耗水的变化情况,该文根据黄土高原5站点近50 a的日气象资料,利用Penman-Monteith公式计算了同参考作物蒸散量,并分析了Eto的日均值、月均值和年值的变化特征,同时分析了平均温度、最高温度、最低温度、日照时数、风速和相对湿度与Eto的相关性.结果表明:黄土高原地区Eto日值和月均值与大气温度、日照时数均达到了极显著的相关性,其Eto日值和层Eto月均值曲线均呈单峰型,存在明显的季节变化特征,峰值均出现在6月.除了西安和西宁Eto年值显著降低外,其他3站点的年际间变化趋势不显著,同时除西宁站外其他各站点在20世纪80年代后Eto均有上升的趋势.  相似文献   

9.
徐羽  徐刚  吴艳飞  甘芬芳 《水土保持研究》2015,22(3):176-181,187
利用1960—2008年重庆市34个气象站点的逐日降水、气温、气压、空气相对湿度、日照时数等气象要素资料,采用FAO推荐的彭曼—孟蒂斯公式,以日为单位,计算出各站点近49 a的参考作物蒸散量和湿润指数;采用线性趋势法、ArcGIS反距离权重空间插值法、Mann-Kendall突变检验法和相关分析法等方法,分析了1960—2008年重庆市的参考作物蒸散量和湿润指数的时空分布和变化趋势。结果表明:(1)重庆市年均参考作物蒸散量的空间分布差异显著,表现为由渝东南地区向渝东北地区和渝中西部地区增加的趋势。时间上,1960—2008年总体呈现下降趋势,但有阶段性的差异;(2)年均湿润指数空间分布差异较大,以渝东南的酉阳湿润指数最高,并由渝东南地区向渝东北地区和渝中西部地区递减。年均湿润指数时间分布总体呈现上升趋势,但阶段性有差异,突变年为1979年;(3)重庆市地表湿润指数与降水量、相对湿度呈现显著的正相关关系,与平均气温、最高气温、平均风速、日照时数以及参考作物蒸散量呈负相关。  相似文献   

10.
根据海南岛18个气象站1971–2010年逐日气象资料和Penman–Monteith模型计算各站ET0,利用线性回归和ArcGIS空间插值技术分析年和四季ET0的时空变化特征,并采用敏感系数和气象因子的相对变化率相结合的方法对年和四季ET0变化成因进行分析。结果表明:海南岛18个市(县)年ET0均值为1191.4mm,其空间分布,除夏季外,年和其余各季ET0大致呈由东北向西南递增的趋势。近40a海南岛18个市(县)年ET0的气候倾向率均值为-5.0mm×10a-1,其中13市(县)为负值,5市(县)为正值。春、夏、秋、冬四季ET0的气候倾向率分别为-3.1、1.8、-0.7和-2.8mm×10a-1。总体来看,年ET0减少的区域主要是由于春季ET0减少所致,年ET0增加的区域主要是因夏季ET0增加之故。引起海南岛大部分地区年和春、夏、秋季ET0减少的主要原因是平均风速减小和日照时数的减少,冬季ET0减少除与平均风速减小、日照时数减少有关外,水汽压增加也是主要成因之一。年和四季ET0增加的区域主要是平均最高和平均最低气温升高。  相似文献   

11.
东北地区参考作物蒸散量对主要气象要素的敏感性分析   总被引:12,自引:1,他引:12  
利用国家气象局提供的地面气候资料日值数据集,通过FAO推荐的Penman-Monteith公式计算了东北地区1961-2008年生长季(5-9月)逐日的参考作物蒸散量(ET0),分析了ET0及主要气象要素的变化趋势,并通过响应曲线、敏感矩阵、敏感系数等方法分析了ET0对气温、日照时数、平均风速、平均相对湿度的敏感性。结果表明:(1)近50a来,东北地区的气温呈极显著上升趋势(P0.01),日照时数、平均风速、平均相对湿度呈极显著下降趋势(P0.01);东北地区生长季平均日ET0在以3.60mm.d-1为平均值、±0.3mm.d-1的范围内波动,总体上比较稳定,最大值出现在2001年(3.87mm.d-1),最小值出现在1990年(3.28mm.d-1);(2)当气温、日照时数、平均风速的变化量从-20%变化到20%时,ET0表现为逐渐增加的趋势,当平均相对湿度的变化量从-20%增加到20%时,ET0则逐渐减小;(3)气温、日照时数、平均风速、平均相对湿度的生长季平均日敏感系数均具有较强的空间分异特性,其中气温变化对ET0的影响最为明显,其次是平均相对湿度,日照时数、平均风速对ET0的影响较小。  相似文献   

12.
四川地区参考作物蒸散量的变化特征及气候影响因素分析   总被引:10,自引:0,他引:10  
参考作物蒸散量是估算作物需水量的关键因子,对指导农田灌溉具有重要的现实意义。本文利用1961-2009年四川地区5个盆地站点和5个高原站点的逐日气候资料,采用FAO推荐的Penman-Monteith公式计算参考作物蒸散量(ET0),分析了当地ET0的日值、月值、季值和年值的变化特征,并采用偏相关分析方法,对影响ET0变化的主要气候因子进行了探讨。结果表明:(1)四川盆地与高原地区参考作物蒸散量的日均值、月均值呈单峰或双峰型曲线变化,有明显的季节特点,最小值出现在冬季,最大值出现在夏季。(2)盆地地区各站点的年ET0呈波动递减趋势,且下降趋势通过了显著性检验;高原地区木里、松潘两站点的ET0呈上升趋势,其他站点呈减少的趋势。(3)四川地区的年、季参考作物蒸散量与日照时数、风速、相对湿度、平均温度、最高温度、最低温度、气压等要素关系密切,但近50a来日照时数的显著下降是导致盆地地区参考作物蒸散量减少的主要原因,风速的变化是导致高原地区参考作物蒸散量变化的主要原因。  相似文献   

13.
潜在蒸散(ET0)对水资源评价和气候变化均具有重要意义。利用若尔盖湿地及其周边19个气象站1960—2015年逐日气象资料,根据辐射修正的Penman-Monteith模型计算了湿地潜在蒸散量,采用累积距平、Mann-Kendall检验、Pettitt检验、Theil-Sen趋势度、Hurst指数等方法分析了蒸散变化规律,并对蒸散影响因子进行了主成分分析。结果表明:(1)若尔盖湿地年ET0均值为625.3mm,并以4.89mm/10a的速率显著上升(p<0.01),四季ET0表现为夏季>春季>秋季>冬季。年、秋、冬ET0分别在1968年(p<0.01),1997年(p<0.01),2003年(p<0.1)突变上升,春、夏两季未出现突变。(2)湿地年均ET0呈南部、东部边缘高、西北—东南一线较低的空间分布特征,且变化速率由东北向西南递减,其中西部班玛以北及南部马尔康、黑水之间地区ET0呈缓慢下降趋势。(3)湿地年ET0的Hurst指数在0.56~0.91间,主要呈四周高、中部低的空间分布规律。未来湿地ET0变化趋势以持续性增加为主,面积比例为96.88%。(4)气温上升是引起湿地ET0增加的最主要原因,其次是日照时数的增加和相对湿度的降低。净辐射、风速和降水量的减少引起的ET0减少被气温等其他因素作用所抵消。  相似文献   

14.
根据联合国粮农组织推荐的Penman-Monteith公式及单作物系数法,以气象数据为基础计算了2009—2012年石佛寺人工湿地芦苇生育期蒸散发量及各月份蒸散发量的多年平均值。采用偏相关分析验证了芦苇蒸散发量的主要影响因子,并确定了各月气象因子存在的线性关系。结果表明,该地区芦苇实际蒸散发量呈逐年递减趋势,多年各月份芦苇实际蒸发量平均值5—9月分别为142.4,149,138.1,120.9,83.1 mm;相关性分析验证了影响芦苇蒸散发量的因子依次是净辐射,平均温度,风速,相对湿度。该文研究了芦苇全生育期的耗水规律,为该地区制定芦苇灌溉及芦苇湿地生态需水提供了依据。  相似文献   

15.
为了在全球气候变暖的背景下,探讨和田地区干湿状况的变化,为该区水资源的合理利用及保护脆弱的生态环境提供科学依据。应用Penman-Monteith模型计算潜在蒸散量,采用Mann-Kendall突变检验、小波分析等方法分析了潜在蒸散量的变化特征,结合相关性分析探讨了气候因子对其影响强度。结果表明:1960—2013年和田地区潜在蒸散量呈"增加—减小—增加"的变化趋势,年际变化倾向率为-2.74mm/a,总体上呈减小趋势;四季潜在蒸散量表现出夏季春季秋季冬季,均呈减小趋势,其中春季的减小趋势最显著;潜在蒸散量最大值出现在6月,最小值出现在12月;潜在蒸散量在1980年发生一次减少突变,并存在21年的第一主周期和12年的第二主周期;平均风速的减小和降水量的增加是导致潜在蒸散量减小的主要原因。  相似文献   

16.
根据甄选的中国529个气象台站1961-2010年的观测资料,利用联合国粮食及农业组织(FAO)推荐的Penman-Monteith模型估算了全国年际参考作物蒸散量,探究了中国1961-2010年参考作物蒸散量变化趋势与时空格局.结果表明:(1)通过对中国参考作物蒸散量的年变化趋势进行分析,发现1961-2010年参考作物蒸散量先有下降趋势(1961-1993年),下降幅度不大,后又有缓慢的回升(1994-2010年),但总体呈下降趋势;(2)通过对各站近50年参考作物蒸散量平均值的时空分布进行分析,发现中国西北地区和西南地区明显大于东北地区和中部腹地;(3)中国参考作物蒸散量时空分布主要影响因素是风速和气温(气温影响范围广,风速影响程度大),也与中国地形复杂、面积广阔、经纬跨度大、各地气象条件差异导致作物蒸散能力差异有关.  相似文献   

17.
准确评估参考作物蒸散量的变化规律对新疆农业生产及水资源合理利用具有重要作用,采用Penman-Monteith公式以及55个气象站的逐日气象资料,计算了新疆1961-2013年参考作物蒸散量并分析其时空变化特征,运用多元回归分析法对影响参考作物蒸散量变化的主导气象因素进行了定量分析.结果表明:新疆ET0总体呈下降趋势,年际变化率为-1.01 mm/a.在20世纪80年代之前ET0偏高,90年代减少到最大,2000年以来又逐渐增大.从季节来看,夏季、秋季的ET0与年ET0的减小趋势一致,春季冬季ET0的减少趋势不明显.在不同年代际时间尺度,新疆全年及季节ET0的年际变化在空间上存在一定的分异.风速是全年及夏、秋季ET0变化的主导因素,而温度是春季及冬季新疆区域蒸发量变化的主导因素.  相似文献   

18.
基于喀什地区4个气象站点1957-2013年的最高气温、最低气温、月平均气温、相对湿度、风速、日照时数以及降水量数据,采用Penman-Monteith模型、一元回归分析、累积距平和Mann-Kendall非线性突变检验法,分析其年潜在蒸散量的时间序列变化及其影响因子.结果表明:近57 a来,喀什和巴楚的潜在蒸散量呈减少趋势,倾向率分别为-7.53 mm/10 a,-7.47 mm/10 a;塔什库尔干与莎车的潜在蒸散量呈现增加趋势,倾向率分别为8.27 mm/10 a,6.25 mm/10 a;在四季变化中,夏季最多,春、秋季次之,冬季最少;喀什地区潜在蒸散量突变点存在明显差异:喀什年潜在蒸散量突变点为1981年,巴楚的为1962年,塔什库尔干的为1974年和1983年,莎车年潜在蒸散量突变点为1961年、1965年、1968年和1978年;喀什地区年蒸散量最主要受风速和日照时数的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号