首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
许多源于PI88788抗孢囊线虫的大豆基因型同时也抗茎褐腐病。本研究目的是对品种Bell的抗茎褐腐病QTL进行定位和绘制图谱。Bell品种既抗茎褐腐病,也具有来源于PI88788的孢囊线虫抗性。最初的图谱是采用源于Bell与茎褐腐病和孢囊线虫敏感品种Colfax组合的93个F4衍生品系的群体绘制的。在2种田间环境和一种温室环境条件下,采用连锁群J的遗传标记评价了各品系的茎褐腐病抗性。  相似文献   

2.
在美国,大豆孢囊线虫是一种重要病原,其防治办法主要依赖于遗传抗性。当外来资源的抗性基因被转移到优良品种中的同时,有害基因通过连锁频繁地与抗性基因一起转移了。在P1468916中鉴定出了2个大豆孢囊线虫抗性位点,而我们并不知道这些位点对大豆产量和农艺性状的影响。本文旨在弄清野生大豆孢囊线虫抗性基因对大豆产量和其它农艺性状的影响。我们对存在野生大豆孢囊线虫抗性分离的两个群体进行了测试,其中1个群体还同时存在大豆P188788孢囊线虫抗性位点帕1的分离。分析了各群体与孢囊线虫抗性连锁的遗传标记,并在低到高程度孢囊线虫侵染水平的多种环境条件下进行了田间试验。  相似文献   

3.
利用大豆分子连锁图定位大豆孢囊线虫4号生理小种抗性QTL   总被引:28,自引:0,他引:28  
大豆孢囊线虫 (SCN ,HeteroderaglycinesIchinohe)是一种土传的定居性内寄生线虫 ,是引起大豆黄萎病的病原 ,是大豆生产上危害最大的病害之一。SCN的生理小种多达十几种 ,在我国大豆孢囊线虫病原主要为 4号生理小种 ,它是现有生理小种中致病力最强的小种。经典遗传学研究已经确定大豆孢囊线虫抗性基因由 1- 4对核基因控制 ,估计有 10个以上的抗性座位。近年来分子标记技术及QTL定位方法的发展为深入研究该病害的抗性遗传规律提供了有效的手段 ,这对加速我国抗大豆抗孢囊线虫新品种培育具有重要意义。本研究以晋豆 2 3×ZDD2 315组合F2 群体 (2 5 3个单株 )为试验材料 ,其中灰布支黑豆 (ZDD2 315 )是我国山西省农家品种 ,对大豆孢囊线虫 4号生理小种表现为高抗。利用塑料钵柱法进行SCN抗性鉴定 ,构建大豆孢囊线虫抗性主座位所在区域的分子图谱 ,并进行SCN的QTL定位及遗传效应分析。根据已发表的大豆A和G连锁群的分子遗传图谱 ,应用BSA法 ,获得了 8个与SCN4号生理小种抗性基因相关的SSR标记 ,它们是Satt0 38(176bp/ 182bp) ,Satt30 9(130bp/ 135bp) ,Satt6 10 (2 4 0bp/ 2 2 2bp) ,Sat_14 1(189bp/ 184bp) ,Satt187(30 0bp/ 2 5 0bp) ,Satt315 (2 5 3bp/ 2 4 8bp) ,Satt6 32 (2 86bp/ 2 90bp)和Sat_16 2(2  相似文献   

4.
本文旨在鉴定大豆品种Hartwing中与大豆孢囊线虫抗性基因连锁的小随体标记。本试验应用了源于Hartwig(抗)与巴西大豆品系Y23(感)杂交组合的一个BC1F2图谱群体。在混合分离体分析中检测了约200个小随体或者SSR引物对。对具有明显多态性的进行扩增。其检测3个SSR标记己与大豆孢囊抗性基因连锁。其中的Satt038和Satt163两个标记位于一个显性抗性基因的邻侧,  相似文献   

5.
应县小黑豆对大豆孢囊线虫4号生理小种抗性的遗传分析   总被引:9,自引:0,他引:9  
大豆孢囊线虫(Heterodera glycine Ichinohe)是大豆生长过程中最具破坏力的病害之一,我国大豆孢囊线虫以4号生理小种危害最为严重.研究其抗性的遗传机理,对我国大豆抗病育种具有重要意义.应县小黑豆是我国山西省农家品种,对大豆孢囊线虫4号生理小种表现为良好的抗性,本研究以应县小黑豆×晋豆23组合的后代群体为试验材料,利用塑料钵柱法对F2和F3群体进行抗性鉴定,采用两种抗病性评价标准,对大豆孢囊线虫4号生理小种抗性进行遗传分析.结果表明采用标准品种法评价应县小黑豆对大豆孢囊线虫4号生理小种的抗性时,由1对隐性基因控制,而采用绝对孢囊数评价应县小黑豆对大豆孢囊线虫4号生理小种的抗性时,由2对隐性基因控制.显然,在晋豆23与应县小黑豆的杂交组合中,大豆孢囊线虫4号生理小种的抗性表现为隐性遗传,由1~2对隐性基因控制.研究结果还表明,利用F3代株系进行大豆孢囊线虫抗性鉴定比对F2代单株直接进行大豆孢囊线虫抗性鉴定具有更好的稳定性和可靠性.  相似文献   

6.
“抗病值”在大豆抗孢囊线虫病遗传研究中应用的探讨   总被引:2,自引:0,他引:2  
庞汉华  刘旭 《作物学报》2000,26(1):20-27
以抗病值表示大豆单株对孢囊线虫的抗性, 探讨其在大豆对孢囊线虫4号生理小种抗性遗传研究中的应用。 在所研究的4个高感×高抗杂交组合中, 直接用孢囊数作为抗性的参数, 不分离群体具有较大的方差, 群体平均数与方差有较强的正相关; 而采用抗病值表示抗性, 不分离群体有较小的方差, 但F2分离群体方差较大。 与原始数  相似文献   

7.
大豆胞囊线虫1号和4号生理小种是黄淮地区的优势小种,ZDD2315是我国特优抗源。本文旨在定位ZDD2315对1号和4号生理小种抗性的QTL。试验以Essex为母本,ZDD2315为父本和轮回亲本,创建了一个包含114个单株的BC1群体。采用250个SSR标记和1个形态标记通过MAPMAKER 3.0构建了包含25个连锁群的遗传图谱,覆盖大豆基因组2 963.5 cM  相似文献   

8.
大豆是一种重要的蛋白质和油分资源。以前将控制种子蛋白质含量的QTL绘制在大豆连锁群Ⅰ上。本文旨在对该QTL进行精细作图,并弄清是否有另外的重组体能减少种子蛋白质含量和产量和含油量问负向表型相关。采用两组回交群体构建精细图谱。这些群体是将野生大豆(G.soja)P1468916的高蛋白质等位基因导人A81—356022育种品系的遗传背景构建而成。第一组群体包含BC5品系的3个群体,第二组群体包含BC,品系的4个群体。这些群体QTL图谱基因组区域的不同片断有分离。两组群体的测试结果将控制蛋白质和含油量的QTL定位在SSR标记Satt239和AFLP标记ACG9b之间的3cM间隔处。农艺性状评价试验结果的不一致性使我们很难确切地推断蛋白质QTL是否通过多效性控制了其它性状。  相似文献   

9.
大豆胞囊线虫1号和4号生理小种是黄淮地区的优势小种,ZDD2315是我国特优抗源。本文旨在定位ZDD2315对1号和4号生理小种抗性的QTL。试验以Essex为母本,ZDD2315为父本和轮回亲本,创建了一个包含114个单株的BC1群体。采用250个SSR标记和1个形态标记通过MAPMAKER 3.0构建了包含25个连锁群的遗传图谱,覆盖大豆基因组2 963.5 cM  相似文献   

10.
大豆胞囊线虫3号生理小种在我国已发现的8个小种中分布最为广泛,严重影响大豆生产。中品03-5373(ZP03-5373)是对3号小种免疫的优良抗源。本研究以中品03-5373为母本,与感病品种中黄13(ZH13)杂交建立包含254个家系的重组自交系群体,利用SSR、EST-SSR、In Del和SNP等506个分子标记对该分离群体进行基因型鉴定,构建全长为2651.90 c M的遗传图谱,标记间平均距离为5.24 c M。结合抗性鉴定数据,在中品03-5373中检测到3个控制大豆胞囊线虫3号生理小种的QTL区间,分别位于Gm07(SCN3-7)、Gm11(SCN3-11)和Gm18(SCN3-18)。其中SCN3-18可解释29.5%的抗性变异,为主效抗性位点;SCN3-7和SCN3-11分别控制6.2%和5.5%的抗性变异,为微效位点。SCN3-7与SCN3-18间存在显著的上位性互作。通过对中品03-5373祖先亲本2个QTL区间(SCN3-7和SCN3-11)侧翼标记的系谱追踪,进一步证明SCN3-7和SCN3-11与大豆胞囊线虫3号抗性相关。  相似文献   

11.
史宏 《中国农学通报》2016,32(24):76-84
为研究大豆重组自交系Jinf群体不同蛋白含量株系对大豆孢囊线虫4号生理小种(简称抗SCN4)的抗性反应,通过对其品质性状的测定,分析不同蛋白含量株系对SCN4的抗性,得出高抗株系根系附着孢囊量及蛋白含量区间。结果表明:Jinf群体不同蛋白含量的株系,抗孢囊性分布不均匀,孢囊反应1.1~106.5,平均68.6。高蛋白株系和低蛋白株系对孢囊线虫4号生理小种抗性差,抗性突出的株系蛋白含量在42%~45%,孢囊反应0.4~7.0,平均3.14。  相似文献   

12.
大豆是食用植物蛋白质和油脂的主要来源,提高大豆蛋白质和油分含量是主要的育种目标,与传统育种相比,利用分子标记定位QTL辅助育种,在实用价值和理论意义上都对大豆育种具有十分重要的价值。利用蛋白质与油分含量差异较大的大豆亲本东农L13和合农60、黑河36,分别构建了以东农L13为共同亲本的2个重组自交系群体RIL3613(东农L13×黑河36)和RIL6013(东农L13×合农60),分别包含134,156个株系;利用3个生态环境下数据对大豆蛋白含量和油分含量进行了表型数据分析,分别利用150,137个SSR标记构建遗传图谱,采用完备区间作图法(ICIM),对3个环境下的油分和蛋白质含量进行了QTL定位。通过对表型数据的分析,2个RIL群体的蛋白质与油分含量在基因型间或不同环境条件下的差异均达极显著水平,且基因型与环境间存在极显著的互作效应。2个群体中,共检测到8个蛋白质含量QTL,分布于7个连锁群上;共检测出5个控制油分含量的QTL,分布于5个连锁群上,有1个油分含量的QTL在2个种植环境下重复检测到。在定位的QTL中,7个蛋白质含量相关的QTL和3个油分含量相关的QTL与前人研究一致,另外3个QTL(qPro-G-1、qOil-C1-1、qOil-H-1)是本研究新发现的,是本研究遗传背景特有的QTL。研究结果对大豆品质性状的分子设计育种具有重要意义。  相似文献   

13.
本文首次利用我国特有的抗病品种小粒黑豆与辽宁省的主栽品种辽豆10配制杂交组合,以F2代群体为试验材料,系统地应用分离群体分组分析法(Bulked Segregant Analysis,BSA)寻找与大豆胞囊线虫3号生理小种抗性基因相关的DNA分子标记以及同工酶标记和低分子肽/氨基酸标记,为我国的大豆抗胞囊线虫病育种提供理论指导.主要研究结果如下:1.利用杂交技术构建了大豆胞囊线虫抗性的分子表达平台.本研究配制了辽豆10×小粒黑豆的杂交组合,并利用海南加代快速繁殖,应用毒力最弱的大豆胞囊线虫3号生理小种对F2代群体进行抗性鉴定和移栽,为大豆对胞囊线虫抗性分子标记的筛选提供了均一遗传背景的试验材料.对该组合进行田间抗性鉴定,结果表明符合抗感分离1∶3的比率,表明在辽豆10背景下小粒黑豆对大豆胞囊线虫3号生理小种的抗性是由一对以上的隐性基因控制的.2.应用分离群体分组分析法在辽豆10和抗大豆胞囊线虫的核心抗源中获得了一个与感病性密切相关的RAPD标记S11700.应用143个随机引物,对由小粒黑豆和辽豆10配制的杂交组合的抗感亲本和构建的抗感池进行筛选,有92个引物产生了RAPD扩增产物,25个引物产生了RAPD多态性,其中一个引物产生了与抗大豆胞囊线虫基因密切相关的特异性DNA片段S11700,经多次重复验证,该片段在感病亲本及感病池中被特异性扩增,而在抗病亲本及抗病池中未产生该片段.利用S11700对不同抗性大豆品种进行分子标记鉴定和辅助选择,验证了该特异性片段与大豆胞囊线虫3号生理小种抗性紧密相关,可以用于抗胞囊线虫大豆新品种的分子辅助选择育种.3.利用BSA法对11个黑色种皮的大豆品种和12个黄色种皮的大豆材料的基因组DNA进行RAPD分析,获得一个与大豆黄色种皮相关的特异DNA片段S79500.采用该标记对辽豆10×PI437654杂交后代种皮颜色有分化的群体进行检测,结果表明这个RAPD标记具有较高的重复性和稳定性,可用于辅助选育优良的黄色种皮的大豆新品种.4.获得了一个与大豆胞囊线虫3号生理小种抗性基因相关的SSR分子标记Satt187.应用204对SSR引物对辽豆10×小粒黑豆进行SSR分析,31对引物产生了扩增产物,其中15对具有多态性,从中筛选到一个与大豆胞囊线虫3号生理小种抗性基因相关的分子标记Satt187,其片段大小为172 bp和176 bp,为共显性标记,在F2代分离群体中的分离比为1∶2∶1,呈孟德尔式遗传.应用该标记对辽豆10x小粒黑豆F2代分离群体进行分子标记鉴定和辅助选择,在抗病单株中均检测到标记带Satt187-176 bp的存在,而在感病单株中检测到有Satt187-176 bp和Satt187-172 bp两种标记带或仅有Satt187-172 bp的标记带存在,分析表明该标记具有抗胞囊线虫分子标记辅助选择应用的前景.5.系统地研究了辽豆10×小粒黑豆和辽豆10×PI437654两对组合的亲本及其杂交后代植株体内防卫反应酶系,包括多酚氧化酶(PPO)、过氧化物酶(POD)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)酶活及根内可溶性蛋白含量的动态变化.研究结果表明,抗感亲本、子代在大豆胞囊线虫侵染后各种防御酶系和可溶性蛋白含量均产生相应的变化,表现出酶活及可溶性蛋白的变化与抗病性密切相关,可作为鉴定大豆抗源抗性强弱的一项辅助生化指标,在抗胞囊线虫病抗源筛选辅助选择中起到一定的作用.6.采用电泳技术,系统地研究了大豆胞囊线虫侵染后,抗感亲本及子代中PPO、POD、CAT、SOD等几种同工酶酶谱,获得了一条与大豆胞囊线虫抗性相关的特异性SOD谱带.研究结果表明,线虫侵染后,诱导植株体内PPO、POD、CAT、SOD及可溶性蛋白量的增加,抗病亲本诱导产生的酶蛋白及可溶性蛋白量均多于感病亲本,对于杂交后代,出现不同于亲本的新的同工酶和可溶性蛋白谱带.在两对组合的SOD酶谱中,分别出现一条特异性谱带(Rf=0.365和Rf=0.381),利用两对杂交组合F2代抗感单株进行SOD同工酶电泳分析,证明该带可以作为大豆抗胞囊线虫的一项较为可靠的生化标记.7.探讨了不同抗性大豆品种及杂交后代根系分泌物中低分子肽/氨基酸与抗性的相关性.应用简便快速的聚酰胺薄膜层析检测技术对不同抗性大豆品种及杂交后代根系分泌物中低分子肽/氨基酸与抗胞囊线虫的相关性进行了研究.结果表明,大豆胞囊线虫侵染后,抗感亲本和子代在出苗后不同时期根系分泌物中的低分子肽/氨基酸的种类和数量有所差异,出苗后1~6 d的变化明显,感病亲本及感病子代在D区和E区存在共有的荧光斑点,而抗病亲本及抗病子代则无,可将该项检测技术作为一种辅助手段,用于大豆对胞囊线虫3号生理小种的抗性鉴定.  相似文献   

14.
在美国南部根结线虫[Meloidogyne incognita (Kofoid White) Chitwood,以下简称Mi]是大豆品种(Glycine max L.)的一种严重害虫。过去几十年间美国育成了许多具有Mi抗性和很高生产力的大豆品种。为了鉴定在连锁群O(LG—O)顶端附近的且赋予根结线虫抗性的主要数量性状位点(QIL),已使用了DNA标记。本研究的目的是确定在LG—O上遗传了根结线虫主要抗性QTL的优良根结线虫抗性品种的频率,  相似文献   

15.
大豆孢囊线虫与寄主植物的相互关系及抗性基因克隆策略   总被引:2,自引:3,他引:2  
吕蓓 《分子植物育种》2003,1(1):116-121
本文概述了大豆孢囊线虫与寄主植物相互作用过程中病原与寄主的相互识别,寄主植物的防御反应的分子机理,提出了克隆大豆孢囊线虫抗性基因的分子策略。  相似文献   

16.
筛豆龟蝽是我国南方大豆的主要害虫之一,本研究旨在定位筛豆龟蝽抗性QTL,分析其稳定性,为大豆抗筛豆龟蝽育种提供参考。以科丰1号×南农1138-2组合衍生的184个重组自交系群体NJRIKY(简称KY)和皖82-178×通山薄皮黄豆甲组合衍生的142个重组自交系群体NJRIWT(简称WT)为材料,2004—2006在田间自然虫源下鉴定了筛豆龟蝽抗性。不同年份内以黑霉程度为指标的方差分析结果表明家系间差异在每年都达极显著水平,遗传变异系数都相当大,遗传率中等偏高。利用Windows QTL Cartographer Version 2.5的复合区间作图法(CIM),KY群体的抗性QTL主要位于D1a和C2连锁群,WT群体的抗性QTL主要位于H和D1b连锁群。KY群体3年均检测出的qRMC-d1a-1位于D1a连锁群,贡献率为7.6%~31.4%;2005和2006两年均检测出的qRMC-c2-1位于C2连锁群,与环境有互作,效应相对较小;抗性等位基因来自南农1138-2;qRMC-d1a-1和qRMC-h-1在2005年和2006年存在显著的互作。WT群体连锁群H上的qRMC-h-1在3年中都被检测到,贡献率为16.3%~36.2%;D1b连锁群上的qRMC-d1b-2在2004和2005年被检测到,效应相对较小;抗性等位基因来自通山薄皮黄豆甲。虽然WT群体D1b和H连锁群上的这2个QTL在KY群体中也有一年被检测到,但2个群体抗性位点基本上是不同的。QTL在不同环境被重复检出,说明大豆对筛豆龟蝽的抗性由稳定的主效QTL所控制,其2侧邻近标记有希望用于标记辅助选择育种。  相似文献   

17.
大豆油的品质取决于脂肪酸各组分在大豆中的比例, 为发掘控制大豆5种脂肪酸含量的数量性状位点(QTL), 利用冀豆12和黑豆重组自交系群体构建遗传图谱, 采用Windows QTL Cartographer 2.5和QTL Network-2.0软件的CIM和MCIM法对大豆5种脂肪酸组分进行数量性状定位。结果表明,在石家庄和三亚各环境下共检测到16个QTL, 位于连锁群A2、B2、C2、F、G、I、L上。对2个环境联合分析, 检测到13个QTL, 其中9个用2种方法被检测到, 但这13个位点与环境互作的贡献率明显小于加性效应。其中在B2连锁群Satt168~Satt556控制硬脂酸的QTL Ste-1在河北石家庄和海南三亚均能被检测到, 贡献率均为12%, 在双尾群体和间隔挑选群体中也能检测到控制硬脂酸的QTL Ste-1, 说明这一QTL稳定存在于本组合群体中, 为今后大豆硬脂酸的QTL精细定位奠定了基础。  相似文献   

18.
大豆抗筛豆龟蝽Megacota cribraria(Fabricius)的QTL分析   总被引:2,自引:1,他引:1  
筛豆龟蝽是我国南方大豆的主要害虫之一,本研究旨在定位筛豆龟蝽抗性QTL,分析其稳定性,为大豆抗筛豆龟蝽育种提供参考.以科丰1号×南农1138-2组合衍生的含184个重组自交系的群体NJRIKY(简称KY)和皖82-178x通山薄皮黄豆甲组合衍生的含142个重组自交系的群体NJRIWT(简称WT)为材料,2004--2006在田间自然虫源下鉴定了筛豆龟蝽抗性.不同年份内以黑霉程度为指标的方差分析结果表明家系间差异在每年都达极显著水平,遗传变异系数都相当大,遗传率中等偏高.利用Windows QTL Cartographer Version 2.5的复合区间作图法(CIM),KY群体的抗性QTL主要位于D1a和C2连锁群,WT群体的抗性QTL主要位于H和D1b连锁群.KY群体3年均检测出的qRMC-d1a-1位于D1a连锁群,贡献率为7.6%~31.4%;2005和2006两年均检测出的qRMC-c2-1位于C2连锁群,与环境有互作,效应相对较小;抗性等位基因来自南农1138-2;qRMC-dla-1和qRMC-h-1在2005年和2006年存在显著的互作.WT群体连锁群H上的qRMC-h-1在3年中都被检测到,贡献率为16.3%~36.2%;D1b连锁群上的qRMC-dlb-2在2004年和2005年被检测到,效应相对较小;抗性等位基因来自通山薄皮黄豆甲.虽然WT群体Dlb和H连锁群上的这2个QTL在KY群体中也有一年被检测到,但2个群体抗性位点基本上是不同的.QTL在不同环境被重复检出,说明大豆对筛豆龟蝽的抗性由稳定的主效QTL所控制,其2侧邻近标记有希望用于标记辅助选择育种.  相似文献   

19.
大豆育种学家已经采用传统的育种方法改良了缺铁失绿(IDC)抗性,然而许多IDC抗性品种的产量都低于IDC敏感品种。环境在IDC抗性表达方面的重要性阻碍了IDC抗性育种进展。不依赖于环境的选择策略,如标记辅助选择可能会提高育种效率。本文旨在研究以前报道的位于控制IDC抗性数量性状位点的SSR标记是否与育种群体的IDC抗性有关。本试验在衣阿华检测了与8个控制IDC抗性QTL遗传连锁的108个SSR标记。本研究所用育种群体是由Pioneer9254与A97—770012的组合建立的。  相似文献   

20.
“抗病值”大豆抗孢囊线虫病遗传研究中应用的探讨   总被引:1,自引:0,他引:1  
以抗病值表示大豆单株对孢囊线虫的抗性,探讨其在大豆对孢囊线虫4号生理小种抗性遗传 研究中的应用。在所研究的4个高感×高抗杂交组合中,直接用孢囊数作为抗性的参数,不分离群体 具有较大的方差,群体平均数与方差有较强的正相关;而采用抗病值表示抗性,不分离群体有较小的 方差,但F_2分离群体方差较大。与原始数据相比,经平方根转化后,单株孢囊数的群体平均数与方差 的高度正相关只有轻微的下降;而单株抗病值的群体平均数与方差的相关性则明显降低。4个组合单 株抗病值的广义遗传力为57.49%~71.79%,高于单株孢囊数的48.42%~65.96%;根据抗病值推导 出的最小基因数目为3~4,比用孢囊数推导为2~3的结果更接近按质量性状遗传估算出的结果。对 F_2单株频次分布研究表明,采用抗病值标准品种法分级统计的高抗株数,与按全国抗性分级标准下< 10个孢囊/株的株数完全一致,而且得到了更广泛的中间类型分布。按质量性状遗传模式对4个高感 x高抗组合F_2分离群体研究表明,灰皮支黑豆和元钵黑豆对SCN4号生理小种的抗性遗传可能由三 对隐性基因和二对显性基因控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号