首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveTo determine the agreement of high definition oscillometry (HDO) with direct arterial blood pressure measurements in normotensive, hypotensive and hypertensive horses during general anaesthesia.Study designExperimental study.AnimalsSeven healthy warmblood horses, aged 3–11 years, weighing 470–565 kg.MethodsMeasurements from a HDO device with the cuff placed around the base of the tail were compared with pressures measured invasively from the facial artery. High blood pressures were induced by intravenous (IV) administration of dobutamine (5 μg kg−1 minute−1) over ten minutes followed by norepinephrine (0.1 mg kg−1 IV) and low pressures by increasing the inspired fraction of isoflurane and administration of nitroglycerine (0.05 mg kg−1 IV). For analysis three pressure levels were determined: high (MAP>110 mmHg), normal (60 mmHgResultsA total of 245 paired measurements of systolic (SAP), mean (MAP) and diastolic (DAP) pressures were obtained. The HDO device underestimated blood pressure at hypertensive and normotensive levels and overestimated blood pressure at hypotensive levels. Best agreement was obtained for SAP and MAP within normotensive limits. At normotension, bias ± standard deviation for SAP, MAP and DAP were 0.1 ± 19.4 mmHg, 0.5 ± 14.0, 4.7 ± 15.6, respectively. At high pressure levels bias and SD were 26.1 ± 37.3 (SAP), 4.2 ± 19.4 (MAP), 1.5 ± 16.8 (DAP) and at low pressures -20.0 ± 20.9 (SAP), -11.4 ± 19.6 (MAP), -4.7 ± 20.1 (DAP), with HDO measurements at a MAP <50 mmHg often failing.Conclusion and clinical relevanceGood agreement with invasive arterial blood pressures was obtained with HDO at normotensive levels in horses. At high and low pressure ranges HDO was unreliable. Therefore, if haemodynamic instability is expected, invasive measurement remains preferable.  相似文献   

2.
ObjectiveTo determine whether dobutamine, norepinephrine or phenylephrine infusions alleviate hypotension in isoflurane-anaesthetized dogs administered dexmedetomidine with vatinoxan.Study designBalanced, randomized crossover trial.AnimalsA total of eight healthy Beagle dogs.MethodsEach dog was anaesthetized with isoflurane (end-tidal isoflurane 1.3%) and five treatments: dexmedetomidine hydrochloride (2.5 μg kg–1) bolus followed by 0.9% saline infusion (DEX-S); dexmedetomidine and vatinoxan hydrochloride (100 μg kg–1) bolus followed by an infusion of 0.9% saline (DEX-VAT-S), dobutamine (DEX-VAT-D), norepinephrine (DEX-VAT-N) or phenylephrine (DEX-VAT-P). The dexmedetomidine and vatinoxan boluses were administered at baseline (T0) and the treatment infusion was started after 15 minutes (T15) if mean arterial pressure (MAP) was < 90 mmHg. The treatment infusion rate was adjusted every 5 minutes as required. Systemic haemodynamics were recorded at T0 and 10 (T10) and 45 (T45) minutes. A repeated measures analysis of covariance model was used.ResultsMost dogs had a MAP < 70 mmHg at T0 before treatment. Treatments DEX-S and DEX-VAT all significantly increased MAP at T10, but systemic vascular resistance index (SVRI) was significantly higher and cardiac index (CI) lower after DEX-S than after DEX-VAT. CI did not significantly differ between DEX-S and DEX-VAT-S at T45, while SVRI remained higher with DEX-S. Normotension was achieved by all vasoactive infusions in every dog, whereas MAP was below baseline with DEX-VAT-S, and higher than baseline with DEX-S at T45. Median infusion rates were 3.75, 0.25 and 0.5 μg kg–1 minute–1 for dobutamine, norepinephrine and phenylephrine, respectively. Dobutamine and norepinephrine increased CI (mean ± standard deviation, 3.35 ± 0.70 and 3.97 ± 1.24 L minute–1 m–2, respectively) and decreased SVRI, whereas phenylephrine had the opposite effect (CI 2.13 ± 0.45 L minute–1 m–2).Conclusions and clinical relevanceHypotension in isoflurane-anaesthetized dogs administered dexmedetomidine and vatinoxan can be treated with either dobutamine or norepinephrine.  相似文献   

3.
4.
ObjectiveDetermine arterial blood pressure range that diplomates of the American College of Veterinary Anesthesia and Analgesia (ACVAA) and European College of Veterinary Anaesthesia and Analgesia (ECVAA) use to define intraoperative hypotension in dogs and identify the threshold values used for intervention.Study designSurvey of veterinary anesthesia specialists.PopulationDiplomates of the ACVAA and ECVAA.MethodsACVAA and ECVAA diplomates (n=313) were invited to participate in an Internet-based survey regarding anesthetized healthy dogs undergoing two types of procedures (diagnostic or surgical).ResultsThere were 151 respondents to the survey; 70.2% were ACVAA diplomates and 29.8% were ECVAA diplomates. The majority of the respondents (70.9%) worked in academia while the others were in private practice (19.2%), or research, diagnostic or pharmaceutical fields (9.9%). Hypotension was defined (mean ± SD) by the respondents as systolic arterial blood pressure (SAP) <87 ± 8 mmHg for surgical cases and <87 ± 6 mmHg for diagnostic cases, or mean arterial pressure (MAP) <62 ± 4 mmHg for both types of cases. Arterial pressures reported to prompt treatment were SAP 85 ± 13 mmHg or MAP 61 ± 4 mmHg in surgical cases, and SAP 84 ± 11 mmHg or MAP 63 ± 8 mmHg in diagnostic cases.Conclusions and clinical relevanceThere was agreement between ACVAA and ECVAA diplomates on the definition of intraoperative hypotension in dogs during anesthesia. The blood pressures used to define hypotension were similar to the pressures that would prompt diplomates to start treatment. Readers could infer that diplomates define hypotension as a clinical condition that requires treatment at the time of diagnosis.  相似文献   

5.
ObjectiveTo evaluate the agreement between oscillometric blood pressure (OBP) measured from the tongue and invasive blood pressure (IBP), and to compare OBPs measured from the tongue with OBPs measured from the pelvic limb and tail.Study designProspective experimental study.AnimalsA total of eight adult Beagle dogs weighing 11.1 ± 1.2 kg.MethodsAnimals were premedicated with intravenous (IV) acepromazine (0.005 mg kg–1). Anesthesia was induced with alfaxalone (3 mg kg–1) IV and maintained with isoflurane. The dorsal pedal artery was catheterized for IBP measurements. Systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressure were simultaneously measured from the tongue, pelvic limb and tail. Based on invasive SAP, hypertension (>140 mmHg), normotension (90–140 mmHg) and hypotension (<90 mmHg) were induced by controlling end-tidal isoflurane concentrations and/or dobutamine/dopamine administration. Agreement between paired IBP and OBP measurements was analyzed with reference standards for noninvasive blood pressure devices used in small animals and humans.ResultsRegardless of cuff placement, the mean bias ± standard deviation between IBP and OBP met veterinary (≤10 ± 15 mmHg) and human (<5 ± 8 mmHg) standards for MAP and DAP. SAP measurements provided by the OBP device showed unacceptable agreement with IBP, and the bias between methods increased at higher blood pressures, regardless of cuff site. During hypotension, tongue OBP showed the largest percentage of absolute difference <10 mmHg in relation to IBP for SAP (90%), MAP (97%), and DAP (93%), compared with pelvic limb (60%, 97% and 82%, respectively) and tail OBP (54%, 92% and 77%, respectively).Conclusions and clinical relevanceThe tongue is a clinically useful site for measuring OBP in anesthetized Beagle dogs, providing reliable estimates of MAP and DAP. The tongue could replace other cuff placement sites and may be a relatively suitable site for assessing hypotension.  相似文献   

6.
ObjectiveTo determine the accuracy of an oscillometric blood pressure monitor in anesthetized sheep.Study designProspective study.AnimalsTwenty healthy adult sheep, 11 males and nine females, weighing 63.6 ± 8.6 kg.MethodsAfter premedication with buprenorphine or transdermal fentanyl, anesthesia was induced with ketamine‐midazolam and maintained with isoflurane and ketamine, 1.2 mg kg?1 hour?1, ± lidocaine, 3 mg kg?1 hour?1. Invasive blood pressure measurements were obtained from an auricular arterial catheter and noninvasive measurements were from a cuff on the metatarsus or antebrachium. Simultaneous invasive and noninvasive measurements were recorded over a range (55–111 mmHg) of mean arterial pressures (MAP). Isoflurane concentration was increased to decrease MAP and decreasing the isoflurane concentration and infusing dobutamine achieved higher pressures. Invasive and noninvasive measurements were compared.ResultsCorrelation (R2) was good between the two methods of measurement (average of three consecutive readings) for systolic (SAP) (0.87), diastolic (DAP) (0.86), and mean (0.90) arterial pressures (p < 0.001). Bias ± SD between noninvasive and invasive measurements for SAP was 3 ± 8 mmHg, for DAP was ?10 ± 7 mmHg, and MAP was ?7 ± 6 mmHg. There was no significant difference between the average of three measurements and use of the first measurement. Correlations using the first measurement were SAP (0.82), DAP (0.84), and MAP (0.89). Bias ± SD for SAP was 3 ±10 mmHg, for DAP was ?11 ± 7 mmHg, and MAP was ?7 ± 6 mmHg. The oscillometric monitor slightly overestimated SAP and underestimated DAP and MAP for both average values and the first reading.Conclusions and clinical relevanceThis oscillometric model provided MAP measurements that were acceptable by ACVIM standards. MAP measurements with this monitor were lower than those found with the invasive technique so a clinical diagnosis of hypotension may be made in sheep that are not hypotensive.  相似文献   

7.
ObjectiveTo investigate the cardiovascular effects of epidural romifidine in isoflurane-anaesthetized dogs.Study designProspective, randomized, blinded experiment.AnimalsA total of six healthy adult female Beagles aged 1.25 ± 0.08 years and weighing 12.46 ± 1.48 (10.25–14.50) kg.MethodsAnaesthesia was induced with propofol (6–9 mg kg?1) and maintained with 1.8–1.9% end-tidal isoflurane in oxygen. End-tidal CO2 was kept between 35 and 45 mmHg (4.7–6.0 kPa) using intermittent positive pressure ventilation. Heart rate (HR), arterial blood pressure and cardiac output (CO) were monitored. Cardiac output was determined using a LiDCO monitor and the derived parameters were calculated. After baseline measurements, either 10 μg kg?1 romifidine or saline (total volume 1 mL 4.5 kg?1) was injected into the lumbosacral epidural space. Data were recorded for 1 hour after epidural injection. A minimum of 1 week elapsed between treatments.ResultsAfter epidural injection, the overall means (± standard deviation, SD) of HR (95 ± 20 bpm), mean arterial blood pressure (MAP) (81 ± 19 mmHg), CO (1.63 ± 0.66 L minute?1), cardiac index (CI) (2.97 ± 1.1 L minute?1 m?2) and stroke volume index (SI) (1.38 ± 0.21 mL beat?1 kg?1) were significantly lower in the romifidine treatment compared with the overall means in the saline treatment [HR (129 ± 24 bpm), MAP (89 ± 17 mmHg), CO (3.35 ± 0.86 L minute?1), CI (6.17 ± 1.4 L minute?1 m?2) and SI (2.21 ± 0.21 mL beat?1 kg?1)]. The overall mean of systemic vascular resistance index (SVRI) (7202 ± 2656 dynes seconds cm?5 m?2) after epidural romifidine injection was significantly higher than the overall mean of SVRI (3315 ± 1167 dynes seconds cm?5 m?2) after epidural saline injection.ConclusionEpidural romifidine in isoflurane-anaesthetized dogs caused significant cardiovascular effects similar to those reportedly produced by systemic romifidine administration.Clinical relevanceSimilar cardiovascular monitoring is required after epidural and systemically administered romifidine. Further studies are required to evaluate the analgesic effects of epidural romifidine.  相似文献   

8.
ObjectiveTo evaluate the cardiovascular, respiratory, electrolyte and acid–base effects of a continuous infusion of dexmedetomidine during propofol–isoflurane anesthesia following premedication with dexmedetomidine.Study designProspective experimental study.AnimalsFive adult male Walker Hound dogs 1–2 years of age averaging 25.4 ± 3.6 kg.MethodsDogs were sedated with dexmedetomidine 10 μg kg?1 IM, 78 ± 2.3 minutes (mean ± SD) before general anesthesia. Anesthesia was induced with propofol (2.5 ± 0.5 mg kg?1) IV and maintained with 1.5% isoflurane. Thirty minutes later dexmedetomidine 0.5 μg kg?1 IV was administered over 5 minutes followed by an infusion of 0.5 μg kg?1 hour?1. Cardiac output (CO), heart rate (HR), ECG, direct blood pressure, body temperature, respiratory parameters, acid–base and arterial blood gases and electrolytes were measured 30 and 60 minutes after the infusion started. Data were analyzed via multiple linear regression modeling of individual variables over time, compared to anesthetized baseline values. Data are presented as mean ± SD.ResultsNo statistical difference from baseline for any parameter was measured at any time point. Baseline CO, HR and mean arterial blood pressure (MAP) before infusion were 3.11 ± 0.9 L minute?1, 78 ± 18 beats minute?1 and 96 ± 10 mmHg, respectively. During infusion CO, HR and MAP were 3.20 ± 0.83 L minute?1, 78 ± 14 beats minute?1 and 89 ± 16 mmHg, respectively. No differences were found in respiratory rates, PaO2, PaCO2, pH, base excess, bicarbonate, sodium, potassium, chloride, calcium or lactate measurements before or during infusion.Conclusions and clinical relevanceDexmedetomidine infusion using a loading dose of 0.5 μg kg?1 IV followed by a constant rate infusion of 0.5 μg kg?1 hour?1 does not cause any significant changes beyond those associated with an IM premedication dose of 10 μg kg?1, in propofol–isoflurane anesthetized dogs. IM dexmedetomidine given 108 ± 2 minutes before onset of infusion showed typical significant effects on cardiovascular parameters.  相似文献   

9.
ObjectiveTo report the cardiovascular variables, anaesthetic effects and recovery quality of an anaesthesia technique using variable rate infusion propofol combined with constant rate infusion fentanyl in dogs undergoing elective surgery.Study designProspective clinical trial.AnimalsA total of 27 dogs, aged 2.7 ± 2.65 years and weighing 24 ± 11 kg.MethodsFollowing intramuscular acepromazine (0.03 or 0.05 mg kg?1) and subcutaneous carprofen (4 mg kg?1) pre-medication, anaesthesia was induced with propofol (4.0 ± 0.5 mg kg?1) intravenously (IV). All dogs were ventilated with 100% oxygen to maintain normocapnia. Propofol was infused at 0.4 mg kg?1 minute?1 for 20 minutes and then at 0.3 mg kg?1minute?1. If mean arterial blood pressure (MAP) decreased below 70 mmHg, propofol infusion was reduced by 0.1 mg kg?1 minute?1. Five minutes after induction of anaesthesia, fentanyl was administered (2 μg kg?1) IV followed by the infusion at 0.5 μg kg?1 minute?1 and atropine (40 μg kg?1) IV. Heart rate, MAP, respiratory rate, tidal volume, end-tidal carbon dioxide, presence of reflexes, movements and recovery times and quality were recorded.ResultsMean anaesthetic duration was 131 ± 38.5 minutes. Mean heart rate peaked 10 minutes after atropine injection and gradually declined, reaching pre-anaesthetic values at 55 minutes. MAP easily was maintained above 70 mmHg. Mean times to return of spontaneous ventilation, extubation, head lift and sternal recumbency were 21 ± 10.1, 33 ± 14.6, 43 ± 19.7 and 65 ± 23.4 minutes, respectively. Recovery was smooth and quiet. The time to sternal recumbency was significantly correlated with the duration of anaesthesia and total dose of propofol; time to extubation was correlated to total dose of propofol.Conclusion and clinical relevancePropofol and fentanyl infusions provided stable cardiovascular function and satisfactory conditions for surgery. Some modifications of infusion rates are required to improve the long-recovery times.  相似文献   

10.
ObjectiveTo describe the anesthetic and adverse effects of an injectable anesthetic protocol in dogs as part of a high-volume sterilization program under field conditions in Belize.Study designProspective, observational, field study.AnimalsA total of 23 female and eight male dogs (14.2 ± 7.7 kg; age ≥ 8 weeks).MethodsUsing a volume per kg-based dose chart, dogs were administered ketamine (4.5 mg kg−1), medetomidine (0.04 mg kg−1) and hydromorphone (0.09 mg kg−1) intramuscularly. After induction of anesthesia, an endotracheal tube was inserted and dogs were allowed spontaneous breathing in room air. Monitoring included peripheral oxygen saturation (SpO2), mean arterial pressure (MAP), heart rate (HR), respiratory rate, rectal temperature and end-tidal carbon dioxide (Pe′CO2). Meloxicam (0.2 mg kg−1) was administered subcutaneously after surgery. Data were analyzed with linear models and chi-square tests (p < 0.05).ResultsOnset of lateral recumbency (3.4 ± 2 minutes) was rapid. Desaturation (SpO2 < 90%) was observed at least once in 64.5% of dogs and was more frequent in large dogs (p = 0.019). Hypercapnia (Pe′CO2 ≥ 50 mmHg; 6.7 kPa) was observed in 48.4% of dogs. MAP was 111 ± 19 mmHg, mean ± standard deviation. Hypertension (MAP ≥ 120 mmHg), bradycardia (HR ≤ 60 beats minute−1) and tachycardia (HR ≥ 140 beats minute−1) were observed in 45.2%, 16.1% and 3.3% of dogs, respectively. Hypotension and hypothermia were not observed. Sex was not significantly associated with any complication. Return of swallowing reflex and time to standing were 71 ± 23 and 152 ± 50 minutes after injection, respectively. Return of swallowing was significantly longer in large dogs.Conclusions and clinical relevanceAt the doses used, ketamine–medetomidine–hydromorphone was effective in dogs for high-volume sterilization. In this field setting, adverse effects included hypoventilation, hypoxemia and prolonged recovery.  相似文献   

11.
ObjectiveTo measure the level of agreement between Doppler measured (DOP) arterial blood pressure (ABP) in the forelimb and directly measured (DIR) auricular systolic ABP (SAP) and mean ABP (MAP) in isoflurane-anaesthetized rabbits.Study designProspective clinical study.AnimalsData were analysed from 17 of 24 healthy rabbits, weighing 1.3–2.8 kg.MethodsRabbits were anaesthetized for neutering using a standardized protocol. A 26G catheter placed in an auricular artery was connected via heparinised saline filled non-compliant tubing (regularly flushed) to a calibrated pressure transducer (zeroed level with the thoracic inlet) to obtain DIR ABP. A cuff was placed proximal to the carpus (approximately level with the thoracic inlet) and a Doppler transducer sited over the dorsal carpal branch of the radial artery to obtain DOP ABP. Simultaneous DIR and DOP ABP recordings were made every 5–10 minutes during anaesthesia. Agreement was assessed as described by Bland JM &; Altman (2007).ResultsMean ± SD cuff width: limb circumference ratio was 0.50 ± 0.04. Mean between-method differences ± SD, DIR SAP- DOP and DIR MAP- DOP, were +1 ± 8 and ?13 ± 8 mmHg respectively. The 95% limits of agreement between DIR SAP and DOP and between DIR MAP and DOP were ?14 to +17 and ?28 to +2 mmHg respectively. Differences between DIR SAP and DOP were ≤10 mmHg 85% of the time. Defining hypotension as either DIR SAP < 80 mmHg or DIR MAP < 60 mmHg, and taking DOP ABP of <80 mmHg to indicate hypotension, sensitivity and specificity were 92% and 67% respectively.ConclusionsGood agreement was found between DIR SAP and DOP. Doppler measurements below 80 mmHg are a reliable indicator of arterial hypotension.Clinical relevanceDOP is acceptable for monitoring ABP in isoflurane-anaesthetized rabbits and is useful for detection of hypotension.  相似文献   

12.
ObjectiveTo compare isoflurane and propofol for maintenance of anesthesia and quality of recovery in client-owned dogs with intracranial disease undergoing magnetic resonance imaging (MRI).Study designProspective, randomized, clinical trial.AnimalsTwenty-five client-owned dogs with intracranial pathology, 13 females and 12 males, ages 11 months to 13 years, weighing between 3.0 and 48.0 kg.MethodsEach dog was randomly assigned to receive propofol or isoflurane for maintenance of anesthesia. All dogs were not premedicated, were administered propofol intravenously to effect for induction, intubated and mechanically ventilated to maintain an end-tidal carbon dioxide tension 30–35 mmHg (4.0–4.7 kPa). Temperature and cardiac output were measured pre- and post-MRI. Scores for mentation, neurological status, ease of maintenance, and recovery were obtained pre- and post-anesthesia. Pulse oximetry, end-tidal gases, arterial blood pressure, heart rate (HR) and requirements for dopamine administration to maintain mean arterial pressure (MAP) >60 mmHg were recorded throughout anesthesia.ResultsEnd-tidal isoflurane concentration was 0.73 ± 0.35% and propofol infusion rate was 292 ± 119 μg kg?1 minute?1. Cardiac index was higher, while HR was lower, with propofol than isoflurane in dogs younger than 5 years, but not in older dogs. Dogs maintained with isoflurane were 14.7 times more likely to require dopamine than propofol dogs. Mentation and maintenance scores and temperature were not different. MAP and diastolic arterial pressure were higher in the propofol group. Recovery scores were better with propofol, although times to extubation were similar. Change in neurological score from pre- to post-anesthesia was not different between treatments.ConclusionsDogs maintained with propofol during MRI had higher arterial pressures, decreased requirements for dopamine, and better recovery scores, compared to dogs maintained with isoflurane.Clinical relevancePropofol anesthesia offered cardiovascular and recovery advantages over isoflurane during MRI in dogs with intracranial disease in this study.  相似文献   

13.
ObjectiveTo investigate the cardiorespiratory, nociceptive and endocrine effects of the combination of propofol and remifentanil, in dogs sedated with acepromazine.Study designProspective randomized, blinded, cross-over experimental trial.AnimalsTwelve healthy adult female cross-breed dogs, mean weight 18.4 ± 2.3 kg.MethodsDogs were sedated with intravenous (IV) acepromazine (0.05 mg kg?1) followed by induction of anesthesia with IV propofol (5 mg kg?1). Anesthesia was maintained with IV propofol (0.2 mg kg?1 minute?1) and remifentanil, infused as follows: R1, 0.125 μg kg?1 minute?1; R2, 0.25 μg kg?1 minute?1; and R3, 0.5 μg kg?1 minute?1. The same dogs were administered each dose of remifentanil at 1-week intervals. Heart rate (HR), mean arterial pressure (MAP), respiratory rate (fR), end tidal CO2 (Pe′CO2), arterial hemoglobin O2 saturation, blood gases, and rectal temperature were measured before induction, and 5, 15, 30, 45, 60, 75, 90, and 120 minutes after beginning the infusion. Nociceptive response was investigated by electrical stimulus (50 V, 5 Hz and 10 ms). Blood samples were collected for plasma cortisol measurements. Statistical analysis was performed by anova (p < 0.05).ResultsIn all treatments, HR decreased during anesthesia with increasing doses of remifentanil, and increased significantly immediately after the end of infusion. MAP remained stable during anesthesia (72–98 mmHg). Antinociception was proportional to the remifentanil infusion dose, and was considered satisfactory only with R2 and R3. Plasma cortisol concentration decreased during anesthesia in all treatments. Recovery was smooth and fast in all dogs.Conclusions and clinical relevanceInfusion of 0.25–0.5 μg kg?1 minute?1 remifentanil combined with 0.2 mg kg?1 minute?1 propofol produced little effect on arterial blood pressure and led to a good recovery. The analgesia produced was sufficient to control the nociceptive response applied by electrical stimulation, suggesting that it may be appropriate for performing surgery.  相似文献   

14.
15.
ObjectiveTo measure subarachnoid pressures, systemic circulatory and respiratory effects, and to calculate cerebral perfusion pressure during cisternal myelography.Study designProspective clinical study.AnimalsForty‐three client owned dogs with clinical signs of spinal disease, weighing 6–56 kg.MethodsDogs were premedicated with butorphanol and diazepam intravenously (IV) and anaesthesia was induced with propofol and maintained with isoflurane vaporized in oxygen. Ventilation was spontaneous. Heart and respiratory rates, invasive mean arterial blood pressure (MAP), end tidal carbon dioxide and isoflurane concentration were measured continuously. Initial subarachnoid pressure (SaP0) was measured in the cisterna magna with a needle pressure gauge. Iohexol 0.3 mL kg?1 was injected at a rate of 4.1 mL minute?1 into the cerebellomedullary cistern. The SaP was recorded during and at 120 seconds after contrast administration. The maximum SaP (SaPmax) and minimum calculated cerebral perfusion pressure (CPPmin) were recorded for each case.ResultsPrior to contrast injection, mean ± SD, MAP was 73 ± 20 mmHg and SaP0 was 10 ± 3 mmHg. The cerebral perfusion pressure (CPP) was 64 ± 20 mmHg. The contrast injection increased the SaP0 to 73 ± 33 mmHg (SaPmax). After injection, MAP increased to 97 ± 25 mmHg and the CPP decreased to 14 ± 34 mmHg. A negative correlation was found between the lowest CPP and body weight (ρ = ?0.77, p < 0.0001). Nine dogs had bradycardia, apnoea and hypertension, 21 dogs had at least one of these signs. The number of clinical signs showed significant correlation with body weight (ρ = ?0.68, p < 0.0001), SaPmax (ρ = ?0.66, p < 0.0001) and CPPmin (ρ = ?0.73, p < 0.0001).Conclusions and clinical relevanceCerebral perfusion can severely decrease during cisternal myelography using the standard dose of iohexol. Bradycardia, apnoea and systemic hypertension were associated with decreased CPP.  相似文献   

16.

Objective

To characterize the isoflurane-sparing effects of a high and a low dose of fentanyl in dogs, and its effects on mean arterial pressure (MAP) and heart rate (HR).

Study design

Prospective, randomized crossover trial.

Animals

Eight healthy male Beagle dogs weighing 12.1 ± 1.6 kg [mean ± standard deviation (SD)] and approximate age 1 year.

Methods

Dogs were anesthetized using isoflurane and minimum alveolar concentration (MAC) was determined in duplicate by the bracketing method using an electrical stimulus on the tarsus. Animals were administered fentanyl: low dose (33 μg kg?1 loading dose, 0.2 μg kg?1 minute?1) or high dose (102 μg kg?1 loading dose, 0.8 μg kg?1 minute?1) and MAC was re-determined (MACISO-F). Blood was collected for analysis of plasma fentanyl concentrations before administration and after MACISO-F determination. All values are presented as mean ± SD.

Results

Isoflurane MAC (MACISO) was 1.30 ± 0.23% in the low dose treatment, which significantly decreased to 0.75 ± 0.22% (average MAC reduction 42.3 ± 9.4%). MACISO was 1.30 ± 0.18% in the high dose treatment, which significantly decreased to 0.30 ± 0.11% (average MAC reduction 76.9 ± 7.4%). Mean fentanyl plasma concentrations were 6.2 and 29.5 ng mL?1 for low and high dose treatments, respectively. MAP increased significantly only in the high dose treatment (from 81 ± 8 to 92 ± 9 mmHg). HR decreased significantly in both treatments from 108 ± 25 to 61 ± 14 beats minute?1 with the low dose and from 95 ± 14 to 42 ± 4 beats minute?1 with the high dose.

Conclusions and clinical relevance

Fentanyl administration resulted in a dose-dependent isoflurane MAC-sparing effect with bradycardia at both doses and an increase in MAP only at high dose. Further evaluation is needed to determine the effects of fentanyl on the overall cardiovascular function.  相似文献   

17.
ObjectiveTo characterize the cardiovascular effects of increasing dosages of norepinephrine (NE) in healthy isoflurane-anesthetized rabbits.Study designProspective experimental study.AnimalsA total of nine female ovariohysterectomized New Zealand White rabbits weighing 3.4 ± 0.2 kg (mean ± standard deviation).MethodsRabbits were premedicated intramuscularly with buprenorphine (0.05 mg kg–1) and midazolam (0.5 mg kg–1). Anesthesia was induced with intravenous propofol and maintained with a 1.1 × minimum alveolar concentration of isoflurane for this species to induce hypotension. Rabbits were administered NE infusions at three doses: low, 0.1 μg kg–1 minute–1; medium, 0.5 μg kg–1 minute–1; and high doses, 1 μg kg–1 minute–1 for 10 minutes each in that order. Cardiovascular variables including heart rate (HR), cardiac output (CO) by lithium dilution technique and systolic (SAP), mean (MAP) and diastolic (DAP) invasive arterial blood pressures measured in the auricular artery were recorded at baseline, 10 minutes after the start of the infusion of each NE treatment and 10 minutes after NE was discontinued. A linear mixed model and a type III anova with Tukey’s post hoc comparison was performed (p < 0.05).ResultsSignificant increases in SAP (28% and 90%), MAP (27% and 90%) and DAP (33% and 97%) were measured with medium and high dose treatments, respectively (p < 0.001), with no changes in CO. HR decreased and stroke volume increased significantly with high dose treatment (by 17% and 15%, respectively; p < 0.05). No arrhythmias were noticed with NE treatments.Conclusions and clinical relevanceThe infusion of NE at 0.5–1.0 μg kg–1 minute–1 is a potentially effective treatment for hypotension in healthy isoflurane-anesthetized New Zealand White rabbits.  相似文献   

18.
OBJECTIVE: To compare the performance of the Surgivet Non-Invasive Blood Pressure (NIBP) monitor V60046 with an invasive blood pressure (IBP) technique in anaesthetized dogs. STUDY DESIGN: A prospective study. ANIMALS: Thirty-four dogs, anaesthetized for a variety of procedures. METHODS: Various anaesthetic protocols were used. Invasive blood pressure measurement was made using a catheter in the femoral or the pedal artery. A cuff was placed on the contralateral limb to allow non invasive measurements. Recordings of arterial blood pressures (ABPs) were taken at simultaneous times for a range of pressures. For analysis, three pressure levels were determined: high [systolic blood pressure (SAP) > 121 mmHg], normal (91 mmHg < SAP < 120 mmHg) and low (SAP < 90 mmHg). Comparisons between invasive and non invasive measurements were made using Bland-Altmann analysis. RESULTS: The NIBP monitor consistently underestimated blood pressure at all levels. The lowest biases and greatest precision were obtained at low and normal pressure levels for SAP and mean arterial pressure (MAP). At low blood pressure levels, the biases +/- 95% confidence interval (CI) were 1.9 +/- 2.96 mmHg (SAP), 8.3 +/- 2.41 mmHg diastolic arterial pressure (DAP) and 3.5 +/- 2.09 mmHg (MAP). At normal blood pressure levels, biases and CI were: 1.2 +/- 2.13 mmHg (SAP), 5.2 +/- 2.32 mmHg (DAP) and 2.1 +/- 1.54 mmHg (MAP). At high blood pressure levels, the biases and CI were 22.7 +/- 5.85 mmHg (SAP), 5.5 +/- 3.13 mmHg (DAP) and 9.4 +/- 3.52 mmHg (MAP). In 90.6% of cases of hypotension (MAP < 70 mmHg), the low blood pressure was correctly diagnosed by the Surgivet. CONCLUSIONS: Measurement of blood pressure with the indirect monitor allowed detection of hypotension using either SAP or MAP. The most accurate readings were determined for MAP at hypotensive and normal levels. The monitor lacked accuracy at high pressures. CLINICAL RELEVANCE: When severe challenges to the cardiovascular system are anticipated, an invasive method of recording ABP is preferable. For routine usage, the Surgivet monitor provided a reliable and safe method of NIBP monitoring in dogs, thereby contributing to the safety of anaesthesia by providing accurate information about the circulation.  相似文献   

19.
ObjectiveTo evaluate the agreement between invasive blood pressure (IBP) and Doppler ultrasound blood pressure (DUBP) using three cuff positions and oscillometric blood pressure (OBP) in anesthetized dogs.Study designProspective study.AnimalsNine adult dogs weighing 14.5–29.5 kg.MethodsThe cuff was placed above and below the tarsus, and above the carpus with the DUBP and above the carpus with the OBP monitor. Based on IBP recorded via a dorsal pedal artery catheter, conditions of low, normal, and high systolic arterial pressures [SAP (mmHg) <90, between 90 and 140, and >140, respectively] were induced by changes in isoflurane concentrations and/or dopamine administration. Mean biases ± 2 SD (limits of agreement) were determined.ResultsAt high blood pressures, regardless of cuff position, SAP determinations with the DUBP underestimated invasive SAP values by more than 20 mmHg in most instances. With the DUBP, cuff placement above the tarsus yielded better agreement with invasive SAP during low blood pressures (0.2 ± 16 mmHg). The OBP underestimated SAP during high blood pressures (?42 ± 42 mmHg) and yielded better agreement with IBP for mean (MAP) and diastolic (DAP) arterial pressure measurements [overall bias: 2 ± 15 mmHg (MAP) and 0.2 ± 16 mmHg (DAP)].ConclusionsAgreement of SAP determinations with the DUBP is poor at SAP > 140 mmHg, regardless of cuff placement. Measurement error of the DUBP with the cuff placed above the tarsus is clinically acceptable during low blood pressures. Agreement of MAP and DAP measurements with this OBP monitor compared with IBP was clinically acceptable over a wide pressure range.Clinical relevanceWith the DUBP device, placing the cuff above the tarsus allows reasonable agreement with IBP obtained via dorsal pedal artery catheterization. Only MAP and DAP provide reasonable estimates of direct blood pressure with the OBP monitor evaluated.  相似文献   

20.
ObjectiveTo evaluate the cardiovascular effects of a preload of hydroxyethylstarch 6% (HES), preceding an epidural administration of ropivacaine 0.75% in isoflurane anaesthetized dogs.AnimalsSix female, neutered Beagle dogs (mean 13.3 ± SD 1.0 kg; 3.6 ± 0.1 years).Study designRandomized experimental cross-over study (washout of 1 month).MethodsAnaesthesia was induced with propofol and maintained with isoflurane in oxygen/air. All dogs were anaesthetized twice to receive either treatment HESR (continuous rate infusion [CRI] of 7 mL kg?1 HES started 30 minutes [T-30] prior to epidural administration of ropivacaine 0.75% 1.65 mg kg?1 at T0) or treatment R (no HES preload and similar dose and timing of epidural ropivacaine administration). Baseline measurements were obtained at T-5. Heart rate (HR), mean (MAP), diastolic (DAP) and systolic (SAP) invasive arterial pressures, cardiac output (Lithium dilution and pulse contour analysis) and derived parameters were recorded every 5 minutes for 60 minutes. Statistical analysis was performed on five dogs, due to the death of one dog.ResultsClinically relevant decreases in MAP (<60 mmHg) were observed for 20 and 40 minutes following epidural administration in treatments HESR and R respectively. Significant decreases in MAP and DAP were present after treatment HESR for up to 20 minutes following epidural administration. No significant within-treatment and overall differences were observed for other cardiovascular parameters. A transient unilateral Horner's syndrome occurred in two dogs (one in each treatment). One dog died after severe hypotension, associated with epidural anaesthesia.Conclusions and clinical relevanceA CRI of 7 mL kg?1 HES administered over 30 minutes before epidural treatment did not prevent hypotension induced by epidural ropivacaine 0.75%. Epidural administration of ropivacaine 0.75% in isoflurane anaesthetized dogs was associated with a high incidence of adverse effects in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号