首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study was performed to determine the effect of intracerebroventricular (icv) injection of interleukin (IL)-1β on the gene expression, translation and release of gonadotropin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) gene expression in the hypothalamus of anestrous ewes. In the anterior pituitary gland (AP), the expression of genes encoding: GnRHR, β subunits of luteinizing hormone (LH) and folliculotropic hormone (FSH) was determined as well as the effect of IL-1β on pituitary gonadotropins release. The relative mRNA level was determined by real-time PCR, GnRH concentration in the cerebrospinal fluid (CSF) was assayed by ELISA and the plasma concentration of LH and FSH were determined by radioimmunoassay. Our results showed that icv injection of IL-1β (10 or 50 μg/animal) decreased the GnRH mRNA level in the pre-optic area (POA) (35% and 40% respectively; p ≤ 0.01) and median eminence (ME) (75% and 70% respectively; p ≤ 0.01) and GnRHR gene expression in ME (55% and 50% respectively; p ≤ 0.01). A significant decrease in GnRHR mRNA level in the AP in the group treated with the 50 μg (60%; p ≤ 0.01) but not with the 10 μg dose was observed. The centrally administrated IL-1β lowered also GnRH concentration in the CSF (60%; p ≤ 0.01) and reduced the intensity of GnRH translation in the POA (p ≤ 0.01). It was not found any effect of icv IL-1β injection upon the release of LH and FSH. However, the central injection of IL-1β strongly decreased the LHβ mRNA level (41% and 50%; p ≤ 0.01; respectively) and FSHβ mRNA in the case of the 50 μg dose (49%; p ≤ 0.01) in the pituitary of anestrous ewes. These results demonstrate that the central IL-1β is an important modulator of the GnRH biosynthesis and release during immune/inflammatory challenge.  相似文献   

2.
Salsolinol, a dopamine‐related compound and prolactin‐producing cells were found in the ovine hypothalamus. This study was designed to test the hypothesis that salsolinol, acting from the CNS level, is able to stimulate pituitary prolactin release as well as prolactin mRNA expression in the anterior pituitary cells (AP) and in the mediobasal hypothalamus (MBH) in lactating ewes. The intracerebroventricular infusions of salsolinol in two doses, total of 50 ng or 5 μg, were performed in a series of five 10‐min infusions at 20‐min intervals. All infusions were made from 12:30 to 15:00 and the pre‐infusion period was from 10:00 to 12.30 h. The prolactin concentration in plasma samples, collected every 10 min, was determined by radioimmunoassay; prolactin mRNA expression in AP and MBH tissues was determined by real‐time PCR. The obtained results showed that salsolinol infused at the higher dose significantly (p < 0.001) increased plasma prolactin concentration in lactating ewes, when compared with the concentration noted before the infusion and with that in lactating controls. In lactating ewes, the relative levels of prolactin mRNA expression in the AP and MBH were up to twofold and fivefold higher respectively than in non‐lactating ewes (p < 0.05). In our experimental design, salsolinol did not significantly affect the ongoing process of prolactin gene expression in these tissues. We conclude that in ewes, salsolinol may be involved, at least, in the process of stimulation of prolactin release during lactation and that hypothalamic prolactin plays an important role in the central mechanisms of adaptation to lactation.  相似文献   

3.
An experiment was conducted to determine the effects of equine somatotropin on the reproductive axis of the stallion during the nonbreeding season. Adult stallions were treated with equine somatotropin (20 μg/kg body weight [BW]; n = 5) or saline (n = 4) daily for 21 days starting in January. During the last week of treatment, stallions were subjected to low- and high-dose injections of luteinizing hormone (LH), as well as low- and high-dose injections of gonadotropin-releasing hormone (GnRH) and thyrotropin-releasing hormone (TRH). Two months after the onset of somatotropin treatment, semen was collected from all stallions every other day for 14 days. Treatment with equine somatotropin increased (P < .001) daily IGF-1 concentrations but had no effect (P > .1) on concentrations of LH, follicle-stimulating hormone (FSH), or testosterone. The testosterone responses to injections of LH were similar (P > .1) between treatments. Likewise, the LH, FSH, prolactin, and testosterone responses to the injections of GnRH/TRH were similar (P > .1) between groups. At seminal collections, stallions treated with somatotropin exhibited greater volumes of gel-free semen (P < .01) and gel (P < .05) and had decreased time until ejaculation (P < .05). In conclusion, somatotropin treatment for 21 days may alter the long-term accessory gland contribution to seminal volume but does not appear to alter pituitary gonadotrope function or testicular testosterone secretion.  相似文献   

4.
The aim of this study was to elucidate the possible direct regulatory role of the endocannabinoids in the modulation of LH secretion in rabbits, a reflex ovulator species. The cannabinoid receptor type 1 (CB1) was characterized by RT-PCR techniques in the anterior pituitary of intact and ovariectomized does treated with GnRH and primed with estrogen and CB1 antagonist, rimonabant. Cannabinoid receptor type 1 immune reaction was evidenced by immunohistochemistry in the cytoplasm of approximately 10% of the pituitary cells with a density of 8.5 ± 1.9 (per 0.01 mm2), both periodic acid–Schiff positive (30%) and negative (70%). All CB1-immunoreactive cells were also immune reactive for estrogen receptor type 1. Ovariectomy, either alone or combined with estrogen priming, did not modify the relative abundances of pituitary CB1 mRNA, but decreased (P < 0.01) the expression of estrogen receptor type 1 mRNA. Treatment with CB1 antagonist (rimonabant) inhibited (P < 0.01) LH secretory capacity by the pituitary after GnRH injection, and estrogen priming had no effect. The present findings indicate that the endocannabinoid system is a potential candidate for the regulation of the hypothalamic-pituitary-ovarian axis in reflex ovulatory species.  相似文献   

5.
Six pony geldings were actively immunized against GnRH conjugated to bovine serum albumin (BSA) to study 1) the relative dependency of LH and FSH storage, secretion and response to GnRH analog on GnRH bioavailability and 2) the effects of reduced GnRH bioavailability on GnRH storage in the hypothalamus. Five geldings were immunized against BSA. Geldings were immunized in December and 4, 8, 14, 20, 26 and 32 wk later. Ponies immunized against GnRH had increased (P less than .01) GnRH binding in plasma within 6 wk. By June, plasma concentrations of LH and FSH in ponies immunized against GnRH had decreased (P less than .02) by 86 and 59%, respectively, relative to ponies immunized against BSA. The LH response to an injection of GnRH analog, which did not bind to anti-GnRH antibodies, was reduced (P less than .005) by 90% in ponies immunized against GnRH relative to ponies immunized against BSA. In contrast, the FSH response to GnRH analog was similar (P greater than .1) for both groups. Immunization against GnRH reduced (P less than .05) weight of the anterior pituitary (AP) by 31%, LH content in AP by 91% and FSH content in AP by 55% relative to ponies immunized against BSA. There was no effect of GnRH immunization on prolactin characteristics or on GnRH concentrations in the median eminence, preoptic area or body of the hypothalamus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
本试验通过在饲粮中添加维生素与矿物质、调整饲粮能量蛋白质水平,旨在研究其对浙东白鹅母鹅繁殖性能、血液生殖激素浓度和生殖轴相关基因mRNA相对表达量的影响.选择138只月龄相近的浙东白鹅种母鹅,按体重相近原则分为3组,分别饲喂不同的饲粮,试验期150 d,测定繁殖性能(平均产蛋数、平均蛋重、受精率和孵化率)、血液生殖激素[卵泡刺激素(FSH)、促黄体生成素(LH)、孕酮(P4)、雌二醇(E2)、催乳素(PRL)]浓度和生殖轴相关基因[促性腺激素释放激素(GnRH)、卵泡刺激素-β(FSHβ)、雌激素受体1(ESR1)、雌激素受体2(ESR2)、卵泡刺激素受体(FSHR)、催乳素(PRL)、催乳素受体(PRLR)] mRNA相对表达量的变化.结果表明:1)添加维生素与矿物质可显著提高浙东白鹅母鹅第1产蛋周期平均蛋重和受精率(P<0.05);提高第2产蛋周期内血液FSH和P4的浓度,降低LH浓度,改变E2、P4和PRL浓度波动(P<0.05);下调下丘脑PRLR、垂体PRL和卵巢PRLR基因的mRNA相对表达量(P<0.05),上调卵巢ESR2基因的mRNA相对表达量(P<0.05).2)调整饲粮能量蛋白质水平可显著提高浙东白鹅母鹅第2产蛋周期平均蛋重(P<0.05);提高浙东白鹅第2产蛋周期内血液LH浓度,降低FSH浓度,改变E2和P4浓度波动(P<0.05);上调下丘脑GnRH、垂体PRL和PRLR基因的mRNA相对表达量(P<0.05),下调卵巢FSHR基因的mRNA相对表达量(P<0.05).由此得出,添加维生素与矿物质、调整饲粮能量蛋白质水平可通过影响产蛋周期内部分血液生殖激素浓度和波动,局部调节生殖轴相关基因的mRNA相对表达量,改善浙东白鹅母鹅的繁殖性能.  相似文献   

7.
Some evidence suggests that there might be a species difference in the effect of intracerebroventricularly administered (ICV) prolactin‐releasing peptide (PrRP) between rodents and sheep. We compared the levels of cortisol (CORT) and prolactin (PRL), rectal temperature (RT) and behavioral responses to ICV bovine PrRP (bPrRP) in steers. ICV bPrRP (0.2, 2 and 20 nmol/200 µL) tended to evoke a dose‐related increase in CORT concentrations and 0.2 nmol of bPrRP induced transient increase in PRL concentrations. A significant time–treatment interaction was observed for the percent change of CORT (P < 0.05) and PRL (P < 0.05) from pre‐injection value. The time–treatment interaction for changes in RT was not significant (P = 0.50). There tended to be a difference among the four treatments in terms of maximum change in RT from the pre‐injection value between 0 and 90 min (P < 0.1). Stress‐related behavioral signs were not observed in the present experiment. These findings indicate that ICV bPrRP increased CORT and PRL levels, suggesting that central PrRP might participate in controlling the hypothalamo‐pituitary‐adrenal axis and PRL release in cattle, unlike sheep. In contrast, central PrRP is unlikely to be involved in controlling the behavior of this species because ICV bPrRP did not induce marked changes in their behavior.  相似文献   

8.
The present study examined the changes in serum biochemical values, hormone profiles and ovary prolactin receptor (PRLR) gene expression occurring in female domestic pigeons (Columba livia) under different breeding status and experience. The egg‐laying pigeons had lower calcium, total protein, albumin, prolactin levels and higher oestrogen levels than those of incubating birds (p < 0.05). First‐time breeders had higher (p < 0.05) progesterone levels and lower (p < 0.05) prolactin levels than that of experienced ones. The levels of oestrogen and follicle‐stimulating hormone (FSH) increased with age (p < 0.05). The very old birds showed a pronounced increase (p < 0.05) in PRL, FSH and progesterone and a little decrease in oestrogen. Serum prolactin level was not correlated with the ovary PRLR mRNA expression pattern among all the pigeons. Results showed that serum physiological profile of female pigeons was correlated with breeding status, whereas reproductive hormone levels were correlated with advancing breeding experience. It was concluded that female pigeons had a good ability of recovering from nutrient loss after each breeding attempts, and the degradation of reproductive performance might be attributed to changes in the endocrine system.  相似文献   

9.
The temporal pattern and sex effect of immune and stress hormone responses to a lipopolysaccharide (LPS) challenge were assessed using a pig model. Secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 increased in a time-dependent manner following LPS infusion. There was also a time-dependent increase in secretion of the stress-related hormones cortisol, epinephrine (E), and norepinephrine (NE) following LPS, with peak concentrations attained within 30 min. The magnitude of the TNF-α and IL-1β responses were both positively associated (P < 0.05) with the magnitude of cortisol response following LPS, whereas serum IL-1β and IL-6 were positively correlated with the magnitude of E and NE responses following LPS. Acute-phase protein production was also time-dependently increased following LPS. The concentration of immune cells in circulation was decreased (P < 0.05) at 5.5 h post-LPS and negatively correlated with pro-inflammatory cytokine production. By 24 h post-LPS, immune cell counts increased (P < 0.05) and were positively associated with both pro-inflammatory cytokine and stress hormone production. The amplitude of pro-inflammatory cytokine response following LPS was affected (P < 0.05) by sex classification; however, the magnitude of elevated cytokine concentrations was not. The magnitude of the NE response, but not of the E and cortisol responses, to LPS was influenced by sex (P < 0.05). Similar to the pro-inflammatory cytokines, the magnitude of exposure to the stress hormones following LPS was not influenced by sex. The production of serum amyloid A (SAA) was influenced by sex, with barrows producing more SAA than gilts at 24 h post-LPS (P < 0.05). Collectively, these results demonstrate sex-specific, concomitant temporal changes in innate immune- and stress-related hormones.  相似文献   

10.
To test for the re‐establishment of the positive feedback of oestradiol (E2) during anoestrus in the dog, the hypothalamo–pituitary–ovarian axis of five beagle bitches was challenged by treatments with oestradiol benzoate (EB), mimicking the course of the pro‐oestric E2 secretion. Treatments in anoestrus started 7 days following the decline of progesterone (P) <1 ng/ml; they were repeated in 5 week intervals until onset of pro‐oestrus; another treatment was performed during dioestrus 50 days after onset of the preceding pro‐oestric bleeding. Each dog served as its own control by receiving vehicle‐treatments in one of the following cycles. Each observation period covered a time window of 168 h and blood samples were collected for the determination of luteinizing hormone (LH), follicle‐stimulating hormone (FSH) and E2 in 6 (0–24 h) and 8 h (24–168 h) intervals. In the control periods and as indicated by the parameters area under curve (AUC), basal and maximal values, the availability of LH, FSH and E2 decreased from dioestrus to early anoestrus to increase again during the course of anoestrus (p < 0.05), indicating a gradual desensitization of the hypothalamus towards the negative feedback of oestradiol. At all times treatments with EB lowered the availability of FSH (decreased AUC and basal levels). A delay in the occurrence of the first LH peak after treatments with EB (p < 0.001) and decreased maximal values (p < 0.001) indicated a suppression of the LH‐release. In no case treatment with EB led to a pre‐ovulatory like LH‐surge. In each dog the last trial with EB in anoestrus passed over into pro‐oestrus/oestrus, with a reduced AUC and peak value of the pre‐ovulatory LH‐surge being the only differences to the control group. The observed differences in the response of LH and FSH to treatments with EB point towards subtle differences in the mechanisms controlling the release of these two hormones during anoestrus. From the data obtained, it may be concluded that the time window for E2 to act via a positive feedback seems to be very small and restricted to the end of anoestrus, and that full follicular function is a pre‐requisite to allow for this phenomenon.  相似文献   

11.
Hourly pulses of gonadotropin-releasing hormone (GnRH) or bi-daily injections of estradiol (E2) can increase luteinizing hormone (LH) secretion in ovariectomized, anestrous pony mares. However, the site (pituitary versus hypothalamus) of positive feedback of estradiol on gonadotropin secretion has not been described in mares. Thus, one of our objectives involved investigating the feedback of estradiol on the pituitary. The second objective consisted of determining if hourly pulses of GnRH could re-establish physiological LH and FSH concentrations after pituitary stalk-section (PSS), and the third objective was to describe the declining time trends of LH and FSH secretion after PSS. During summer months, ovariectomized pony mares were divided into three groups: Group 1 (control, n = 2), Group 2 (pulsatile GnRH (25 μg/hr), n = 3), and Group 3 (estradiol (5 mg/12 hr), n = 3). All mares were stalk-sectioned and treatment begun immediately after stalk-section. Blood samples were collected every 30 min for 8 h on the day before surgery (DO) and 5 d post surgery (D5) to facilitate the comparison of gonadotropin levels before and after pituitary stalk-section. Additionally, jugular blood samples were collected every 12 hr beginning the evening of surgery, allowing for evaluation of the gonadotropin secretory time trends over the 10 d of treatment. On Day 10, animals were euthanized to confirm pituitary stalk-section and to submit tissue for messenger RNA analysis (parallel study). Plasma samples were assayed for LH and FSH by RIA. Mean LH secretion decreased from Day 0 to Day 5 in Groups 1 and 3, whereas LH secretion tended (P < 0.08) to decrease in Group 2 mares. On Day 5, LH was higher (P < 0.01) in Group 2 (17.26 ± 3.68 ng/ml; LSMEANS ± SEM), than either Group 1 (2.65 ± 4.64 ng/ml) or group 3 (4.28 ± 3.68 ng/ml). Group 1 did not differ from Group 3 on Day 5 (P < 0.40). Similarly, mean FSH levels decreased in all groups after surgery, yet Group 2 mares had significantly (P < 0.001) higher FSH concentrations (17.66 ± 1.53 ng/ml) than Group 1 or Group 3 (8.34 ± 1.84 and 7.69 ± 1. 63 ng/ml, respectively). Regression analysis of bi-daily LH and FSH levels indicated that the time trends were not parallel. These findings indicate: 1) Pituitary stalk-section lowered LH and FSH to undetectable levels within 5 d after surgery, 2) pulsatile administration of GnRH (25 μg/hr) maintained LH and FSH secretion, although concentrations tended to be lower than on Day 0, and 3) E2 did not stimulate LH or FSH secretion.  相似文献   

12.
The present study was carried out to determine whether leptin or leptin (116–130) peptide amide (lep (116–130)), an active fragment of the native protein in rats, is able to stimulate the release of luteinizing hormone (LH), growth hormone (GH) or prolactin (PRL) from cultured porcine anterior pituitary (AP) cells in vitro. The AP cells were obtained from 6 month‐old pigs and were incubated for 3 h with 10?11?10?7 mol/L leptin or lep (116–130) after being cultured in Dulbecco's modified Eagle's medium for 3–4 days. Leptin significantly increased the concentration of LH and GH in the culture medium at concentrations of 10?8 and 10?7 mol/L, respectively, compared with the controls (P < 0.05). Leptin did not increase the concentration of PRL in the culture medium. In contrast to these results, no effects of lep (116–130) on the release of LH, GH or PRL were seen in the cultured cells. These results suggest that leptin stimulates the release of LH and GH by acting directly on porcine AP cells, and that a fragment of leptin protein comprising amino acids 116–130 is not associated with the secretion of hormones in pigs.  相似文献   

13.
鹅的就巢行为显著影响其产蛋量,就巢行为主要受下丘脑-垂体-性腺轴(HPG)分泌的相关激素调控。相关激素主要包括促性腺激素释放激素(GnRH)、催乳素(PRL)、促卵泡激素(FSH)、促黄体素(LH)、雌二醇(E_2)和孕酮(P_4),共同调控鹅的就巢行为。在就巢期,机体内PRL分泌浓度升高,能够抑制GnRH和FSH的分泌,导致大卵泡合成P_4、E_2速率下降,从而垂体分泌LH浓度降低。本文对鹅就巢期激素水平及卵巢形态变化进行阐述,以期通过调控鹅就巢行为来提高产蛋量的相关研究提供理论支持。  相似文献   

14.
Follicle‐stimulating hormone (FSH) and luteinizing hormone (LH) have a central role in follicle growth, maturation and oestrus, but no clear pathway in the seasonal oestrus of yak (Bos grunniens) has been found. To better understand the role of FSH and LH in seasonal oestrus in the yak, six yaks were slaughtered while in oestrus, and the pineal gland, hypothalamus, pituitary gland, and gonads were collected. Using real‐time PCR and immunohistochemical assays, we determined the mRNA and protein expression of the FSH and LH receptors (FSHR and LHR) in these organs. The analysis showed that the FSHR mRNA expression level was higher in the pituitary gland tissue compared with LHR (< .01) during oestrus. By contrast, there was low expression of FSHR and LHR mRNA in the pineal gland and hypothalamus. FSHR mRNA expression was higher than that of LHR (< .05) in the ovary, whereas LHR mRNA expression was higher than that of FSHR (< .01) in the uterus. FSHR and LHR proteins were located in the pinealocyte, synaptic ribbon and synaptic spherules of the pineal gland and that FSH and LH interact via nerve fibres. In the hypothalamus, FSHR and LHR proteins were located in the magnocellular neurons and parvocellular neurons. FSHR and LHR proteins were localized in acidophilic cells and basophilic cells in the pituitary gland, and in surface epithelium, stromal cell and gland epithelium in the uterus. In the ovary, FSHR and LHR protein were present in the ovarian follicle. Thus, we concluded that FSHR and LHR are located in the pineal gland, hypothalamus, pituitary and gonad during oestrus in the yak. However, FSHR was mainly expressed in the pituitary gland and ovaries, whereas LHR was mainly expressed in the pituitary gland and uterus.  相似文献   

15.
Considerable variation exists in the serum levels of gonadotropins in boars; this results in differential testicular function. Boars (Chinese Meishan, European White composite, and crosses of the two breeds) selected for high and low circulating FSH concentrations were used to define possible differences in pituitary sensitivity to GnRH and GnRH antagonist and gonadal and adrenal responses. After a 2-h pretreatment sampling period, boars were injected with GnRH or GnRH antagonist and repetitively sampled via jugular cannula for changes in serum concentrations of FSH, LH, testosterone, and cortisol. In response to varying doses of GnRH or GnRH antagonist, FSH, LH, or testosterone changes were not different in high- or low-FSH boars. Declines in LH after GnRH stimulation were consistently faster in boars selected for high FSH. Chinese Meishan boars had considerably higher cortisol concentrations than White composite boars (132.2 +/- 28.5 vs 67.4 +/- 26.8 ng/mL, respectively; P < .01). When select high- and low-gonadotropin Meishan:White composite crossbreds were sampled, cortisol levels were elevated but comparable between the two groups (126.5 +/- 13.7 vs 131.4 +/- 13.4 ng/mL, respectively). After GnRH antagonist lowered LH concentrations, administration of hCG resulted in increased testosterone and cortisol concentrations. Although testosterone concentrations remained high for 30 h, cortisol concentrations returned to normal levels within 10 h after hCG injection. The mechanism by which boars selected for high gonadotropins achieve increased levels of LH and FSH may not be due to differences in pituitary sensitivity to GnRH but to differences in clearance from the circulation.  相似文献   

16.
A study was conducted with 20 weaned barrows (14 d, 4.98 +/- 0.21 kg) to determine the effect of feeding spray-dried plasma (SDP) after weaning on the pig's stress response to a lipopolysaccharide (LPS) challenge. After weaning, pigs were fed a diet containing 0 or 7% SDP for 7 d. On d 6 after weaning, all pigs were nonsurgically fitted with a jugular catheter. On d 7 after weaning, the pigs were given i.p. injections of either saline or LPS (150 microg/kg BW) followed by serial blood collection every 15 min for a 3-h period. Following the 3-h blood collection, all pigs were killed and tissue was collected for mRNA analysis. Pig weight on d 7 after weaning was not affected by dietary treatment (P > 0.21). Pigs fed the diet with SDP had lower (P < 0.05) levels of hypothalamic corticotropin-releasing hormone (CRH) mRNA, pituitary gland CRH receptor mRNA, and adrenal gland adrenocorticotropin-releasing hormone (ACTH) receptor mRNA. Dietary treatment did not affect pituitary gland proopiomelanocortin (POMC) mRNA. No effect of LPS treatment was observed in any of the mRNA levels examined. For both serum ACTH and cortisol, there was a significant diet x LPS treatment interaction (P < 0.01) such that both the ACTH and cortisol responses to the LPS challenge were greater in the pigs fed the diet with SDP than in the pigs fed the diet without SDP. For pigs given the saline injection, diet did not affect basal serum cortisol concentration; however, basal serum ACTH concentration was lower in those pigs fed the diet with SDP (P < 0.0001). A diet x LPS treatment interaction (P < 0.024) was observed for adrenal gland mRNA expression for steroidogenic acute regulatory (StAR) protein such that the LPS-induced increase in StAR mRNA was greater in the pigs fed SDP than in pigs fed the diet without SDP. These results demonstrate that pigs fed a diet with SDP have an increased activation of the pituitary-adrenal axis following an LPS challenge compared to pigs fed a diet without SDP.  相似文献   

17.
Specific cell populations in the pituitary glands of the rat, cat, pig, and human being were positive for thyroid-stimulating hormone (TSH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH). When reacted with prediluted rabbit anti-human TSH, LH, and FSH, antisera were not positive for the demonstration of these hormones in the horse, cow, or dog. Immunocytochemical staining was obtained in the horse, cow, and dog by the use of a primary antiserum against a specific beta-subunit of bovine TSH. The immunocytochemical staining of TSH, LH, FSH, adrenocorticotropic hormone, growth hormone, prolactin, and calcitonin was examined by the peroxidase-antiperoxidase method, using standard commercially available kits. All species examined had a strong positive reaction in specific pituitary cell populations for adrenocorticotropic hormone, growth hormone, and prolactin. Sections of normal thyroid gland tissue had positive staining of C cells containing calcitonin at the dilution of 1:100 of the primary antibody in the rat, horse, cow, dog, cat, pig, and human being.  相似文献   

18.
Two experiments (Spring and Fall) were conducted in ovariectomized ewes to determine changes in pituitary hormone secretion immediately after pituitary stalk-transection. Ewes underwent either pituitary stalk-transection (SS), sham-transection (SH) or administration of anesthesia only (AO). Stalk-transected, but not sham-operated or anesthetized ewes had polyuria and polydipsia for 7 to 14 days after surgery. Concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin were measured in peripheral blood samples collected every 10 minutes for a six-hour period. Results were comparable for each season. During the six hours following surgery or removal from anesthesia, concentrations of LH declined in all ewes, but more slowly in SS ewes. No differences in patterns or mean concentrations of FSH were observed. Immediately after surgery, concentrations of prolactin were elevated, then declined in SH and SS ewes. The decrease was greater in SH than SS ewes. Data are consonant with the view that hypothalamic inhibition as well as LHRH stimulation regulate gonadotropin release by the pituitary.  相似文献   

19.
The aim of this study was to investigate the effects of treatment with medroxyprogesterone acetate (MPA) on canine adenohypophyseal function. Five Beagle bitches were treated with MPA (10mg/kg, every 4 weeks) and their adenohypophyseal function was assessed in a combined adenohypophyseal function test. Four hypophysiotropic hormones (CRH, GHRH, GnRH, and TRH) were administered before and 2, 5, 8, and 11 months after the start of MPA treatment, and blood samples for determination of the plasma concentrations of ACTH, cortisol, GH, IGF-1, LH, FSH, prolactin, alpha-MSH, and TSH were collected at -15, 0, 5, 10, 20, 30, and 45 min after suprapituitary stimulation. MPA successfully prevented the occurrence of estrus, ovulation, and a subsequent luteal phase. MPA treatment did not affect basal and GnRH-induced plasma LH concentrations. The basal plasma FSH concentration was significantly higher at 2 months after the start of MPA treatment than before or at 5, 8, and 11 months after the start of treatment. The maximal FSH increment and the AUC for FSH after suprapituitary stimulation were significantly higher before treatment than at 5, 8, and 11 months of MPA treatment. Differences in mean basal plasma GH concentrations before and during treatment were not significant, but MPA treatment resulted in significantly elevated basal plasma IGF-1 concentrations at 8 and 11 months. MPA treatment did not affect basal and stimulated plasma ACTH concentrations, with the exception of a decreased AUC for ACTH at 11 months. In contrast, the maximal cortisol increment and the AUC for cortisol after suprapituitary stimulation were significantly lower during MPA treatment than prior to treatment. MPA treatment did not affect basal plasma concentrations of prolactin, TSH, and alpha-MSH, with the exception of slightly increased basal plasma TSH concentrations at 8 months of treatment. MPA treatment did not affect TRH-induced plasma concentrations of prolactin and TSH. In conclusion, the effects of chronic MPA treatment on adenohypophyseal function included increased FSH secretion, unaffected LH secretion, activation of the mammary GH-induced IGF-I secretion, slightly activated TSH secretion, suppression of the hypothalamic-pituitary-adrenocortical axis, and unaffected secretion of prolactin and alpha-MSH.  相似文献   

20.
In vitro responsiveness of the horse anterior pituitary (AP) gonadotropes to single and multiple GnRH challenges was examined. The pituitaries were collected from reproductively sound mares in estrus (n = 5) and diestrus (n = 5). Uniform 0.5 mm AP slices were subdivided using a 3 mm biopsy punch and then bisected for use in the perifusion chamber. Four bisected sections per chamber were perifused at 0.5 ml/min at 37 C for 560 min in Medium 199 saturated with 95% 0(2)/5% CO2. Ten minute fractions were collected after an initial 2 hr equilibration period. Four different treatment regimes of GnRH (10(-10) M) were evaluated: (A) three consecutive 10 min GnRH pulses separated by 80 and 100 min, respectively; (B) a single 120 min GnRH infusion; (C) a 10 min GnRH pulse followed 80 min later by a 120 min GnRH infusion and (D) two 10 min GnRH pulses separated by 60 min followed 80 min later by a 120 min GnRH infusion. Estimated total pituitary LH content was higher in estrous than diestrus mares (p less than 0.05). The total amount of LH released in response to GnRH tended to be greater in estrus than diestrus (p less than 0.1), whereas the percentage of LH released in estrus and diestrus was similar. An increase in the area under the LH response curve was noted with each successive 10 min pulse of GnRH during both estrus and diestrus (p less than 0.05), demonstrating a self-priming effect of GnRH. In addition, a significant increase in the peak LH amplitude (p less than 0.05) and the slope to peak amplitude (p less than 0.05) were observed for the 120 min GnRH pulse in regime C and D indicating that prior exposure to short-term pulses of GnRH increased the acute LH secretory response. These results suggest that in the cycling mare (1) the responsiveness of the pituitary (amount of LH released as percent of total LH) is similar in both estrus and diestrus, however, the magnitude of the LH response (total microgram amount of LH released) differs with the stage of the estrous cycle, being highest in estrus, and appears to be related, in part, to pituitary LH content and (2) GnRH self-priming occurs independently of the stage of the estrous cycle. Furthermore, we have demonstrated that the pulsatile mode of GnRH can act directly on the anterior pituitary to dictate the pulsatile release pattern of LH in the cycling mare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号