首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gilts (n = 208) were used to evaluate the effect of lysine (protein) intake over three parities on lactation and subsequent reproductive performance. Sows were assigned randomly to one of five experimental diets at each farrowing. The five corn-soybean mealbased lactation diets contained increasing concentrations of total lysine (.60, .85, 1.10, 1.35, and 1.60%) and CP (14.67, 18.15, 21.60, 25.26, and 28.82%). Other amino acids were provided at a minimum of 105% of the NRC (1988) ratio to the lysine requirement. Sows had ad libitum access to their assigned diets from parturition until weaning (19.5+/-.2 d postpartum). All sows were fed a common gestation diet (14% CP and .68% lysine) from weaning to next farrowing. Litter size was standardized by d 3 postpartum to 10 pigs in parity 1 and 11 pigs in parity 2 and 3. Increasing dietary lysine (protein) linearly decreased (P<.05) voluntary feed intake of parity 1 (from 5.4 to 4.6 kg/d), 2 (from 6.5 to 5.8 kg/d), and 3 sows (from 6.8 to 6.2 kg/d). With the increase of dietary lysine (protein) concentration during lactation, litter weight gain responded quadratically (P<.05) in all three parities. Maximal litter ADG was 2.06, 2.36, and 2.49 kg/d in parities 1, 2, and 3, respectively, which occurred at about 44, 55, and 56 g/d of lysine intake for parity 1, 2, and 3 sows, respectively. Increasing dietary lysine (protein) had no effect (P>.1) on sow weight change, weaning-to-estrus interval, and farrowing rate in all three parities and no effect on backfat change in parity 2 and 3, but tended to increase backfat loss linearly (P<.1) in parity 1. A linear decrease of second litter size (total born, from 11.7 to 10.1, P<.1; born alive, from 11.0 to 8.9, P<.01) was observed when dietary lysine (protein) increased during the first lactation. Lysine (protein) intake during the second lactation had a quadratic effect on third litter size (P<.05; total born: 13.3, 11.2, 11.6, 11.9, and 13.6; born alive: 11.8, 10.1, 10.3, 11.2, and 12.4). However, fourth litter size was not influenced by lysine (protein) intake during the third lactation. These results suggest that the lysine (protein) requirement for subsequent reproduction is not higher than that for milk production. Parity influences the lysine (protein) requirement for lactating sows and the response of subsequent litter size to previous lactation lysine (protein) intake.  相似文献   

2.
The objective of this study was to investigate the effects of dietary supplementation with various fat sources (3.8–3.9% of diet) during late pregnancy and lactation on the reproductive performance, fatty acids profile in colostrum, milk and serum of sow progeny. A total of 80 multiparous sows were randomly fed a control (adding no oil), palm oil (PO), fish oil (FO) or soybean oil (SO) supplemented diet from 90 days of pregnancy to weaning. Supplementation of FO increased litter size of weak piglets, compared with the control‐fed sows (< 0.05). Dietary FO and SO supplementation, enhanced the weaning survival rate, litter weaning weight, litter weight gain and fat content in milk (< 0.05). The highest immunoglobulin (Ig)G and IgM levels in colostrum and milk were observed in the FO group (< 0.05). Meanwhile, the highest concentration of C22:5 (n‐3) and C22:6 (n‐3) in colostrum, milk and piglet serum was observed in the FO group (< 0.05). Taken together, dietary inclusion of FO or SO improved growth performance of nursing piglets by increasing milk fat output, and FO consumption by sows might benefit the piglets via increasing n‐3 polyunsaturated fatty acid availability and immunoglobulins (IgG and IgM) secretion.  相似文献   

3.
This experiment was conducted to determine the optimal standardized ileal digestible lysine (SID Lys) level in diets fed to primiparous sows during lactation. A total of 150 (Landrace × Large White) crossbred gilts (weighing 211.1 ± 3.5 kg with a litter size of 11.1 ± 0.2) were fed lactation diets (3325 kcal metabolizable energy (ME)/kg) containing SID Lys levels of 0.76, 0.84, 0.94, 1.04 or 1.14%, through 28 days lactation. Gilts were allocated to treatments based on their body weight and backfat thickness 48 h after farrowing. Gilt body weight loss was significantly (P < 0.05) decreased by increasing dietary SID Lys levels. Fitted broken‐line (P < 0.05) and quadratic plot (P < 0.05) analysis of body weight loss indicated that the optimal SID Lys for primiparous sows was 0.85 and 1.01%, respectively. Average daily feed intake (ADFI), weaning‐to‐estrus interval and subsequent conception rate were not affected by dietary SID Lys levels. Increasing dietary lysine had no effect on litter performances. Protein content in milk was increased by dietary SID Lys (P < 0.05). Dietary SID Lys tended to increase concentrations of serum insulin‐like growth factor I (P = 0.066). These results of this experiment indicate that the optimal dietary SID Lys for lactating gilts was at least 0.85%, which approaches the recommendation of 0.84% that is estimated by the National Research Council (2012).  相似文献   

4.
Two experiments were conducted to determine the voluntary feed intake and performance of lactating sows fed diets containing a sucrose/milk chocolate product (MCP) blend (Exp. 1) or dried porcine solubles (DPS; Exp. 2). Dried porcine solubles is a coproduct of heparin extraction from porcine small intestines. In Exp. 1, mixed-parity sows (n = 108) at two research centers were assigned to a corn-soybean-meal-based diet formulated to contain 0.9% total lysine or a similar diet that contained 4% sucrose and 2% MCP on an as-fed basis. Sows were allowed ad libitum access to dietary treatments from the day of farrowing until pigs were weaned at approximately 21 d postpartum. Diet had no significant effect on voluntary feed intake of sows during lactation, backfat depth, or postweaning interval to estrus, but it had variable effects on body weight changes. Inclusion of the sucrose/MCP blend in diets elicited a 2% improvement in litter weaning weight at one research center and a 6% depression in litter weaning weight at the other center (diet x research center, P < 0.05). Litter size throughout lactation was unaffected by dietary treatment. In Exp. 2, mixed-parity sows (n = 119) at two research centers were assigned to corn-soybean meal-based diets formulated to contain 0.9% total lysine with 0, 1.5, or 3.0% added DPS. Sows were assigned to dietary treatments within research center, farrowing group, and parity at parturition. Dried porcine solubles tended to increase (P < 0.10) total feed consumed in the first 9 d of lactation and average daily feed intake over the entire lactation (6.03, 6.53, and 6.30 kg) for sows fed 0, 1.5, and 3.0% DPS, respectively. Litter size and weight on d 18 of lactation were not affected by concentration of DPS in the diet. Days from weaning to estrus and percentage of sows displaying estrus were not influenced by diet. We conclude that inclusion of the sucrose/MCP blend in the diet for lactating sows had no consistent effect on voluntary feed intake of sows and weight gain of nursing pigs. Inclusion of DPS at 1.5 or 3.0% tended to improve feed intake of lactating sows but had no significant influence on litter performance.  相似文献   

5.
The objective of this study was to investigate the effects of substituting 1 kg of a standard lactation diet with 1 kg of a sugar‐rich (15.75 DE MJ/kg) or fat‐rich (23.85 DE MJ/kg) diet during late lactation on blood glucose and insulin changes in primiparous sows. During a 4‐week lactation period, 21 primiparous sows were fed to appetite with a standard lactation diet (14.10 DE MJ/kg). At 9 days before weaning, sows were assigned to a control (C, n = 7), fat (F, n = 6) or sugar (S, n = 8) treatment. During the treatment period (from 8 days before weaning until weaning), 1 kg of the lactation diet was substituted with 1 kg of a sugar‐rich or fat‐rich diet for S and F sows. At 3 days before weaning, serial blood samples were collected for a total of 228 min around feeding to establish pre‐ and postprandial plasma glucose and insulin concentrations. Preprandial plasma glucose and insulin concentrations did not differ between treatments (p > 0.05); however, mean plasma glucose and insulin concentrations were higher for S compared to F (p < 0.05) and intermediate for the C sows. Postprandial plasma concentrations of glucose and insulin were higher for the S sows than for C and F sows (p < 0.05). Sow body weight loss during late lactation did not differ between treatments (p > 0.05). The results from our study suggest that a sugar‐enriched diet during the last week of lactation elevates circulating glucose and insulin concentrations and may potentially improve post‐weaning fertility in primiparous sows.  相似文献   

6.
The major by-product from the production of pea protein concentrate is pea starch, and this starch can be an alternative source of starch compared to for instance starch from wheat in diets for pigs. However, differences in energy utilization between pea starch and cereal starch could affect the animals' production performance. In this study data from 100 Norwegian Landrace x Yorkshire sows was collected to investigate if inclusion of 20% pea starch meal (Pisum sativum L) in diets for lactating sows affected sow and litter performance. Two cereal grain based diets were formulated, but in one of the diets part of the wheat inclusion was replaced with pea starch meal. Data collection included registrations of sow daily feed consumption, individual weight and backfat measures, litter weights, measurement of blood glucose level after feeding and reproductive performance. Sows offered the pea diet had a higher average daily (P<0.0001), weekly (P<0.01) and total feed consumption (P<0.0001) during lactation. They also had a lower weight loss during the first three weeks of lactation (P<0.001). During the last two weeks of lactation sows in both groups were on average gaining weight, but the sows offered the control diet had the highest gain in this period (P<0.05). There was a tendency for a higher backfat loss in the pea group during the first three weeks of lactation (P=0.10), but no difference was found in overall backfat loss between treatments (P>0.05). Dietary treatment did not affect litter performance during lactation (P>0.05). The weaning-to-service interval was higher among the first parity sows offered the pea diet compared to the first parity sows offered the control diet (P<0.05). Blood glucose was not affected by dietary treatment within the chosen timeframe of this study (P>0.05). This study shows that pea starch meal can be used as an alternative source of starch in diets for lactating sows. The sows offered the pea diet had the highest feed consumption during lactation, and although this was not reflected in higher weaning weights, it was reflected in an improved body condition at weaning.  相似文献   

7.
Primiparous (P1) sows commonly lose excessive body reserves to meet energy requirements for maintenance and milk production during lactation, and consequently, post‐weaning reproductive performance may be compromised. The present studies determined whether ad libitum feeding a glucogenic carbohydrate diet (CHO) during late lactation could stimulate insulin and glucose secretion (experiment 1) and improve subsequent litter size (experiment 2). For experiment 1, 15 P1 sows, and for experiment 2, 99 P1 sows (198.5 ± 2.7 kg) were allocated randomly according to suckled litter size (≥10 piglets), either to a CHO diet (14.3 MJ DE/kg, 19.8% crude protein) or a standard lactation diet (control; 14.2 DE MJ/kg, 19.5% crude protein) at 8 days before weaning. The CHO diet aimed to provide glucogenic content (extruded wheat, dextrose and sugar) as energy sources instead of fat sources without changing total dietary energy. Pre‐prandial plasma glucose and insulin concentrations were not influenced by treatments. However, post‐prandial plasma glucose and insulin concentrations and their peaks were both higher (p < .05) compared to the control treatment. Body weight loss during lactation was relatively low at 3%–4% for both treatments and did not differ between control and CHO treatments (?7.6 ± 1.6 vs ?5.4 ± 1.2 kg; > .05). Second litter size was not influenced by diet (> .05), but the weaning‐to‐mating interval was shorter in CHO sows (p < .05). This study demonstrates that providing an enriched CHO diet in late lactation did influence post‐weaning follicle growth but did not improve subsequent litter size. This may be due to the primiparous sows in this study not experiencing severe negative energy balance and there was no second litter syndrome in this farm which limited the ability of diet to improve sow fertility.  相似文献   

8.
Two experiments were conducted to evaluate whether administration of recombinant porcine somatotropin (pST) to sows (Hampshire-Yorkshire) enhanced lactational performance. In Exp. 1, sows (n = 84) were fed a corn-soybean meal diet (17.8% CP), or a similar diet with 8% added fat, from d 108 of gestation to d 28 of lactation. Half of the sows fed each diet were injected with 6 mg/d of pST from d 108 of gestation to d 24 of lactation. Diets were fed at 2.27 kg/d from d 108 of gestation until farrowing and then were self-fed during lactation. By d 3 of lactation, litter size was standardized at 8 to 10 pigs per litter. Treating sows with pST resulted in a 10-fold increase (P less than .001) in serum somatotropin at 4 h postinjection. Serum glucose was increased (P less than .01) and serum triglycerides, creatinine, and urea N were decreased (P less than .01) by pST. During the summer, apparent heat stress occurred in pST-treated sows, resulting in 14 deaths. Most (10) of the deaths occurred just before, during, or shortly after farrowing. Fewer (P less than .08) deaths occurred when pST-treated sows were fed the diet with added fat. Sows treated with pST consumed less feed (P less than .10) and lost more backfat (P less than .10) during lactation than controls. Increasing the dietary fat did not prevent these changes. Weaning weights of pigs and milk yield of sows (estimated by deuterium oxide dilution) were not affected by pST treatment. In Exp. 2, sows (n = 42) were injected weekly with 0 or 70 mg of pST on d 3, 10, 17, and 24 of lactation. Litters were standardized by d 3 at 8 to 10 pigs, and sows were fed the same control (low fat) diet as in Exp. 1. Sows treated with pST consumed less feed and lost more weight and backfat during lactation than untreated sows. Litter size, average pig weaning weights, and milk yield were not influenced by pST treatment. These data indicate that a 6-mg daily injection of pST from 6 d prepartum to d 24 of lactation or a 70-mg weekly injection of pST from 3 d postpartum to d 24 of lactation does not increase milk production in lactating sows.  相似文献   

9.
The current study was carried out to determine the effects of alpha‐lipoic acid (LA) supplementation during late‐gestation and lactation on antioxidative ability and performance of sows and their nursing piglets. A total of 160 multiparous sows were randomly allocated to four treatments with 40 replicates per treatment according to parity number and backfat (BF) thickness. Sows were fed 1 of 4 diets from day 85 of gestation to day 21 of lactation. Diets were control without LA; 400 ppm LA supplementation; 600 ppm LA supplementation; and 800 ppm LA supplementation. BF thickness of sows was determined on day 85 and 110 of gestation and days 1 and 21 of lactation. Piglet bodyweight was measured at birth, days 7, 14 and 21. Blood samples were obtained from the sows, and average daily feed intake (ADFI) of the sows during lactation was recorded. There were no differences in BF thickness or ADFI among treatment groups. Dietary LA supplementation resulted in a decrease in blood urea nitrogen (p < 0.01) concentration at days 110 of gestation. Dietary 800 ppm LA increased serum glutathione peroxidase (GSH‐Px) activity (p < 0.05) and reduced maleic dialdehyde levels (p < 0.01) of sows compared with the control diet at days 21 of lactation. Alpha‐lipoic acid supplementation increased the birthweight and weaning weight of piglets (p < 0.01) compared with the control group. Weight gains of piglets from sows fed the 800 ppm LA diets were greater (p < 0.01) between days 7 and 14 compared with piglets from control sows. Weight gains of piglets from sows fed the LA‐supplemented diets were greater between days 14 and 21 (p < 0.05) and between days 1 and 21 (p < 0.01) compared with piglets from control‐fed sows. In conclusion, the results indicate that antioxidant LA was effective in enhancing antioxidant enzymes activity and improving the performance of sows and their nursing piglets.  相似文献   

10.
This study was conducted to determine the effect of reduced lactation length and supplemental milk replacer (MR) during high ambient temperatures. Thirty nine primiparous and 100 multiparous sows (PIC, Franklin, KY, C-22) were used in a 2 x 2 x 2 factorial arrangement of treatments. Treatments consisted of two lactation room temperatures (21 degrees C [TN] and 32 degrees C [HOT]), two lactation lengths (14 or 19 d), and two parity groups (primiparous, multiparous). Pigs were either: 1) sow-reared to 19 d or 2) sow-reared to 14 d, and then reared to 19 d with MR after sow removal. All sows were fed the same diet (1.07% lysine, 3,366 kcal of ME/kg). Sows were weighed and ultrasound for backfat thickness (BF) and longissimus muscle area (LMA) within 6 h after farrowing and at the time of sow removal (d 14 or 19). Pigs were individually weighed at weaning (d 19) and after a 47-d nursery period (d 66). Heat stress increased sow weight loss (-13.35 kg, P < 0.01) and decreased sow feed intake (4.63 kg/d, P < 0.01) during lactation compared with sows in TN (+4.5 kg and 7.5 kg/d, respectively). Early weaning (d 14) during heat stress decreased maternal weight loss (-10.1 vs. -16.6 kg, P < 0.01). Primiparous sows lost more BF in both environments (-2.60 vs. -1.56 mm, P < 0.05), and both parity groups lost more BF (-3.35 vs. -2.3 mm, P < 0.10) and LMA (-1.82 vs. -0.77 cm2, P < 0.05) when lactating for 19 d in the HOT environment than those lactating for 14 d. Pigs nursing primiparous and multiparous sows in the HOT environment and provided MR had heavier individual 19-d weights (7.37 and 8.12 kg/ pig, respectively) than those nursing to 19 d (5.57 and 6.04 kg/pig, P < 0.01). Milk replacer decreased the difference normally observed in 19-d weights between primiparous and multiparous sow-reared pigs in TN. Pigs fed MR in both environments and nursing multiparous sows had improved weight gains in the nursery compared with pigs nursing sows to 19 d (428 vs. 406 g/d, respectively; P < 0.01), or reared by primiparous sows (444 vs. 390 g/d , respectively; P < 0.01). Sow weaning on d 14 in the HOT environment decreased the wean-to-estrus interval in primiparous sows (22.8 vs. 9.2 d, P < 0.10). This study shows the benefit of early weaning in combination with milk replacer to preserve the sow and to restore pig weaning weights and nursery end weights under heat stress.  相似文献   

11.
The primary objective of this study was to determine the effects of supplemental dietary fat during lactation on sow BW, sow backfat thickness, sow feed consumption, litter size, and pig growth rate. Dietary treatments included 0, 3, 6, and 9% supplemental low acid yellow fat in a traditional corn-soybean meal basal lactation diet. A total of 160 Landrace and crossbred sows (approximately 40 per treatment) were included in the study. Sows fed 3 and 6% supplemental fat had greater (P<0.10) average backfat thickness at weaning. Sow weight change and feed consumption were inconsistent among dietary fat levels. Dietary fat level during lactation did not affect number of pigs born alive or number of stillborns. However, the 9% fat level was associated with more mummified pigs at birth. Number of pigs weaned was greater for the 0% supplemental fat than for the 9% fat level. The largest average pig weights at 21 (5.8±0.29 kg) and 28 (7.48±0.38) d of age were those from sows fed the 3% added fat diet. Sows with ≤25.4 mm backfat at farrowing had more pigs born alive (P<0.05), had less backfat at 21 and 28 d of lactation (P<0.05), and consumed more feed during wk 2 and 3 of lactation. Of all sows fed the control diet, sows with >25.4 mm backfat at farrowing consistently had heavier pigs throughout the lactation phase (P<0.05). Backfat loss during lactation was lower (P<0.05) for sows with ≤25.4 mm at farrowing within all dietary treatments. Consistent significant differences were not observed in sow weight loss or feed consumption between low and high backfat sows for each dietary treatment. Sow backfat loss during lactation is dependent on body condition at farrowing, in that, fatter sows at farrowing have greater backfat loss during lactation. Sows with ≤25.4 mm of backfat at farrowing responded to added dietary fat treatments and produced heavier pigs throughout the lactation period.  相似文献   

12.
The effects of feeding additional starch or fat from d 85 of gestation until parturition on litter performance and on glucose tolerance in sows that were fed a diet with a high level of fermentable nonstarch polysaccharides (NSP) were studied. The day after breeding, 141 multiparous sows were assigned to the experiment. At d 85 of gestation, sows were assigned to the treatments. Sows were fed 3.4 kg/d (as-fed basis) of a high-NSP diet or the same quantity of the high-NSP diet and an additional 360 g of starch (from wheat starch) daily, or the same quantity of the high-NSP diet and an additional 164 g of fat (from soybean oil) daily. During lactation, all sows were given free access to the same lactation diet. Approximately 1 wk before the expected time of parturition, an oral glucose tolerance test was performed in 38 randomly chosen sows by feeding pelleted glucose (3 g/kg BW0.75). Blood samples for glucose analyses were taken at -10, 10, 20, 30, 40, 50, 60, 70, 80, 90, 105, and 120 min after glucose was fed. The supply of additional dietary starch or fat did not increase piglet birth weight or total litter weight at birth. Sows that were fed the high-NSP diet had more (P = 0.097) live-born piglets and fewer (P = 0.084) stillborn piglets than did sows that were fed additional fat, whereas sows that were fed additional starch were intermediate for these variables. Piglet mortality after birth was not affected by dietary treatment. Body weight and backfat gains in the last month of gestation were higher for sows fed additional starch or fat than for sows fed the high-NSP diet (P < 0.001 and P = 0.017, respectively). Feed intake in lactation was greatest by sows fed the high-NSP diet, least by sows fed additional starch at the end of gestation, and intermediate by sows fed additional fat (P = 0.099). The differences in lactation feed intake did not result in differences in BW and backfat losses during lactation. Sows that were fed additional fat had the greatest glucose area under the curve (P = 0.044), indicating that these sows were less tolerant to glucose. In conclusion, feeding additional energy (starch or fat) in late-gestating sows that are fed a high-NSP diet did not increase litter weight at birth or piglet survival, but did increase maternal gain. Feeding sows additional energy from fat might induce glucose intolerance, whereas feeding sows additional energy from starch did not induce glucose intolerance.  相似文献   

13.
The effects of dietary consumption of high-fructose corn syrup (HFCS) and dextrose during a 28-d lactation on sow and litter performance and sow plasma constituents were examined in 45 multiparous and 36 primiparous crossbred sows. Isocaloric and isonitrogenous corn-soybean meal diets were formulated to contain either 20% fructose or 20% glucose. Diets were fed on a metabolic BW basis from d 0 to d 28 of lactation. Litter and pig weights on d 28 were not affected (P greater than .05) by treatment. Litter size was greater (P less than .10) at weaning for primiparous sows fed HFCS, but multiparous sows weaned heavier (P less than .05) pigs. Sow weight change during lactation was not influenced by diet, but primiparous sows lost more (P less than .05) weight during lactation and had longer intervals to estrus than multiparous sows did. Milk yields on d 17 and 21 of lactation were not different (P greater than .05) for sows fed HFCS vs dextrose, but sows fed HFCS tended to have greater (P = .05) percentage of milk fat. Preprandial concentrations of fructose in plasma were low in sows fed HFCS and nondetectable in those fed dextrose but were elevated (P less than .05) after consumption of HFCS. Conversely, similar (P greater than .05) concentrations of glucose in plasma preprandially were followed by greater (P less than .05) postprandial glucose concentrations in sows fed dextrose. Although postprandial concentrations of insulin were not affected (P greater than .05) by diet, sows fed dextrose had greater (P less than .05) preprandial insulin concentrations in plasma. Concentrations of nonesterified fatty acids and growth hormone in plasma and response to a glucose challenge were not affected (P greater than .05) by feeding HFCS. However, concentrations of insulin in plasma following glucose infusion were less (P less than .05) during the glucose challenge period on d 25 than on d 13 of lactation.  相似文献   

14.
吴芳  赵桥 《中国饲料》2022,1(4):29-32
文章旨在评估日粮中添加羟甲基丁酸钙盐对妊娠后期到哺乳期母猪繁殖性能、乳成分及仔猪生长性能的影响.试验选择32头胎次接近的二元母猪,随机分为2组,每组4个重复,每个重复4头猪.对照组母猪在妊娠后期和哺乳期饲喂基础日粮,处理组母猪在妊娠和哺乳期饲喂基础日粮+8?mg/kg羟甲基丁酸钙,试验从分娩前6?d到仔猪21?d断奶....  相似文献   

15.
The effects of dietary fat or fructose supplementation during late gestation and lactation on sow milk production and composition and on progeny were examined. On d 88 of gestation, 24 sows were allotted by parity to three dietary treatments (eight sows/treatment). Treatments were 1) a 12.5% crude protein, corn-soybean meal control, 2) the control + 10% added fat or 3) the control + 23% high fructose corn syrup. All treatments were fed to supply 1.82 kg/d of the control diet from d 89 of gestation to parturition with sows in treatments 2 or 3 receiving .18 kg of additional fat or .53 kg of additional high fructose corn syrup, respectively. Feed was gradually increased from d 1 to 7 of lactation to 4.54 kg/d of the control diet (plus .45 kg of added fat and 1.33 kg of added fructose for treatments 2 and 3) and remained at these levels for the remainder of the 21 d lactation period. All treatments were iso-nitrogenous; treatments 2 and 3 were iso-caloric. Litter birth weights, number of pigs born alive, weaning weights and piglet survival rate were not affected by sow treatment. Stillbirths were less (P less than .05) for sows fed fat. Lipid content of milk 24 h post-farrowing was greater (P less than .05) from sows fed fat compared with sows fed fructose. Milk production estimates indicated that multiparous sows fed fat produced more (P less .05) milk than sows fed the control diet. On d 112 of gestation and d 15 of lactation, serial blood samples were drawn to monitor sow response to a glucose challenge (1 g/kg body weight).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The aim of the present study was to evaluate the effects of nutrient supply, plasma metabolites, and nutritional status of sows during the transition from gestation to lactation on performance of piglets during the colostral period and throughout lactation. Forty second-parity sows were fed 1 of 4 gestation diets containing a different quantity of dietary fiber (171 to 404 g/kg of DM) from mating until d 108 of gestation. From d 108 of gestation until weaning (d 28 of lactation), sows were fed 1 of 5 lactation diets with a different quantity of dietary fat [3 or 8% with different proportions of medium- (MCFA) and long-chain fatty acids (LCFA)]. Blood was obtained by jugular venipuncture on d 108 and 112 of gestation and on d 1 of lactation, and concentrations of plasma glucose, NEFA, lactate, acetate, propionate, butyrate, and fatty acids were analyzed. Piglet growth and mortality were noted throughout lactation. Piglet mortality during the colostral period (0 to 24 h) was affected by the lactation diets and was positively related to sow backfat (d 108) and plasma lactate (d 112) and negatively related to mean piglet birth weight (P < 0.05). Mean piglet live BW gain (LWG) was recorded in the periods 0 to 24 h, 7 to 10 d, 14 to 17 d, and 17 to 28 d relative to parturition as indirect measures of colostrum yield (0 to 24 h), milk yield in early lactation (d 7 to 10), and at peak lactation (d 14 to 17 and d 17 to 28). Effects of gestation and lactation diets on studied sow traits were tested on selected days during the transition period and the next lactation, and tested statistically on separate days. The LWG in the colostral period was positively correlated with mean piglet birth weight (P < 0.001), plasma concentrations of propionate and MCFA (P < 0.05), and plasma acetate and butyrate (P < 0.1) on d 1 of lactation. The LWG in early lactation was inversely correlated with plasma lactate on d 108 (P < 0.05), plasma glucose on d 112, and backfat thickness on d 108 (P < 0.10). The LWG at peak lactation was positively correlated with MCFA intake of the sow on d 113 to 115 and backfat thickness on d 108 during the transition, and negatively correlated with intake of LCFA and ME intake on d 108 to 112 (P < 0.05). In conclusion, feeding and body condition of sows during the transition from gestation to lactation is important for neonatal piglet survival, lactation performance of sows, and piglet growth during the next lactation.  相似文献   

17.
The objectives of this study were to determine factors affecting the reproductive performance of primiparous sows early weaned (EW; n = 35) at d 14 or conventionally weaned (CW; n = 35) at d 24 of lactation. Sow BW and backfat were recorded at farrowing, weekly until weaning, and at standing heat. Feed intake was controlled throughout lactation to standardize nutritional effects on subsequent reproductive performance. Litter size was standardized across treatments within 48 h after farrowing, and litter weight was recorded until weaning. In subsets of sows, blood samples were collected from 10 h before to 10 h after weaning, and then every 6 h until ovulation. Sows were heat checked twice daily and bred at 24-h intervals during standing heat using pooled semen. Ultrasonography every 6 h determined time of ovulation. Sows were either slaughtered within 24 h after ovulation to assess ovulation rate, fertilization rate, and embryonic development in vitro, or at d 28 of gestation to determine ovulation rate and embryonic survival. Compared with CW sows, EW sows had more backfat at weaning (15.9 +/- 0.5 vs. 14.7 +/- 0.5 mm; P < 0.001). Also, CW sows tended to lose more BW and to have lower IGF-I concentrations, indicating poorer body condition. Duration of lactation did not affect ovulation rate (EW = 17.6 +/- 0.7; CW = 18.7 +/- 0.6), fertilization rate (EW = 96.0 +/- 2.2; CW = 88.2 +/- 4.7%), or embryo survival to d 28 (EW = 62.5 +/- 4.5; CW = 63.1 +/- 5.0%). There was a marginal effect of duration of lactation on weaning-to-estrus interval (EW = 120 +/- 3; CW = 112 +/- 3 h; P < 0.06) and duration of estrus (EW = 52.4 +/- 2.3; CW = 46.3 +/- 2.2 h; P < 0.08). Overall, embryonic survival, not ovulation rate, seems to be the limiting factor for potential litter size in the second parity. Although fertility in both EW and CW sows studied was compromised, endocrine and metabolic data indicate that the mechanisms affecting reproductive performance may differ between the two weaning systems. The LH, FSH, and estradiol data from the EW sows are characteristic of animals with limited follicular development and incomplete recovery of the hypothalamic-pituitary-ovarian axis; consequently, the integrity of the uterine environment may be adversely affected and limit embryonic survival. In CW sows, variability in metabolic state seemed to be the key factor limiting the fertility, again adversely affecting embryonic survival.  相似文献   

18.
为研究母猪分娩与断奶时背膘厚度对繁殖性能的影响,使用A超测定母猪分娩及断奶时的背膘厚度,根据分娩时背膘厚度将试验动物分为1组(X<10 mm)、2 组(10 mm≤X≤14 mm)、3 组(X>14 mm),根据断奶时背膘厚度将试验动物分为A组(X<7 mm)、B组(7 mm≤X<10 mm)、C组(10 mm≤X<13 mm)、D组(13 mm≤X<16 mm)、E组(X≥16 mm),又根据母猪哺乳期间损失的背膘厚度分为Ⅰ组(X<3 mm)、Ⅱ组(3 mm≤X≤6 mm)、Ⅲ组(X>6 mm),用方差分析比较各组繁殖表现,并建立了发情间隔对背膘厚度的回归方程。结果表明,分娩时产死胎母猪的比例2组是10.5%,在3组中最小;断奶后平均发情间隔C组显著低于其他各组(P<0.05);哺乳期间背膘损失最大的Ⅲ组母猪平均发情间隔为8 d,显著高于Ⅰ组、Ⅱ组(P<0.05)。表明分娩与断奶背膘厚对母猪繁殖性能有显著影响,膘情适中的母猪有最好的繁殖表现,并建立了回归方程Y=31.787-6.169X +0.440X2-0.009X3,用于预测母猪发情配种日期。  相似文献   

19.
Normally, sows are in anoestrus during lactation and start their new cycle at the day of weaning. Modern hybrid primiparous sows that suckle large numbers of piglets may lose substantial amounts of body reserves during lactation. This compromises follicle development during lactation. As modern sows have short weaning-to-oestrus intervals, these compromised follicles are recruited for ovulation directly after weaning, resulting in lower ovulation rates and lower embryo survival. Postponing or skipping first oestrus after weaning in primiparous sows may help to limit the negative consequences of lactation on subsequent reproduction. Multiparous sows may have very high litter sizes, especially after long lactations as applied in organic sows. These high litter sizes compromise piglet birthweight and survival and subsequent performance. Inducing lactation oestrus in multiparous sows may help to limit litter size and improve piglet survival and performance. This study discusses physiological and reproductive effects of extending the start of a new pregnancy after lactation in primiparous sows and induction of lactation oestrus in multiparous sows. We thereby challenge the view that weaning is an ideal start for the reproductive cycle in modern sows.  相似文献   

20.
Forty-two sows were used to determine the effects of adding a Saccharomyces cerevisiae fermentation product (SCFP) to the gestation and lactation diets on the performance of sows and their progeny. At 5 d before breeding, sows were allotted to 2 dietary treatments representing 1) sows fed a diet with 12.0 g of fermentation product/d through gestation and 15.0 g of fermentation product/d through lactation (SCFP treatment, n=22), and 2) sows fed a diet with equal amounts of a mixture of corn and soybean meal instead of the SCFP (CON treatment, n=20). Sow BW and backfat thickness were recorded. Blood was collected from sows, as well as piglets, for the measurement of cell numbers, plasma urea nitrogen (PUN), and IgG. Fecal samples from d 7 to 9 of lactation were collected to determine apparent total tract nutrient digestibility. The composition of colostrum and milk was also measured. No difference (P > 0.10) in reproductive performance was observed between treatments. However, sows in the SCFP treatment tended to have increased total litter weaning weight (P=0.068) and litter BW gain (P=0.084) compared with sows in the CON treatment. Neutrophil count was decreased (P < 0.05) by adding the fermentation product on d 110 of gestation and d 17 of lactation, whereas a decreased (P < 0.05) white blood cell count was observed only on d 110 of gestation. Concentration of PUN tended to be greater (P=0.069) for sows in the CON treatment compared with sows in the SCFP treatment on d 110 of gestation. Apparent total tract nutrient digestibility values of ash, CP, DM, and ether extract were not affected (P > 0.10) by adding the fermentation product. Protein and fat contents in colostrum and milk did not differ (P > 0.10) between treatments. Colostrum from sows in the SCFP treatment contained a greater (P < 0.05) amount of ash than colostrum from sows in the CON treatment. Immunoglobulin G measured in the colostrum, milk, and plasma of piglets did not differ (P > 0.10) between sows in the CON and SCFP treatments. This study indicates that adding the SCFP in the gestation and lactation diets has the potential to 1) improve litter BW gain during lactation, possibly by improving maternal protein utilization, as shown in a tendency to reduce PUN; 2) improve the maternal health status, as shown by the reduced neutrophil cell count; and 3) increase milk production, as shown in a tendency to improve litter BW gain without affecting nutrient composition of the colostrum and milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号