首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impacts of elevated atmospheric CO2 concentrations (500 μmol·mol−1 and 700 μmol·mol−1) on total soil respiration and the contribution of root respiration ofPinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration ofPinus koraiensis seedlings were measured by a Li-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil instantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 μmol·m−2·s−1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively. Foundation item: This study was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX1-SW-01) and the National Natural Science Foundation of China (30070158). Biography: LIU Ying (1976-), female, Ph. D. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

2.
The relationships between plant organs and root hydrological traits are not well known and the question arises whether elevated CO2 changes these relationships. This study attempted to answer this question. A pseudo-replicated experiment was conducted with two times 24 American elm (Ulmus americana L.) and 23 and 24 red oak (Quercus rubra L.) seedlings growing in ambient CO2 (around 360 μmol·L–1) and 540 ± 7.95 μmol·L–1 CO2 in a greenhouse. After 71 days of treatment for American elm and 77 days for red oak, 14 American elm and 12 red oak seedlings from each of the two CO2 levels were randomly selected in order to examine the flow rate of root xylem sap, root hydraulic conductance, total root hydraulic conductivity, fine root and coarse root hydraulic conductivity. All seedlings were harvested to investigate total plant biomass, stem biomass and leaf biomass, leaf area, height, basal diameter, total root biomass, coarse root biomass and fine root biomass. The following conclusions are reached: 1) plant organs respond to the elevated CO2 level earlier than hydraulic traits of roots and may gradually lead to changes in hydraulic traits; 2) plant organs have different relationships with hydraulic traits of roots and elevated CO2 changes these relationships; the changes may be of importance for plants as means to acclimatize to changing environments; 3) biomass of coarse roots increased rather more than that of fine roots; 4) Lorentzian and Caussian models are better in estimating the biomass of seedlings than single-variable models.  相似文献   

3.
杉木纯林、混交林土壤微生物特性和土壤养分的比较研究   总被引:6,自引:0,他引:6  
王清奎  汪思龙 《林业研究》2008,19(2):131-135
本文于2005年5月份,在中国科学院会同森林生态实验站选择了一块15年生的杉木纯林和两块15年生杉阔混交林作为研究对象,调查了林地土壤有机碳、全氮、全磷、硝态氮、有效磷和土壤微生物碳、氮、磷、基础呼吸以及呼吸熵,比较了纯林和混交林土壤微生物特性和土壤养分.结果表明,杉阔混交林的土壤有机碳、全氮、全磷硝态氮和有效磷含量高于杉木纯林;在混交林中,土壤微生物学特性得到改善.在0(10 cm和10(20 cm两层土壤中,杉阔混交林土壤微生物氮含量分别比杉木纯林高69%和61%.在0(10 cm土层,杉阔混交林土壤微生物碳、磷和基础呼吸分别比杉木纯林高11%、14%和4%;在10(20 cm土层,分别高6%、3%和3%.但是,杉阔混交林土壤微生物碳:氮比和呼吸熵较杉木纯林低34%和4%.另外,土壤微生物与土壤养分的相关性高于土壤呼吸、微生物碳:氮比和呼吸熵与土壤养分的相关性.由此可知,在针叶纯林中引入阔叶树后,土壤肥力得以改善,并有利于退化森林土壤的恢复.  相似文献   

4.
Because soil CO2 efflux or soil respiration (RS) is the major component of forest carbon fluxes, the effects of forest management on RS and microbial biomass carbon (C), microbial respiration (RH), microbial activity and fine root biomass were studied over two years in a loblolly pine (Pinus taeda L.) plantation located near Aiken, SC. Stands were six-years-old at the beginning of the study and were subjected to irrigation (no irrigation versus irrigation) and fertilization (no fertilization versus fertilization) treatments since planting. Soil respiration ranged from 2 to 6 μmol m−2 s−1 and was strongly and linearly related to soil temperature. Soil moisture and C inputs to the soil (coarse woody debris and litter mass) which may influence RH were significantly but only weakly related to RS. No interaction effects between irrigation and fertilization were observed for RS and microbial variables. Irrigation increased RS, fine root mass and microbial biomass C. In contrast, fertilization increased RH, microbial biomass C and microbial activity but reduced fine root biomass and had no influence on RS. Predicted annual soil C efflux ranged from 8.8 to 10.7 Mg C ha−1 year−1 and was lower than net primary productivity (NPP) in all stands except the non-fertilized treatment. The influence of forest management on RS was small or insignificant relative to biomass accumulation suggesting that NPP controls the transition between a carbon source and sink in rapidly growing pine systems.  相似文献   

5.
We conducted a trenching experiment in a mountain forest in order to assess the contribution of the autotrophic respiration to total soil respiration and evaluate trenching as a technique to achieve it. We hypothesised that the trenching experiment would alter both microbial biomass and microbial community structure and that fine roots (less than 2 mm diameter) would be decomposed within one growing season. Soil CO2 efflux was measured roughly biweekly over two growing seasons. Root presence and morphology parameters, as well as the soil microbial community were measured prior to trenching, 5 and 15 months after trenching. The trenched plots emitted about 20 and 30% less CO2 than the control plots in the first and second growing season, respectively. Roots died in trenched plots, but root decay was slow. After 5 and 15 months, fine root biomass was decreased by 9% (not statistically different) and 30%, (statistically different) respectively. When we corrected for the additional trenched-plot CO2 efflux due to fine root decomposition, the autotrophic soil respiration rose to ~26% of the total soil respiration for the first growing season, and to ~44% for the second growing season. Soil microbial biomass and community structure was not altered by the end of the second growing season. We conclude that trenching can give accurate estimates of the autotrophic and heterotrophic components of soil respiration, if methodological side effects are accounted for, only.  相似文献   

6.
In this study, the stand level root respiration was estimated for two monoculture plantations: Acacia crassicarpa and Eucalyptus urophylla, based on in situ measurement of specific root respiration using simplified root chamber method. The respiration rates of fine roots (<5 mm) were significantly higher than those of coarse roots (>5 mm) for both A. crassicarpa and E. urophylla species. The root respiration of A. crassicarpa showed a clear seasonal pattern with a higher value in the wet season. For E. urophylla, the seasonal pattern was observed for fine roots but not for coarse roots. After determining the biomass of fine roots and coarse roots and their specific rates of respiration at different time points, root respiration at the stand level (Ra) was estimated using a direct up-scaling model. We found that the Ra accounted for 14% and 19% of total soil respiration (Rs) for A. crassicarpa and E. urophylla, respectively. The fine (RTf) and coarse (RTc) root respiration at the stand level accounted for about 47% and 53% of the Ra for A. crassicarpa, and accounted for 58% and 42% for E. urophylla. This suggests that coarse root respiration cannot be ignored when estimating the root respiration at the stand level. Our results showed that the Q10 values were more accurate in representing the temperature dependence when the confounding effect of soil moisture was considered. This study introduces an alternative approach to estimate stand level root respiration, but its reliability is largely dependent on the accuracy of root biomass quantification.  相似文献   

7.
The temperature coefficient, Q 10 (fractional change in rate with a 10°C increase in temperature) describes the temperature sensitivity of soils, roots, and stems, as well as their possible performance in global warming processes. It is also a necessary parameter for the estimation of total CO2 efflux from each element. A number of studies have focused on Q 10 values to date; however, their conclusions are not universal and do not always agree. A review of these reported Q 10 values therefore becomes necessary and important for a global understanding of the temperature sensitivity of different forest types and elements. The aims of our present paper are, first, to find the frequency distribution pattern of soils, roots, and stems (branches) and compare their temperature sensitivity; then, to find the Q 10 differences between conifer and deciduous tree species and the effect of methodology on Q 10 values; finally we want to give a perspective on future Q 10-related studies. We found that most Q 10 values of each element were concentrated in a relatively narrow range despite a total data distribution over quite a wide range. For soil respiration, the median Q 10 value was 2.74 and the center of the frequency distribution was between 2.0 and 2.5 with a percentage of 23%. Most of the data (>80%) were within the range from 1.0 to 4.0. The median Q 10 value for root respiration was 2.40 and the center of the frequency distribution was from 2.5 to 3.0 with a percentage of 33%. Most of the results (>80%) ranged from 1.0 to 3.0. For stem respiration, the median Q 10 value was 1.91 and the frequency distribution was concentrated between 1.5 and 2.0. Over 90% of the data ranged from 1.0 to 3.0. Obvious differences in Q 10 value were found between different elements, stem < root < soil including root < soil excluding root. The differences between woody organisms of stems, roots, and soils excluding roots were statistically significant (p<0.05), indicating that heterotrophic respiration from microorganism activity may be more sensitive to global warming. The duration of the period with leaves slightly affects the temperature sensitivity of woody organisms since the Q 10 values for root and stem of coniferous evergreen trees did not differ significantly from deciduous trees (p>0.10). CO2 analytical methods (soda lime absorption method, IRGA (Infra-read gas analysis), and chromatograph analysis) and root separation methods (excised root and trenched box) slightly affected the Q 10 values of soil and root respiration (p>0.10), but an in vitro measurement of stem respiration yielded a significantly higher Q 10 value than an in vivo method (p<0.05). In general, although the Q 10 values of non-photosynthetic organisms stayed within a relatively conservative range, considerable variation between and within elements were still detectable. Accordingly, attention should be paid to the quantitative estimation of total CO2 efflux by Q 10-related models. In future studies, the biochemical factors and the environmental and biological factors controlling respiration should be emphasized for precise estimation of total CO2 efflux. The difficulty is how to clarify the underlying mechanism for fluctuations of Q 10 values for one specific habitat and element (e.g. temperature acclimation or adaptation of Q 10 values) and then allow the Q 10 values to be more conservative for representation of temperature sensitivity in global warming processes. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(4) [译自:植物生态学报, 2005, 29 (4)]  相似文献   

8.
Little information is available on soil respiration and microbial biomass in soils under agroforestry systems. We measured soil respiration rate and microbial biomass under two age classes (young and old) of a pecan (Carya illinoinensis) — cotton (Gossypium hirsutum) alley cropping system, two age classes of pecan orchards, and a cotton monoculture on a well-drained, Redbay sandy loam (a fine-loamy, siliceous, thermic Rhodic Paleudult) in southern USA. Soil respiration was quantified monthly during the growing season from May to November 2001 using the soda-lime technique and was corrected based on infrared gas analyzer (IRGA) measurements. The overall soil respiration rates ranged from 177 to 776 mg CO2 m–2 h–1. During the growing season, soil respiration was higher in the old alley cropping system than in the young alley cropping system, the old pecan orchard, the young pecan orchard, and the monoculture. Microbial biomass C was higher in the old alley cropping system (375 mg C kg–1) and in the old pecan orchard (376 mg C kg–1) compared to the young alley cropping system (118 mg C kg–1), young pecan orchard (88 mg C kg–1), and the cotton monoculture (163 mg C kg–1). Soil respiration was correlated positively with soil temperature, microbial biomass, organic matter, and fine root biomass. The effect of alley cropping on soil properties during the brief history of alley cropping was not significant except in the old systems, where there was a trend of increasing soil respiration with short-term alley cropping. Over time, different land use and management practices influenced soil properties such as soil temperature, moisture, microbial biomass, organic matter, and fine root biomass, which in turn affected the magnitude of soil respiration. Our results suggest that trees in agroforestry systems have the potential to enhance soil fertility and sustainability of farmlands by improving soil microbial activity and accreting residual soil carbon.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
Two-year-old seedlings ofPinus koraiensis, Pinus sylvestriformis andFraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L−1, 500 μL·L−1) and ambient CO2 concentrations (350 μL·L−1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species exceptP. sylvestriformis grown under 500 μL·L−1 CO2 concentration. The dark respiration rates ofP. koraiensis andP. sylvestriformis increased under concentration of 700 μL·L−1 CO2, out that ofF. mandshurica decreased under both concentrations 700 μL·L−1 and 500 μL·L−1 CO2. The seedlings ofF. mandshurica decreased in chlorophyll contents at elevated CO2 concentrations. Foundation item: This paper was supported by the National Natural Science Foundation of China (No. 30070158). Knowledge Innovation Item of Chinese Academy of Sciences (KZCX2-406) and “Hundred Scientists” Project of Chinese Academy of Sciences. Biography: Zhou Yu-mei (1973-) Ph. Doctor, Assistant Research fellow Institute of Applied Ecology. Chinese Academy of Sciences. Shenyang 110016. P.R. China. Responsible editor: Song Funan  相似文献   

10.
Tree roots in a changing world   总被引:1,自引:0,他引:1  
Globally, forests cover 4 billion hectares or 30% of the Earth's land surface, and 20%–40% of the forest biomass is made up of roots. Roots play a key role for trees: they take up water and nutrients from the soil, store carbon (C) compounds, and provide physical stabilization. Estimations from temperate forests of Central Europe reveal that C storage in trees accounts for about 110 t C ha−1, of which 26 t C ha−1 is in coarse roots and 1.2 t C ha−1 is in fine roots. Compared with soil C, which is about 65 t C ha−1 (without roots), the contribution of the root C to the total belowground C pool is about 42%. Flux of C into soils by plant litter (stemwood excluded) compared with the total soil C pool, however, is relatively small (4.4 t C ha−1 year−1) with the coarse and fine roots each contributing about 20%. Elevated CO2 concentrations and N depositions lead to increased plant biomass, including that of roots. Recent analysis in experiments with elevated CO2 concentrations have shown increases of the forest net primary productivity by about 23%, and, in the case of poplars, an increase of the standing root biomass by about 62%. The turnover of fine roots is also positively influenced by elevated CO2 concentrations and can be increased in poplars by 25%–45%. A recently established international platform for scientists working on woody root processes, COST action E38, allows the exchange of information, ideas, and personnel, and it has the aim to identify knowledge gaps and initiate future collaborations and research activities.  相似文献   

11.
Vegetation recovery is a key measure to improve ecosystems in the Loess Plateau in China. To understand the evolution of soil microorganisms in forest plantations in the hilly areas of the Loess Plateau, the soil microbial biomass, microbial respiration and physical and chemical properties of the soil of Robinia pseudoacacia plantations were studied. In this study, eight forest soils of different age classes were used to study the evolution of soil microbial biomass, while a farmland and a native forest community of Platycladus orientalis L. were chosen as controls. By measuring soil microbial biomass, metabolic quotient, and physical and chemical properties, it can be concluded that soil quality was improved steadily after planting. Soil microbial biomass of C, N and P (SMBC, SMBN and SMBP) increased significantly after 10 to 15 years of afforestation and vegetation recovery. A relatively stable state of soil microbial biomass was maintained in near-mature or mature plantations. There was an increase of soil microbial biomass appearing at the end of the mature stage. After 50 years of afforestation and vegetation recovery, compared with those in farmland, the soil microbial biomass of C, N and P increased by 213%, 201% and 83% respectively, but only accounting for 51%, 55% and 61% of the increase in P. orientalis forest. Microbial soil respiration was enhanced in the early stages, and then weakened in the later stage after restoration, which was different from the change of soil organic carbon. The metabolic quotient (qCO2) was significantly higher in the soils of the P. orientalis forest than that in farmland at the early restoration stage and then decreased rapidly. After 25 years of afforestation and vegetation recovery, qCO2 in soils of the R. pseudoacacia forest was lower than that in the farmland soil, and reached a minimum after 50 years, which was close to that of the P. orientalis forest. A significant relationship was found among soil microbial biomass, qCO2 and physical and chemical properties and restoration duration. Therefore, we conclude that it is possible to artificially improve the ecological environment and soil quality in the hilly area of the Loess Plateau; a long time, even more than 100 years, is needed to reach the climax of the present natural forest. __________ Translated from Acta Ecologica Sinica, 2007, 27(3): 909–917 [译自: 生态学报]  相似文献   

12.
Respiration of the rhizosphere in a beech (Fagus sylvatica L.) forest was calculated by subtracting microbial respiration associated with organic matter decomposition from daily mean soil CO2 efflux. We used a semi-mechanistic soil organic matter model to simulate microbial respiration, which was validated against "no roots" data from trenched subplots. Rhizosphere respiration exhibited pronounced seasonal variation from 0.2 g C m(-2) day(-1) in January to 2.3 g C m(-2) day(-1) in July. Rhizosphere respiration accounted for 30 to 60% of total soil CO2 efflux, with an annual mean of 52%. The high Q10 (3.9) for in situ rhizosphere respiration was ascribed to the confounding effects of temperature and changes in root biomass and root and shoot activities. When data were normalized to the same soil temperature based on a physiologically relevant Q10 value of 2.2, the lowest values of temperature-normalized rhizosphere respiration were observed from January to March, whereas the highest value was observed in early July when fine root growth is thought to be maximal.  相似文献   

13.
This study examined the effect of tree species identity and diversity on soil respiration in a 3-year-old tropical tree biodiversity plantation in Central Panamá. We hypothesized that tree pairs in mixed-species plots would have higher soil respiration rates than those in monoculture plots as a result of increased primary productivity and complementarity leading to greater root and microbial biomass and soil respiration. In addition to soil respiration, we measured potential controls including root, tree, and microbial biomass, soil moisture, surface temperature, bulk density. Over the course of the wet season, soil respiration decreased from the June highs (7.2 ± 3.5 μmol CO2/(m2 s−1) to a low of 2.3 ± 1.9 μmol CO2/(m2 s−1) in the last 2 weeks of October. The lowest rates of soil respiration were at the peak of the dry season (1.0 ± 0.7 μmol CO2/(m2 s−1)). Contrary to our hypothesis, soil respiration was 19–31% higher in monoculture than in pairs and plots with higher diversity in the dry and rainy seasons. Although tree biomass was significantly higher in pairs and plots with higher diversity, there were no significant differences in either root or microbial biomass between monoculture and two-species pairs. Path analyses allow the comparison of different pathways relating soil respiration to either biotic or abiotic controls factors. The path linking crown volume to soil temperature then respiration has the highest correlation, with a value of 0.560, suggesting that canopy controls on soil climate may drive soil respiration.  相似文献   

14.
The effects of elevated atmospheric CO2 concentrations on the nighttime respiration were examined for two sample branches of a hinoki cypress tree (Chamaecyparis obtusa) growing in the field with an open gas exchange system for a one-year period from July 1994 to June 1995. The branches were of a similar size and located at a similar position within the crown. One branch was subjected to an elevated CO2 concentration of 800 μmol mol−1 and the other was subjected to ambient air which had a CO2 concentration of about 370 μmol mol−1. Nighttime respiration rate was higher in elevated CO2 level than in ambient CO2 level. The relationship between nighttime respiration and the corresponding nighttime air temperature was fitted by the exponential function in every month of the year. The segregation of regression lines between the two CO2 treatments increased gradually as the seasons progressed during the treatment period. TheQ 10 values for nighttime respiration were lower in elevated CO2 (1.9 ≤Q 10 ≤ 3.7) than in ambient CO2 (2.4 ≤Q 10 ≤ 4.5) in every month of the year. TheQ 10 was inversely related to the monthly mean nighttime air temperature in both elevated and ambient CO2. The estimated daily nighttime respiration rate under both CO2 treatments had a similar seasonal pattern, which almost synchronized with the temperature change. The respiration ratio of elevated CO2 to ambient CO2 increased gradually from 1.1 to 1.6 until the end of the experiment. Our results indicate that the CO2 level and the temperature have a strong interactive effect on respiration and suggest that a potential increase in respiration of branches will occur when ambient CO2 increases.  相似文献   

15.
Forest stands at the Harvard Forest, Petersham, MA, receiving experimentally elevated N inputs have shown greatly increased N leaching loss yet still retain over 70% of the added N in soils, presumably in organic form. Whether microbial or abiotic mechanisms are responsible for the high N retention is not well understood. We monitored soil respiration and extractable NH4-N and NO3-N following monthly applications of NH4NO3 to a hardwood forest and a pine plantation during the fifth year of chronic fertilizer applications (15 g N as NH4NO3 m−2 per year). We hypothesized that individual N applications would increase short-term soil respiration (within 1 month) in previously unamended and N-limited soil, but that little or no increase would occur following N applications to chronically N-amended soils, assumed to be carbon-limited to some degree after 5 years of N additions. Short-term soil respiration did not increase after N additions in either the chronically amended or previously untreated soils except for one instance in the latter. However, extractable N levels in both previously unamended plots returned to pre-application levels within 2 weeks of the N addition. This rapid disappearance of the applied N suggests microbial immobilization, but in all but one instance there was no accompanying CO2 efflux increase indicating increased microbial biomass growth. A model of N immobilization through microbial biomass production, driven by the observed apparent net N immobilization, predicted soil CO2 efflux 4–17 times greater than measured rates. Microbial biomass production does not appear to be the mechanism by which the fertilizer N immobilization occurred, according to our assumptions about microbial C:N ratios and carbon use efficiency. Hardwood stand average soil respiration rates over the study period were significantly higher in the previously unamended plot than in the control, and the control and chronically N-treated plot respiration rates were similar. Soil respiration rates for all pine stand treatments were similar. These results are insufficient to support our hypotheses concerning carbon versus nitrogen limitation in these soils. Our results, along with evidence from other studies, suggest that abiotic mechanisms play a role in the high retention of long-term N additions in these soils.  相似文献   

16.
Agroforestry systems are widely practiced in tropical forests to recover degraded and deforested areas and also to balance the global carbon budget. However, our understanding of difference in soil respiration rates between agroforestry and natural forest systems is very limited. This study compared the seasonal variations in soil respiration rates in relation to fine root biomass, microbial biomass, and soil organic carbon between a secondary forest and two agroforestry systems dominated by Gmelina arborea and Dipterocarps in the Philippines during the dry and the wet seasons. The secondary forest had significantly higher (p < 0.05) soil respiration rate, fine root biomass and soil organic matter than the agroforestry systems in the dry season. However, in the wet season, soil respiration and soil organic matter in the G. arborea dominated agroforestry system were as high as in the secondary forest. Whereas soil respiration was generally higher in the wet than in the dry season, there were no differences in fine root biomass, microbial biomass and soil organic matter between the two seasons. Soil respiration rate correlated positively and significantly with fine root biomass, microbial biomass, and soil organic C in all three sites. The results of this study indicate, to some degree, that different land use management practices have different effects on fine root biomass, microbial biomass and soil organic C which may affect soil respiration as well. Therefore, when introducing agroforestry system, a proper choice of species and management techniques which are similar to natural forest is recommended.  相似文献   

17.
Afforestation is economically and ecologically important for protecting land and improving soil quality. This study evaluates how soil basal respiration, physicochemical and microbiological characteristics are affected by parent material variety in afforesting degraded areas. For this, some soil physical and chemical parameters, microbial respiration (MR), soil microbial biomass carbon and microbial indexes (Cmic/Corg and MR/Cmic) were determined. The results showed that the physical, chemical and microbiological properties of the soil formed from limestone were better than those of the basaltic-andesite soil. An independent samples t-test demonstrated that the afforested area on the limestone parent material had significantly higher microbial biomass C than the basaltic-andesite parent material. The microbial quotient (Cmic/Corg) of the limestone soil was positively affected by afforestation. In addition, the highest basal respiration value (1.01?±?0.33 CO2–C 10?2?µg?g?1?h?1) was observed for the limestone at the topsoil. The lowest metabolic quotient values were determined for the basaltic-andesite parent material on both topsoil and subsoil (1.99 and 1.42?μg CO2-C mg Cmic?1 h?1, respectively). This study revealed the importance of determining the parent material and its soil characteristics for successfully managing forest applications in degraded areas. Limestone soil sequesters more carbon and promotes microbial activities with a higher Cmic/Corg than the basaltic-andesite soil. Furthermore, the microbial quotient remained low during the 10 years in which the forest was in its sapling stage.  相似文献   

18.
Responses of soil microbial activities to elevated CO2 in experiment sites ofPinus sylvestriformis andPinus koraiensis seedlings were studied in summer in 2003. The results indicated the number of bacteria decreased significantly (p<0.05) under elevated CO2 forPinus sylvestriformis andPinus koraiensis. Amylase and invertase activities in soil increased forPinus sylvestriformis and decreased forPinus koraiensis with CO2 enrichment compared with those at ambient (350 μmol·mol−1). The size of microbial biomass C also decreased significantly at 700 μmol·mol−1 CO2. Bacterial community structure had some evident changes under elevated CO2 by DGGE (Denaturing Gradient Gel Electrophoresis) analysis of bacterial 16S rDNA gene fragments amplified by PCR from DNA extracted directly from soil. The results suggested that responses of soil microorganisms to elevated CO2 would be related to plant species exposed to elevated CO2. Foundation item: The study was supported by Major State Basic Research Development Program of China (2002CB412502) and the Knowledge Innovation Project from Chinese Academy of Sciences (KZCX1-SW-01-03). Biography: JIA Xia (1975), female, Ph. D. candidate of Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

19.
Soil respiration (RS) is a major carbon pathway from terrestrial ecosystems to the atmosphere and is sensitive to environmental changes. Although commonly used mechanical thinning and prescribed burning can significantly alter the soil environment, the effect of these practices on RS and on the interactions between RS and belowground characteristics in managed forests is not sufficiently understood. We: (1) examined the effects of burning and thinning treatments on soil conditions, (2) identified any changes in the effects of soil chemical and physical properties on RS under burning and thinning treatments, and (3) indirectly estimated the changes in the autotrophic soil respiration (RA) and heterotrophic soil respiration (RH) contribution to RS under burning and thinning treatments. We conducted our study in the Teakettle Experimental Forest where a full factorial design was implemented with three levels of thinning, none (N), understory thinning (U), and overstory thinning (O; September to October 2000 for thin burn combination and June and July 2001 for thin only treatments) and two levels of burning, none (U) and prescribed burning (B; fall of 2001). RS, soil temperature, soil moisture, litter depth, soil total nitrogen and carbon content, soil pH, root biomass, and root nitrogen (N) concentration were measured between June 15 and July 15, 2002 at each plot. During this period, soil respiration was measured three times at each point and averaged by point. When we assumed the uniform and even contribution of RA and RH to RS in the studied ecosystem without disturbances and a linear relationship of root N content and RA, we calculated the contributions of RA to RS as 22, 45, 53, 48, and 45% in UU, UO, BN, BU, and BO, respectively. The results suggested that after thinning, RS was controlled more by RH while after burning RS was more influenced by RA. The least amount of RS variation was explained by studied factors under the most severe treatment (BO treatment). Overall, root biomass, root N concentration, and root N content were significantly (p < 0.01) correlated with soil respiration with correlation coefficients of 0.37, −0.28, and 0.29, respectively. This study contributes to our understanding of how common forestry management practices might affect soil carbon sequestration, as soil respiration is a major component of ecosystem respiration.  相似文献   

20.
Reduced soil respiration in gaps in logged lowland dipterocarp forests   总被引:1,自引:0,他引:1  
We studied the effects of forest composition and structure, and related biotic and abiotic factors on soil respiration rates in a tropical logged forest in Malaysian Borneo. Forest stands were classified into gap, pioneer, non-pioneer and mixed (pioneer, non-pioneer and unclassified trees) based on the species composition of trees >10 cm diameter breast height. Soil respiration rates did not differ significantly between non-gap sites (1290 ± 210 mg CO2 m−2 h−1) but were double those in gap sites (640 ± 130 mg CO2 m−2 h−1). Post hoc analyses found that an increase in soil temperature and a decrease in litterfall and fine root biomass explained 72% of the difference between gap and non-gap sites. The significant decrease of soil respiration rates in gaps, irrespective of day or night time, suggests that autotrophic respiration may be an important contributor to total soil respiration in logged forests. We conclude that biosphere-atmosphere carbon exchange models in tropical systems should incorporate gap frequency and that future research in tropical forest should emphasize the contribution of autotrophic respiration to total soil respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号