首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
径向竹篾帘复塑板是以竹材径向剖篾和径向胶合为其特征的一种新型复塑竹帘胶合板 ,对其试验的结果表明 :径向竹篾的加工与浸胶具有竹材利用率高、胶粘剂用量少的优点 ;采用竹帘卷内放置有孔棱的空心刚性轴进行束缚干燥 ,可以有效提高干燥速度和干燥质量 ;采用热 -热胶合工艺 ,每毫米厚的板材热压 1.5 min,即可获得高比强度的复塑板材 .  相似文献   

2.
径向竹篾帘复合板系列产品的研制   总被引:8,自引:0,他引:8  
通过分析现有竹质胶合板存在的竹材利用率低等弊端 ,研制出以竹材径向剖篾 ,径向胶合为特征的径向竹篾帘复合板系列产品。阐述了径向竹篾帘复合板系列产品的工艺特点与产品优势。它是一类高档次、高性能、低成本的结构用材 ,是对竹材进行高效加工利用的新产品 ,具有较好的市场竞争力和推广应用前景  相似文献   

3.
竹篾帘拼长是制备超长竹篾层积材(LBSL)的必要手段。竹篾帘接缝深度以及位置,对层积材抗弯性能影响的试验结果表明:表面接缝加深,试材的抗弯性能下降,但接缝深度占板厚的比例小于5%时,其对试材的抗弯性能无明显影响;接缝位置越接近芯层,其对试材抗弯性能的影响越弱,位于层积材中心层时,对MOR无影响。在实际生产的铺装过程中,应尽量避免出现接长缝隙,尤其是避免在层积材的表面出现接缝。  相似文献   

4.
竹篾帘拼长是制备超长竹篾层积材(LBSL)的必要手段,竹篾帘端头搭接是拼长的方式之一。对LBSL抗弯及抗拉性能的测试结果表明:搭接长度和位置对板材力学性能影响显著;增加搭接长度有利于提高其抗弯和抗拉性能,当搭接长度大于10mm时,板材的力学性能趋于稳定;搭接接头位于芯层时,板材性能优于接头位于表层。LBSL生产组坯工序要保证竹篾帘搭接长度,同时尽量避免板坯表层出现搭接。  相似文献   

5.
本文主要阐述以竹篾为基材的竹质人造板生产中采用的竹篾制备及蔑帘编织加工设备,重点介绍竹材多刀劈篾机,篾帘编织机等设备的用途、工作原理,组成及技术性能,以及成套生产设备的配置及其经济和社会效益。  相似文献   

6.
根据径向竹篾的特点 ,进行了多种织帘方法的试验 ,通过综合评价认为 :宽度在 5 mm以上的径向竹篾 ,采用缝拼法或铅丝机械绞织法织成单篾帘 ,具有良好的应用前景 ;宽度在 5 mm以下的径向竹篾织成束篾帘 ,是一种行之有效的方法  相似文献   

7.
阻燃处理竹篾层积材的性能分析   总被引:1,自引:0,他引:1  
采用M1和M2两种阻燃剂,通过冷热槽法,浸渍处理竹篾后制备竹篾层积材,测定其氧指数、热释放速率、发烟总量等燃烧性能,以及静曲强度、弹性模量等物理力学性能.结果表明:经2种阻燃剂处理,竹篾层积材的耐火性能大幅提高,尤其是M2处理的层积材,综合燃烧性能好;虽板材的力学性能都有一定程度的下降,但仍能满足LY/T 1072-2002的要求.  相似文献   

8.
运用超声空化作用处理漂白和炭化竹材以期提高竹材表面性能,提高胶黏剂在竹材表面上的浸润性,进而提高竹层积材的胶合剪切强度。分析了不同超声处理工艺对竹材表面粗糙度和表面润湿性的影响;测试分析了超声处理竹片制成的竹层积材的胶合剪切强度变化。结果表明:超声空化作用能够提高竹材表面粗糙度、降低酚醛树脂胶在竹材表面的接触角,提高酚醛树脂在竹材表面浸润性。超声工艺参数对竹层积材胶合剪切强度的影响程度由大到小依次是温度、功率、时间,竹层积材胶合剪切强度表明:相比较于未处理的竹层积材,经最优超声工艺处理后的漂白竹层积材胶合剪切强度提升18%,炭化竹层积材胶合剪切强度提升12.5%,说明超声提高了竹材表面粗糙度和表面润湿性进而增强了竹材与酚醛胶黏剂的机械耦合作用。总体来看,漂白竹材表面粗糙度大于炭化竹材、润湿性弱于炭化竹材,漂白竹层积材胶合剪切强度大于炭化竹层积材。  相似文献   

9.
为解决冷压工艺生产周期长和能量消耗大的问题,采用梯度降压的热压法制备竹篾层积材,并分析工艺参数对其性能的影响.结果表明:热压温度对板材的弹性模量、静曲强度、吸水厚度膨胀率和水平剪切强度影响显著;热压时间和密度对板材的吸水厚度膨胀率影响较大.在密度1.0 g/cm3、热压时间1.5 min/mm、温度145~155℃的条件下,板材性能达到LY/T 1072-2002《竹篾层积材》和GB/T 20241-2006《单板层积材》的要求.  相似文献   

10.
通过分析现有竹篾层积材存在的密度高、力学各向异性等特点,进行针对性的复合材料结构设计以改善竹篾层积材料的冲击、弯曲等力学性能,以期在滑板等运动领域进行推广应用。本研究以7.0 g/cm~3设计密度为目标,玻璃纤维布作为增强增韧材料,环氧树脂作为胶黏剂,分别制备3种面密度(35,100和160 g/m~2)玻纤布增强的竹篾层积复合板材(简称G-LBSL),并对其弯曲强度和冲击刚度及界面剪切强度等性能开展研究。结果表明:玻纤布的复合使得传统竹篾层积材(7.5 g/cm~3以上)在降低密度的基础上,抗冲击性能与弹性模量有明显的改善,并随着玻纤布面密度增加呈现正比例关系,其中弹性模量MOE、静曲强度MOR、冲击刚度分别最高增加26.3%,41.2%,55.0%;进而在发挥竹篾单元柔韧性优良的基础上,还能够在高强度的体育运动中保持良好的弹性、韧性和稳定性能。  相似文献   

11.
以改性三聚氰胺甲醛树脂(MF树脂)和酚醛树脂(PF树脂)为胶粘剂,设计了两组热压工艺参数,按照“冷-热-冷”工艺压制竹帘胶合板.对制品按标准JG/165-2004进行了检测,并对检测结果进行比较分析.分析结果表明,该改性MF树脂竹帘胶合板的弹性模量稍高于PF树脂竹帘胶合板,但静曲强度和保留强度不如PF树脂竹帘胶合板.如果适当增加产品的密度和降低改性MF树脂中尿素的比例,产品质量将可以进一步提高,证明该改性MF树脂可以替代PF树脂用于竹帘胶合板生产,且产品质量可以达到标准JG/165-2004的要求.  相似文献   

12.
低分子量的酚醛树脂胶在慈竹层压板中的应用   总被引:1,自引:0,他引:1  
将一种低分子量的酚醛树脂胶应用于慈竹层压板生产中。通过生产试验,解决了慈竹竹材层压板中占30%~40%的竹膜篾片的胶合问题,产品在中国第二汽车制造厂使用近4年,完全达到车箱板的要求。  相似文献   

13.
竹材在建筑结构中的应用前景分析   总被引:12,自引:2,他引:10  
总结竹材的构造及力学性能,阐述竹材人造板中的竹编胶合板、竹帘胶合板、竹帘竹席胶合板、竹材胶合板、竹材层压板、竹材碎料板及竹材复合板的工艺过程、产品特点及其用途,对近几年兴起的重组竹的加工工艺特点、研究现状及发展前景进行探讨。在此基础上提出了利用竹材人造板及重组竹的加工技术制作竹建筑结构用竹质板材和方材的方法,以及由竹板或竹板和钢板构成竹材组合板、组合梁、组合柱、组合墙体等结构构件的思路。  相似文献   

14.
采用将竹材径向剖削为径向竹篾之后加工制造径向竹丝,再织成径向竹丝帘等方法,研制了径向竹丝帘复合胶合板。结果表明:径向竹丝帘复合胶合板的厚度偏差小,竹材利用率高;板材的较佳热压工艺参数为:热压温度140℃,热压压力3.5~4.0 MPa,热压时间80~100 s/mm。  相似文献   

15.
中国竹帘胶合板模板的科技创新历程   总被引:3,自引:0,他引:3  
扼要介绍了竹席胶合板、碎料夹芯竹席胶合板、覆膜竹片胶合板等竹胶合板模板的发展概况。重点总结了竹胶合板模板的主导产品——竹帘胶合板的科技创新历程。  相似文献   

16.
采用慈竹为原料制造竹帘胶合板,以三种不同的方式进行组坯,研究组坯方式对慈竹竹帘胶合板纵横方向静曲强度、弹性模量、压缩强度与水平剪切强度的影响。结果表明:组坯方式对胶合板的弹性模量与静曲强度影响较为显著。Ⅲ型板纵向各项力学性能最优,Ⅲ型板横向各项力学性能最弱。Ⅰ型板和Ⅱ型板的静曲强度和弹性模量均达到了汽车车厢用竹篾胶合板的A类标准。三种方式组坯板件的主要力学性能均达到了结构用竹木复合板国家A级标准与混凝土模板用胶合板主要物理力学性能指标。  相似文献   

17.
葵花秆积成材热压.工艺的研究   总被引:1,自引:0,他引:1  
通过对葵花秆材性的分析,探讨了制作板材的可行性;采用正交试验方法对葵花秆积成材生产工艺进行了研究;分析了施胶量、热压温度、热压压力及热压时间等工艺参数对产品性能的影响,提出了较佳的工艺参数。试验结果表明,采用文中提供的工艺参数,制成的积成板材可用作地板基材及家具用材等。  相似文献   

18.
竹木复合单板层积材制备工艺   总被引:8,自引:2,他引:8  
以浸渍酚醛树脂的杨木单板和竹帘为原料制备竹木复合单板层积材, 探讨制造工艺对复合材料性能的影响.结果表明,竹木复合材料的MOE及MOR均达到或超过了日本JAS标准的相关规定,尺寸稳定性良好; 单板厚度、树脂浓度、压缩率对MOE和MOR有显著影响;组坏方式对MOR影响显著;而吸水厚度膨胀率的影响作用比较复杂.  相似文献   

19.
汽车车厢底板用竹木复合板的研制   总被引:6,自引:1,他引:6  
采用马尾松作芯板、竹片作表板、酚醛树脂作胶粘剂,制造汽车车厢底板用竹木复合板。在确定的涂胶量、热压温度、热压时间条件下,研究了不同的热压压力与竹木复合板性能的关系,得出了适宜的热压工艺条件。研究结果表明,竹木复合板的物理力学性能达到林业行业标准LY1055—91规定的指标值,为充分、合理、经济、有效地利用竹木资源提供了依据  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号