首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of cover crops on weeds and the underlying mechanisms of competition, physical control and allelopathy are not fully understood. Current knowledge reveals great potential for using cover crops as a preventive method in integrated weed management. Cover crops are able to suppress 70–95% of weeds and volunteer crops in the fall‐to‐spring period between two main crops. In addition, cover crop residues can reduce weed emergence during early development of the following cash crop by presenting a physical barrier and releasing allelopathic compounds into the soil solution. Therefore, cover crops can partly replace the weed suppressive function of stubble‐tillage operations and non‐selective chemical weed control in the fall‐to‐spring season. This review describes methods to quantify the competitive and allelopathic effects of cover crops. Insight obtained through such analysis is useful for mixing competitive and allelopathic cover crop species with maximal total weed suppression ability. It seems that cover crops produce and release more allelochemicals when plants are exposed to stress or physical damage. Avena strigose, for example, showed stronger weed suppression under dry conditions than during a moist autumn. These findings raise the question of whether allelopathy can be induced artificially. © 2019 Society of Chemical Industry  相似文献   

2.
Cover crops have been shown to be important integrated weed management tools. In addition to directly competing with weeds, cover crops can provide weed suppressive effects following incorporation through release of allelopathic compounds and/or changes to nutrient availability. Incorporation of a cover crop mixture may provide a synergistic or antagonistic effect on weed suppression by further altering nutrient dynamics. To investigate this phenomenon, we evaluated the suppressive effects following incorporation of annual ryegrass, buckwheat, brown mustard, and phacelia sown with and without field pea on germination and growth of several pernicious weed species. Further, we used the additive partitioning model to determine if pea synergistically improved biomass production and weed suppression of cover crops. Our results demonstrate that following incorporation, cover crop residues suppress weed germination and weed biomass production. According to the additive partitioning model, the addition of pea had an antagonistic effect on buckwheat and brown mustard biomass production and decreased buckwheat weed suppression by 8%. In contrast, the addition of field pea greatly enhanced biomass production of phacelia at a reduced seeding rate suggesting a positive biodiversity effect. Limited evidence was found for changes to nutrient availability following cover crop incorporation, however, a dose-dependent effect of cover crop residue on weed suppression suggests allelopathy and/or nutrient availability may have a role on weed seed germination success. Together, our results support the use of incorporated cover crop residues as an integrated weed management tool.  相似文献   

3.
The objective of this study was to obtain detailed information on the long‐term weed suppression potential of four winter soil cover types included in an arable crop system managed at various input levels. We used weed seedbank size and composition to assess weed suppression potential. A field experiment was established in 1993 as a split‐split‐plot design with four replications, including two tillage systems [a conventional system (CS) including ploughing in the cover crops and a low‐input system (LIS) including no tillage with surface mulching of the cover crops] in the main plots, three mineral nitrogen fertilization rates for the main crop in the sub‐plots and four soil cover types (main crop residue, rye, crimson clover and subterranean clover) in the sub‐sub‐plots. Seedbank sampling took place in winter 2000/01. The weed seedbank was analysed with the seedling emergence method. Data were analysed using anova and multivariate techniques. Results indicated that the seedbank density in the LIS was about five times higher than in the conventional input system. In the CS, use of a rye cover crop resulted in a lower seedbank density with respect to the crop residue treatment (?25%), whereas in the LIS the subterranean clover cover crop decreased weed seedbank density as compared with the other cover crops and the crop residue treatment (?22% on average). Differences in species composition were mainly related to tillage system. Implications for cover crop management and the development of sustainable cropping systems are discussed.  相似文献   

4.
Conventional methods of weed management in vineyards rely primarily on herbicides and tillage. The desire to adopt alternatives to these methods is driven by environmental and economic reasons. Weed suppression and grape yield under mulched cover crop systems at two rainfed northern California vineyards were similar to, and at times exceeded, those under conventional tillage or herbicide management. Cover crop productivity was positively correlated with weed suppression and mulch decomposition rates and seemed to be determined primarily by location and then by cover crop type. The mulch from mowed cover crops averaged 603(± 94) gm−2 at the two sites. Weed suppression was linked to light interception by the mulch cover for most weed species. Subterranean clover planted directly in the vine row significantly reduced weed cover where it established. The increased dominance of the perennial Convolvulus arvensis and reduction of certain annual species was indicative of species compositional changes in all treatments. Profits under the cover cropping systems exceeded those under conventional tillage and herbicide systems by €  794 ha−1 averaged over the duration of the experiment at both locations.  相似文献   

5.
Weed management in conservation crop production systems   总被引:1,自引:0,他引:1  
Information on weed management in conservation crop production systems is needed as adoption of practices such as reduced tillage and cover crops becomes more widespread. This review summarizes recent research on weed management aspects in these systems. Changes in patterns of tillage, planting systems, and other management strategies can alter the soil environment and lead to shifts in weed populations. Weed patterns and populations are not always consistent and vary with locale, crop, and herbicide use. However, in many long-term conservation management studies, a general increase in perennial weeds and grass species has been observed. The development of low-dose herbicides, selective postemergence herbicides, and transgenic crops has greatly improved the flexibility of producers who use conservation systems where opportunities for tillage are limited. With a higher level of management inputs, producers can successfully implement conservation management practices.  相似文献   

6.
Cover crops grown in the period between two main crops have potential as an important component of a system‐oriented ecological weed management strategy. In late summer and autumn, the cover crop can suppress growth and seed production of weeds, whereas the incorporation of cover crop residues in spring may reduce or retard weed emergence. Based on these two criteria, six cover crop species were evaluated for their weed suppressive potential in 2 years of experimentation in the Netherlands. Fodder radish, winter oilseed rape and winter rye had the strongest competitive ability in autumn; the competitive strength of Italian ryegrass was intermediate and white lupin and lucerne were poor competitors. Competitiveness was strongly correlated to early light interception. Surprisingly, doubling the recommended sowing density did not increase weed suppressive ability. Although a poor competitor in the fall, after incorporation in spring, lucerne had the strongest inhibitory effect on seedling establishment, followed by winter oilseed rape and white lupin. Winter rye and fodder radish did not affect seedling establishment, whereas Italian ryegrass was not evaluated because of re‐growth after incorporation. Competition in autumn and subsequent residue‐mediated suppression of weed establishment in spring varied among the cover crop species, with winter oilseed rape offering relatively strong effects during both periods.  相似文献   

7.
Cover crops can suppress weeds within agricultural fields due to competitive and allelopathic effects. Glasshouse experiments were conducted to evaluate the relative proportions of allelopathic effects to the total weed inhibition. Six different cover crop species were combined with three weed species in the presence or absence of active carbon over a period of four weeks. Active carbon was used as an adsorbent for allelopathic substances in the soil. Our study revealed that the competition between cover crops and weeds shifted, possibly due to the minimisation of allelopathic effects by active carbon in the soil. We assume that the degree of cover crops allelopathic effects on weeds is species‐specific, both on the side of cover crops and on the weed side. The cover crops Raphanus sativus, Fagopyrum esculentum and Avena strigosa showed the highest allelopathic weed suppression with up to 28%. Additionally, Stellaria media turned out to be the most sensitive weed against allelopathic effects induced by all cover crops, except for Linum usitatissimum and Guizotia abyssinica. The knowledge about the contribution of competitive and allelopathic effects by cover crops would help to create cover crop mixtures with high weed suppressive ability.  相似文献   

8.
This study was conducted in the Mediterranean environment of Central Italy from 2011 to 2013 with the aim of evaluating the effects of winter cover crops and their residues on weed composition in a cover crop‐tomato sequence. Treatments consisted of five soil managements (three cover crop species ‐ hairy vetch, phacelia, white mustard, winter fallow mulched with barley straw before tomato transplanting and conventionally tilled soil), two nitrogen fertilisation levels (0 and 100 kg N ha?1) and two weed management levels (weed free and weedy) on tomato. Cover crop residues were arranged in strips on the soil surface and then used as beds for transplanting the tomato seedlings in paired rows. Rotary hoeing was performed in the bare strips between paired tomato rows. At tomato harvesting, the weed aboveground biomass and density was higher in nitrogen‐fertilised tomato than unfertilised tomato, except in hairy vetch and barley straw that showed similar values. Hairy vetch used as a cover crop and dead mulch was the most suppressive species with the highest production of residues, while phacelia and mustard were not suitable for controlling weeds. The tomato yield was high in nitrogen fertilised and weed‐free treatments, except in barley straw mulch, which showed similar values among the weed management treatments. The mulch strips caused variations in weed species composition that was mainly composed of perennial ruderal weeds, while in tilled soil, the weed flora was dominated by annual photoblastic weeds.  相似文献   

9.
Over the last two decades, the demand for organic products has grown rapidly in the world due to increased concern about side effects of pesticides on the environment and human health. Studies were conducted in organic lettuce (Lactuca sativa L.) from 2004 to 2005 at the Black Sea Agricultural Research Institute in Samsun, Turkey, to determine the suppressive effects of summer cover crops on weeds. The experiment was arranged in a randomized complete block design with four replications. Treatments consisted of grain sorghum [Sorghum bicolor (L.) Moench.], sudangrass [Sorghum vulgare Pers. var. sudanense (Piper) Hitchc.], hairy vetch (Vicia villosa Roth.), grain amaranth (Amaranthus cruentus L.), pea (Pisum sativum L.) and bare ground with no cover crop. Weed density and total weed dry biomass were assessed before and at 14, 28, and 56 days after incorporation (DAI) of the cover crops. The cover crops produced between 1.2 and 3 t ha−1 biomass and grain sorghum produced more dry matter than any other species in both years. After incorporation of the cover crops, hairy vetch and sorghum treatments showed fewer weed species, and lower weed density than the other cover crops in both years. Hairy vetch, grain sorghum, and sudangrass were the most effective cover crops and reduced total weed dry biomass by 90.3%, 87.4%, and 86.9% in 2004, and by 88%, 86.3%, and 85.2% in 2005, respectively. Cover crop residue suppressed many broadleaved weed species but failed to control grass weeds. Hairy vetch treatments produced the highest yield, followed by sudangrass and grain sorghum. Yields with grain amaranth and pea were similar to that of the control. These results indicate that hairy vetch, grain sorghum, and sudangrass can be used to suppress weeds in early season of organic lettuce production.  相似文献   

10.
The development of integrated weed management strategies requires knowledge of mechanisms that influence compositional changes in weed flora. A 9-year study was initiated in 1988 at Delhi, Canada, on a loamy sand soil to evaluate the effect of tillage systems [conventional (CT) and no-till (NT)] and cover crops (only in NT) on weed density, species composition and associations, and crop yield in a winter wheat ( Triticum aestivum L.)/bean/winter wheat rotation. Three bean types: soyabean ( Glycine max L. Merr.), white bean ( Phaseolus vulgaris L.) and kidney bean ( P . vulgaris L.) were included. The NT system included variations: rye ( Secale cereale L.) or maize ( Zea mays L.) cover crop, volunteer wheat disked after harvest and wheat stubble. Data were collected in 1994, 1995 and 1996. Tillage systems, cover crops and crop type had differential effects on weed densities, species composition and associations. Weed densities were not affected by tillage or cover crops in wheat but, in the beans, densities were greater in the CT than in the NT systems. Various associations of weed species with tillage system, cover crop and crop type were observed. Crop yields were not affected by tillage type or cover crop, except that soyabean yields were highest in plots with cover crops.  相似文献   

11.
Weed management in organic agriculture: are we addressing the right issues?   总被引:4,自引:0,他引:4  
P Bàrberi 《Weed Research》2002,42(3):177-193
Summary Despite the serious threat which weeds offer to organic crop production, relatively little attention has so far been paid to research on weed management in organic agriculture, an issue that is often approached from a reductionist perspective. This paper aims to outline why and how this problem should instead be tackled from a system perspective. Compared with conventional agriculture, in organic agriculture the effects of cultural practices (e.g. fertilization and direct weed control) on crop:weed interactions usually manifest themselves more slowly. It follows that weed management should be tackled in an extended time domain and needs deep integration with the other cultural practices, aiming to optimize the whole cropping system rather than weed control per se . In this respect, cover crop management is an important issue because of its implications for soil, nutrient, pest and weed management. It is stressed that direct (physical) weed control can only be successful where preventive and cultural weed management is applied to reduce weed emergence (e.g. through appropriate choice of crop sequence, tillage, smother/cover crops) and improve crop competitive ability (e.g. through appropriate choice of crop genotype, sowing/planting pattern and fertilization strategy). Two examples of system-oriented weed management systems designed for organic agriculture are illustrated as well as future perspectives and problems.  相似文献   

12.
Heterogeneous field conditions are ubiquitous throughout agricultural systems and have given rise to the practice of site‐specific management, in an effort to increase sustainability and/or homogenise growing conditions and thereby increase crop yields. The spatial pattern of weeds in conventional systems is widely accepted to be aggregated, but there have been no scientific studies regarding the spatial pattern of weed distribution in organic systems. Using a combination of aggregation measures and quadrat variance techniques, this study compared the spatial pattern of weed distribution in conventionally managed no‐tillage spring wheat fields to those of organically managed spring wheat fields. Per cent weed cover data (by species) were collected in the summers of 2005 and 2006 from transects located in conventional no‐tillage and organic spring wheat fields. Weed cover was aggregated in both the conventional and the organic systems, but the patterns of aggregation were different for the two systems. Conventional no‐tillage systems showed a patch/gap pattern, while organic systems showed multiple scales of patchiness with few gaps. These results suggest that processes causing aggregation in the two systems may be different and that site‐specific management may be applicable to organic systems as well as conventional spring wheat systems.  相似文献   

13.
BACKGROUND: Conservation practices often associated with glyphosate-resistant crops, e.g. limited tillage and crop cover, improve soil conditions, but only limited research has evaluated their effects on soil in combination with glyphosate-resistant crops. It is assumed that conservation practices have similar benefits to soil whether or not glyphosate-resistant crops are used. This paper reviews the impact on soil of conservation practices and glyphosate-resistant crops, and presents data from a Mississippi field trial comparing glyphosate-resistant and non-glyphosate-resistant maize (Zea mays L.) and cotton (Gossypium hirsutum L.) under limited tillage management. RESULTS: Results from the reduced-tillage study indicate differences in soil biological and chemical properties owing to glyphosate-resistant crops. Under continuous glyphosate-resistant maize, soils maintained greater soil organic carbon and nitrogen as compared with continuous non-glyphosate-resistant maize, but no differences were measured in continuous cotton or in cotton rotated with maize. Soil microbial community structure based on total fatty acid methyl ester analysis indicated a significant effect of glyphosate-resistant crop following 5 years of continuous glyphosate-resistant crop as compared with the non-glyphosate-resistant crop system. Results from this study, as well as the literature review, indicate differences attributable to the interaction of conservation practices and glyphosate-resistant crop, but many are transient and benign for the soil ecosystem. CONCLUSIONS: Glyphosate use may result in minor effects on soil biological/chemical properties. However, enhanced organic carbon and plant residues in surface soils under conservation practices may buffer potential effects of glyphosate. Long-term field research established under various cropping systems and ecological regions is needed for critical assessment of glyphosate-resistant crop and conservation practice interactions.  相似文献   

14.
Weed control is a major concern for organic farmers around the world and non-chemical weed control methods are now the subject of many investigations. Field studies were conducted in tomato (Solanum lycopersicum L.) from 2004 to 2006 at the Black Sea Agricultural Research Institute experiment field to determine the weed suppressive effects of winter cover crops. Treatments consisted of ryegrass (Lolium multiflorum L.), oat (Avena sativa L.), rye (Secale cereale L.), wheat (Triticum aestivum L.), gelemen clover (Trifolium meneghinianum Clem.), Egyptian clover (Trifolium alexandrinum L.), common vetch (Vicia sativa L.), hairy vetch (Vicia villosa Roth.) and a control with no cover crop. Treatments were arranged in a randomized complete block design with four replications. To determine the weed suppressive effects of the cover crops, weed density and total weed dry biomass were assessed at 14, 28, and 56 days after termination (DAT) of the cover crops from all plots using a 50 × 50 cm quadrat placed randomly in each plot. After cover crop kill and incorporation into soil, tomato seedlings variety ‘H2274’ were transplanted. Broadleaved weed species were the most prominent species in both years. Total weed biomass measured just prior to cover crop incorporation into the soil was significantly lower in S. cereale plots than in the others. The number of weed species was lowest at 14 DAT and later increased at 28 and 56 DAT, and subsequently remained constant during harvest. This research indicates that cover crops such as L. multiflorum, S. cereale, V. sativa and V. villosa could be used in integrated weed management programs to manage some weeds in the early growth stages of organic tomato.  相似文献   

15.
This study assessed the cultural and weed management factors influencing the weed communities of Hungarian rice fields. Hungary is situated at the northern limit of rice production with a history of about 300 years of rice culture. We surveyed the weed flora and 25 background variables in 100 active rice fields. Using a minimal adequate model containing 11 terms, 48.5% of the total variation in weed species data could be explained. The net effects of nine variables on species composition were significant. Crop cover was found to be the most important explanatory variable, which was followed by the herbicides penoxsulam and azimsulfuron, tillage depth, phosphorous and potassium fertilisers, years after last rotation, water depth in May, sowing type, pendimethalin and water conductivity. Filamentous algae, as the most abundant group of weeds, were positively associated with deep tillage, deep water and surface sowing. Echinochloa crus‐galli, one of the most troublesome grass weeds, was associated with low rice cover, shallow water and later years after crop rotation, while weedy rice favoured high crop cover, deep water and soil sowing. These findings can be used to design improved weed management strategies. The occurrence of red list species and charophytes in diverse micro‐mosaic patterns deserves attention from a conservation perspective, as well. The maintenance of these unique charophyte communities can be facilitated by shallow tillage without soil inversion.  相似文献   

16.
In conservation agriculture, weed seed germination could decrease with the presence of a cover crop, surface weed seed location and temporal drought in summer just after seed shedding. This study simultaneously examined the effects of a cover crop, burial depth (seed location) and hydric stress on weed emergence and early growth. It was hypothesized that drought would reduce weed emergence and the initial growth of weed seeds and that this effect would be greater when the seeds were on the soil surface and in the presence of a cover crop. Four annual weed species were chosen that are frequently found (Anisantha sterilis, Vulpia myuros, Sonchus asper, Veronica persica) and not frequently found (Alopecurus myosuroides, Poa annua, Cyanus segetum, Capsella bursa‐pastoris) in fields that implement conservation agriculture. The unburied seeds had 26% lower emergence, on average, than the buried seeds (significant for six of the eight species), hydric stress reduced emergence by 20% (for seven of the eight species) and the presence of a cover crop reduced the level of emergence by 17% (for all species). The unburied seeds with hydric stress were emerging under the “most stressful” set of factors, with a 45% decrease in emergence, compared with the seeds emerging under the “least stressful” set of factors (buried seeds without hydric stress). All the weed growth measurements (height, dry matter content and number of leaves) decreased with the presence of a cover crop. The species that are found frequently in the fields that implement conservation agriculture, compared with the species that are not frequently found in conservation agriculture fields, had higher rates of germination and a higher tolerance of hydric stress when their seeds were unburied.  相似文献   

17.
Sustainable cropping systems based on low inputs have received much attention, even if they may lead to the establishment of a competitive weed flora. This study, conducted from 2011 to 2014 in a Mediterranean environment, evaluated the changes in weed community composition in two cropping systems [conventional (CONV ) and organic (ORG )] with different soil tillage [inversion tillage (IT ) and non‐inversion tillage (NoIT )] in a wheat–tomato–chickpea rotation that began in 2000. The treatments were replicated three times according to a randomised complete block design. The organic system was managed according to EU regulations. Inversion tillage consisted of mouldboard ploughing to a depth of 30 cm, while NoIT consisted of subsoiling to a depth of 20 cm. Weed control was based on herbicide application in CONV and mechanical weeding in ORG . The organic non‐inversion system showed the highest weed biomass (134, 128 and 195 g dry matter (DM ) m?2 in wheat, tomato and chickpea, respectively) and weed density (66, 77 and 76 plants m?2 in wheat, tomato and chickpea, respectively), as well as community richness. However, ORG always increased weed diversity, even if annual dicotyledon species were abundant in ORG ‐IT and perennial dicotyledon species in ORG ‐NoIT . The conventional system enhanced the relative frequency of both annual (CONV ‐IT ) and perennial (CONV ‐NoIT ) grasses. There was a negative correlation between density of perennial weeds and crop yield (r 2 = 0.24, <  0.001). Therefore, in the Mediterranean environment, combining organic practices with non‐inversion tillage could lead to the establishment of perennial weeds that are difficult to control, thus requiring specific weed management practices.  相似文献   

18.
Weeds have negative impacts on crop production but also play a role in sustaining biodiversity in agricultural landscapes. This trade‐off raises the question of whether it is possible to promote weed communities with low competitive potential but high value to biodiversity. Here, we explored how weed communities respond to different vineyard management practices in South Africa's Western Cape, aiming to identify whether any specific practices are associated with more beneficial weed communities. Eight weed community characteristics representative of abundance, diversity and functional composition were used as indicators of competitive potential and biodiversity value. We explored how these responded to farm management strategy (organic, low input or conventional) and weed management practices (herbicides, tillage, mowing or combinations of these) using ordination and mixed models. Mown sites were associated with weed communities of high biodiversity value, with higher weed cover in both winter and summer, higher diversity and more native weeds. Mowing also promoted shorter weeds than either tillage or herbicides, considered to be less competitive with grapevines. However, high summer weed cover may be problematic where competition for water is critical, in which case tillage offers a method to limit summer weed cover that did not adversely affect diversity or native weeds. In contrast, herbicide‐treated sites had characteristics indicative of a lower biodiversity value and higher potential for competitiveness with few native weeds, lower diversity and relatively tall, small‐seeded weeds. Mowing in winter combined with tillage in spring may thus optimise the biodiversity benefits and production costs of Western Cape vineyard weeds.  相似文献   

19.
Weed competition and nutrient scarcity often restrict organic cereal production, especially where the availability of livestock manure is limited. While harrowing of annual weeds and legume cover crops can be used, these methods are both executed in early spring and may hinder each other. Two cycles of a 2‐year crop rotation were carried out in south‐east Norway (60°42′N, 10°51′E, altitude 250 m) with weed harrowing and undersown cover crops (WHCC) at two fertiliser rates (40 and 100 kg nitrogen ha?1). The effect of the WHCC treatments was measured by weed density and species, weed biomass, changes in weed seedbank and grain yield. The weed density depended on the interaction between WHCC, fertiliser and year. On average, pre‐emergence weed harrowing reduced weed density by 32% and weed biomass by 49%, while pre‐ and post‐emergence weed harrowing reduced weed density by 59% and weed biomass by 67% compared with the untreated control. Spergula arvensis became more abundant at low rather than at high fertiliser rates. On average, white clover cover crop sown after pre‐emergence weed harrowing resulted in the highest yields for both oat (+12.1%) and wheat (+16.4%) compared with the untreated control. Despite differences in weed population density and biomass among WHCC treatments within years, the weed biomass, weed density and seedbank increased for all WHCC treatments over the 4‐year period. More research is required into improving the efficacy of mechanical and cultural weed suppression methods that organic systems rely on.  相似文献   

20.
Development of sustainable food systems is contingent upon the adoption of land management practices that can mitigate damage from soilborne pests. Five diverse land management practices were studied for their impacts on Fusarium wilt (Fusarium oxysporum f. sp. lycopersici), galling of roots by Meloidogyne spp. and marketable yield of tomato (Solanum lycopersicum) and to identify associations between the severity of pest damage and the corresponding soil microbial community structure. The incidence of Fusarium wilt was >14% when tomato was cultivated following 3 to 4 years of an undisturbed weed fallow or continuous tillage disk fallow rotation and was >4% after 3 to 4 years of bahiagrass (Paspalum notatum) rotation or organic production practices that included soil amendments and cover crops. The incidence of Fusarium wilt under conventional tomato production with soil fumigation varied from 2% in 2003 to 15% in 2004. Repeated tomato cultivation increased Fusarium wilt by 20% or more except when tomato was grown using organic practices, where disease remained less than 3%. The percent of tomato roots with galls from Meloidogyne spp. ranged from 18 to 82% in soil previously subjected to a weed fallow rotation and 7 to 15% in soil managed previously as a bahiagrass pasture. Repeated tomato cultivation increased the severity of root galling in plots previously subjected to a conventional or disk fallow rotation but not in plots managed using organic practices, where the percentage of tomato roots with galls remained below 1%. Marketable yield of tomato exceeded 35 Mg ha(-1) following all land management strategies except the strip-tillage/bahiagrass program. Marketable yield declined by 11, 14, and 19% when tomato was grown in consecutive years following a bahiagrass, weed fallow, and disk rotation. The composition of fungal internal transcribed spacer 1 (ITS1) and bacterial 16S rDNA amplicons isolated from soil fungal and bacterial communities corresponded with observed differences in the incidence of Fusarium wilt and severity of root galling from Meloidogyne spp. and provided evidence of an association between the effect of land management practices on soil microbial community structure, severity of root galling from Meloidogyne spp., and the incidence of Fusarium wilt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号