首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Cholinergic neurons are widespread, and pharmacological modulation of acetylcholine receptors affects numerous brain processes, but such modulation entails side effects due to limitations in specificity for receptor type and target cell. As a result, causal roles of cholinergic neurons in circuits have been unclear. We integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of local neurons, these cholinergic cells have dominant control roles, exerting powerful modulation of circuit activity. Furthermore, these neurons could be activated by cocaine, and silencing this drug-induced activity during cocaine exposure (despite the fact that the manipulation of the cholinergic interneurons was not aversive by itself) blocked cocaine conditioning in freely moving mammals.  相似文献   

2.
Stimulant addiction is often linked to excessive risk taking, sensation seeking, and impulsivity, but in ways that are poorly understood. We report here that a form of impulsivity in rats predicts high rates of intravenous cocaine self-administration and is associated with changes in dopamine (DA) function before drug exposure. Using positron emission tomography, we demonstrated that D2/3 receptor availability is significantly reduced in the nucleus accumbens of impulsive rats that were never exposed to cocaine and that such effects are independent of DA release. These data demonstrate that trait impulsivity predicts cocaine reinforcement and that D2 receptor dysfunction in abstinent cocaine addicts may, in part, be determined by premorbid influences.  相似文献   

3.
Impulsive choice is exemplified by choosing a small or poor reward that is available immediately, in preference to a larger but delayed reward. Impulsive choice contributes to drug addiction, attention-deficit/hyperactivity disorder, mania, and personality disorders, but its neuroanatomical basis is unclear. Here, we show that selective lesions of the nucleus accumbens core induce persistent impulsive choice in rats. In contrast, damage to two of its afferents, the anterior cingulate cortex and medial prefrontal cortex, had no effect on this capacity. Thus, dysfunction of the nucleus accumbens core may be a key element in the neuropathology of impulsivity.  相似文献   

4.
In an investigation of the mechanism by which brain lesions result in delayed degeneration of neurons remote from the site of injury, neurons within the caudate nucleus of rats were destroyed by local injection of the excitotoxin ibotenic acid. Treatment resulted in the rapid degeneration of the striatonigral pathway including projections containing the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and delayed transneuronal death of neurons in the substantia nigra pars reticulata. The distribution of nigral cell loss corresponded to the loss of GABAergic terminals. Neuronal death was prevented by long-term intraventricular infusion of the GABA agonist muscimol. Delayed transneuronal degeneration may be produced by neuronal disinhibition consequent to loss of inhibitory inputs. Replacement of inhibitory transmitters by suitable drugs may prevent some forms of delayed neuronal death.  相似文献   

5.
Neuronal death induced by activating N-methyl-D-aspartate (NMDA) receptors has been linked to Ca2+ and Na+ influx through associated channels. Whole-cell recording from cultured mouse cortical neurons revealed a NMDA-evoked outward current, INMDA-K, carried by K+ efflux at membrane potentials positive to -86 millivolts. Cortical neurons exposed to NMDA in medium containing reduced Na+ and Ca2+ (as found in ischemic brain tissue) lost substantial intracellular K+ and underwent apoptosis. Both K+ loss and apoptosis were attenuated by increasing extracellular K+, even when voltage-gated Ca2+ channels were blocked. Thus NMDA receptor-mediated K+ efflux may contribute to neuronal apoptosis after brain ischemia.  相似文献   

6.
Prefrontal neurons engaged by working memory tasks express a sequence of phasic and tonic activations linked to a train of sensory, mnemonic, and response-related events. Here, we report that the dopamine D2 receptor selectively modulates the neural activities associated with memory-guided saccades in oculomotor delayed-response tasks yet has little or no effect on the persistent mnemonic-related activity, which is instead modulated by D1 receptors. This associates the D2 receptor with a specific component of working memory circuitry and fractionates the modulatory effects of D1 and D2 receptors on the neural machinery of a cognitive process.  相似文献   

7.
The long-term effects of excitotoxic lesions in the nucleus basalis magnocellularis of the rat were found to mimic several neuropathological and chemical changes associated with Alzheimer's disease. Neuritic plaque-like structures, neurofibrillary changes, and neuronal atrophy or loss were observed in the frontoparietal cortex, hippocampus, amygdala, and entorhinal cortex 14 months after the lesions were made. Cholinergic markers in neocortex were reduced, while catecholamine and indoleamine metabolism was largely unaffected at this time. Bilateral lesions of the nucleus basalis magnocellularis increased somatostatin and neuropeptide Y in the cortex of the rat by at least 138 and 284 percent, respectively, suggesting a functional interaction between cholinergic and peptidergic neurons that may differ from that in Alzheimer's disease.  相似文献   

8.
9.
The striatum, which is the major component of the basal ganglia in the brain, is regulated in part by dopaminergic input from the substantia nigra. Severe movement disorders result from the loss of striatal dopamine in patients with Parkinson's disease. Rats with lesions of the nigrostriatal dopamine pathway caused by 6-hydroxydopamine (6-OHDA) serve as a model for Parkinson's disease and show alterations in gene expression in the two major output systems of the striatum to the globus pallidus and substantia nigra. Striatopallidal neurons show a 6-OHDA-induced elevation in their specific expression of messenger RNAs (mRNAs) encoding the D2 dopamine receptor and enkephalin, which is reversed by subsequent continuous treatment with the D2 agonist quinpirole. Conversely, striatonigral neurons show a 6-OHDA-induced reduction in their specific expression of mRNAs encoding the D1 dopamine receptor and substance P, which is reversed by subsequent daily injections of the D1 agonist SKF-38393. This treatment also increases dynorphin mRNA in striatonigral neurons. Thus, the differential effects of dopamine on striatonigral and striatopallidal neurons are mediated by their specific expression of D1 and D2 dopamine receptor subtypes, respectively.  相似文献   

10.
Methylphenyltetrahydropyridine (MPTP) selectively destroys neuronal cell bodies in the melanin-containing substantia nigra of humans and other primates. We show that methylphenylpyridine (MPP+), an active metabolite of MPTP which is accumulated intraneuronally by the catecholamine uptake system, binds with high affinity to melanin and neuromelanin. MPP+ bound intracellularly to neuromelanin may be released gradually, resulting in subsequent damage to the neurons of the substantia nigra.  相似文献   

11.
Prolonged treatment with classical antipsychotic drugs decreased the number of spontaneously active dopamine neurons in both the substantia nigra (A9) and the ventral tegmental area (A10) of the rat brain. In contrast, treatment with atypical antipsychotic drugs selectively decreased the number of A10 dopamine neurons. Related drugs lacking antipsychotic efficacy failed to decrease dopamine activity. These findings suggest that the inability of atypical antipsychotic drugs to decrease A9 dopamine neuronal activity may be related to their lower potential for causing tardive dyskinesia and that the inactivation of A10 neurons may be involved in the delayed onset of therapeutic effects during treatment.  相似文献   

12.
The neurodegeneration observed in Alzheimer's disease has been associated with synaptic dismantling and progressive decrease in neuronal activity. We tested this hypothesis in vivo by using two-photon Ca2+ imaging in a mouse model of Alzheimer's disease. Although a decrease in neuronal activity was seen in 29% of layer 2/3 cortical neurons, 21% of neurons displayed an unexpected increase in the frequency of spontaneous Ca2+ transients. These "hyperactive" neurons were found exclusively near the plaques of amyloid beta-depositing mice. The hyperactivity appeared to be due to a relative decrease in synaptic inhibition. Thus, we suggest that a redistribution of synaptic drive between silent and hyperactive neurons, rather than an overall decrease in synaptic activity, provides a mechanism for the disturbed cortical function in Alzheimer's disease.  相似文献   

13.
14.
Autoradiography combined with image analysis permitted quantitative visualization of dopamine (D2) and serotonin (S2) binding sites in rat brain. Forebrain sections were incubated with tritiated spiroperidol alone or with tritiated spiroperidol plus unlabeled compounds that saturated the D2 or S2 sites. By subtracting the digitized image of an autoradiograph derived from the latter sections from that of the former, the D2 or S2 sites were specifically revealed. The resulting quantitative images demonstrate the differing anatomical distributions of these sites. The D2 site is largely restricted to the striatal complex (caudate-putamen, nucleus accumbens septi, and olfactory tubercle), whereas the S2 site is enriched in layer 5 of motor cortex, the perirhinal and cingulate cortices, and the claustrum.  相似文献   

15.
The nucleus tractus solitarius (NTS) contains neurons that are part of the central neuronal network controlling rhythmic breathing movements in mammals. Nerve terminals within the NTS show immunoreactivity to thyrotropin-releasing hormone (TRH), a neuropeptide that has potent stimulatory effects on respiration. By means of a brainstem slice preparation in vitro, TRH induced rhythmic bursting in neurons in the respiratory division of the NTS. The frequency of bursting was voltage-dependent and could be reset by short depolarizing current pulses. In the presence of tetrodotoxin, TRH produced rhythmic oscillations in membrane potential whose frequency was also voltage-dependent. These observations suggest that TRH modulates the membrane excitability of NTS neurons and allows them to express endogenous bursting activity.  相似文献   

16.
Current theories hypothesize that dopamine neuronal firing encodes reward prediction errors. Although studies in nonhuman species provide direct support for this theory, functional magnetic resonance imaging (fMRI) studies in humans have focused on brain areas targeted by dopamine neurons [ventral striatum (VStr)] rather than on brainstem dopaminergic nuclei [ventral tegmental area (VTA) and substantia nigra]. We used fMRI tailored to directly image the brainstem. When primary rewards were used in an experiment, the VTA blood oxygen level-dependent (BOLD) response reflected a positive reward prediction error, whereas the VStr encoded positive and negative reward prediction errors. When monetary gains and losses were used, VTA BOLD responses reflected positive reward prediction errors modulated by the probability of winning. We detected no significant VTA BOLD response to nonrewarding events.  相似文献   

17.
Reversal of experimental parkinsonism by lesions of the subthalamic nucleus   总被引:38,自引:0,他引:38  
Although it is known that Parkinson's disease results from a loss of dopaminergic neurons in the substantia nigra, the resulting alterations in activity in the basal ganglia responsible for parkinsonian motor deficits are still poorly characterized. Recently, increased activity in the subthalamic nucleus has been implicated in the motor abnormalities. To test this hypothesis, the effects of lesions of the subthalamic nucleus were evaluated in monkeys rendered parkinsonian by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The lesions reduced all of the major motor disturbances in the contralateral limbs, including akinesia, rigidity, and tremor. This result supports the postulated role of excessive activity in the subthalamic nucleus in Parkinson's disease.  相似文献   

18.
It is important for animals to estimate the value of rewards as accurately as possible. Because the number of potential reward values is very large, it is necessary that the brain's limited resources be allocated so as to discriminate better among more likely reward outcomes at the expense of less likely outcomes. We found that midbrain dopamine neurons rapidly adapted to the information provided by reward-predicting stimuli. Responses shifted relative to the expected reward value, and the gain adjusted to the variance of reward value. In this way, dopamine neurons maintained their reward sensitivity over a large range of reward values.  相似文献   

19.
To investigate the effects of Shenpang acupoint-stimulation in reproductive endocrinology, the changes in estrogen receptor immunoreactive (ER-IR) neurons after Shenpang acupoint-stimulation were studied by using immunohistochemistry. ER-IR positive reactions were detected in most nuclei of the thalamus. In the acupuncture-treated group, a great number of ER-IR positive neurons with clear dendrites existed in the nucleus, paraventricular nucleus, ventrolateral nucleus, ventromedial nucleus, ventroprincipal nucleus, centromedian nucleus, reticular nucleus, and periventricular nucleus of thalamus, and they were mainly located in the cytoplasm, nucleus and neutrite, and some also existed in the cytoplasmic membrane. In contrast, a few neurons existed in the above-mentioned nuclei in the control group, but they were slightly stained. It is concluded that Shenpang acupoint-stimulation can promote the expression of estrogen receptors in the above nuclei. Translated from Acta Veterinaria et Zootechnica Sinica, 2006, 37(1): 71–75 [译自: 畜牧兽医学报]  相似文献   

20.
Segmentation genes control cell identities during early pattern formation in Drosophila. One of these genes, fushi tarazu (ftz), is now shown also to control cell fate during neurogenesis. Early in development, ftz is expressed in a striped pattern at the blastoderm stage. Later, it is transiently expressed in a specific subset of neuronal precursor cells, neurons (such as aCC, pCC, RP1, and RP2), and glia in the developing central nervous system (CNS). The function of ftz in the CNS was determined by creating ftz mutant embryos that express ftz in the blastoderm stripes but not in the CNS. In the absence of ftz CNS expression, some neurons appear normal (for example, the aCC, pCC, and RP1), whereas the RP2 neuron extends its growth cone along an abnormal pathway, mimicking its sibling (RP1), suggesting a transformation in neuronal identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号