首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Bacterial-feeding nematodes represent an important driver of the soil microbial activity and diversity. This study aimed at characterizing the impact of nematode grazing on a model functional bacterial guild involved in N-cycling, the denitrifiers. Bacterial-feeding nematodes (Cephalobus pseudoparvus) were inoculated into soil microcosms whose indigenous nematofauna had previously been removed. The size, genetic structure and activity of the soil denitrifier community were characterized 15 and 45 days after nematodes inoculation using quantitative PCR of the nirK, nirS and nosZ denitrification genes, fingerprinting of the nirK and nirS genes and denitrification enzyme activity measurements, respectively. A significant impact of C. pseudoparvus was observed on genetic structure of the nirK community, mainly due to shifts in the relative abundance of the dominant populations, but not on the nirS community. The grazing pressure also tended to decrease the density of all denitrification genes as well as that of 16S rRNA genes. Despite being non-significant, the extent of this decline in gene copy numbers ranged between 60 and 80% of the control microcosm genes densities. Finally, compared to non-inoculated microcosms, denitrification activity significantly decreased by 8% in response to the nematodes inoculation. The herewith data showed that predation by a single species of bacterial-feeding nematode can affect the soil denitrifier community.  相似文献   

2.
The effects of bacterial-feeding nematodes on bacterial number, activity, and community composition were studied through a microcosm experiment using sterilized soil inoculated with soil bacteria (soil suspension) and with bacteria and three species of bacterial-feeding nematodes ( Cephalobus persegnis, Protorhabditis filiformis, and Caenorhabditis elegans). Catalyzed reporter deposition-fluorescence in situ hybridization, CO2 evolution, and denaturing gradient gel electrophoresis (DGGE) of PCR ampli- fied 16S rRNA gene fragments were used to investigate bacterial numbers, antivity, and community composition, respectively. Our results showed that bacterial numbers and activity significantly increased in the presence of bacterial-feeding nematodes, which indicated that bacterial-feeding nematodes had a significant positive effect on soil bacteria. The different nematode species had different effects on bacterial numbers and activity. C. persegnis and P. filiformis, isolated from native soil, increased the bacterial number and activity more than C. elegans. The DGGE analysis results showed that dominant bacterial species significantly differed among the treatments, which suggested that bacterial-feeding nematode species modified the bacterial community composition in soil. Further gene sequence analysis results showed that the dominant bacterial species in this study were gram-negative bacteria. Given the completely same conditions except nematode species, the varied selective feeding behavior of different nematode species was the most likely reason for the altered bacterial community composition. Overall, the alteration of bacterial numbers, activity and community composition resulting from the bacterial-feeding nematodes may ult!mately affect soil ecological functioning and processes.  相似文献   

3.
Summary Among the nematodes infesting chickpea (Cicer arietinum L.) plants in Syria, cyst nematode (Heterodera ciceri Vovlas, Greco et Di Vito) is the most important. It is uneconomical to grow chickpea in fields infested with cyst nematode and to control this nematode with nematicide. Therefore, investigations were conducted at ICARDA, Syria from 1987 to 1991 to identify sources of resistance to cyst nematode in 7258 lines of C. arietinum and 102 lines of eight annual Cicer species including C. bijugum K.R. Rech. (13 lines), C. chorassanicum (Bge) M. Pop. (3 lines), C. cuneatum Hochst. ex Rich. (3 lines), C. echinospermum P.H. Davis (8 lines), C. judaicum Boiss. (18 lines), C. pinnatifidum Jaub. & Sp. (18 lines), C. reticulatum Ladiz. (36 lines), and C. yamashitae Kitamura (3 lines). All lines were grown in a greenhouse at 15–25°C in pots containing soil infested with 20 eggs of the nematode g-1 soil. Nematode infestation was evaluated on a 0 to 5 scale based on number of females and cysts on roots. Resistance was found in one line of C. bijugum, six lines of C. pinnatifidum, and one line of C. reticulatum. No lines of C. arietinum, C. chorassanicum, C. cuneatum, C. echinospermum, C. judaicum, or C. yamashitae was resistant to cyst nematode. Plants with resistance have been recovered in the F3 generation from crosses between the cultigen and C. reticulatum, indicating the possibility of transfer of gene(s) for resistance to cyst nematode from wild to cultivated Cicer species.Joint contribution from Istituto di Nematologia Agraria, ICARDA and ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), Patancheru P.O., A.P. 502 324, India.  相似文献   

4.
Mixed cultivation of fast-growing grasses and nitrogen(N)-fixing legumes for forage production is widely considered effective for obtaining sustained high forage yields without depleting soil N levels. However, the effects of monoculture and mixed culture of these species on soil food webs are poorly understood.In this study, soil nematode communities were examined as indicators of the soil food web structure of monoculture and mixed culture of grass and legume at three N levels, i.e., 338(low),...  相似文献   

5.
Background Aim and Scope  The Maatheide in Lommel, Belgium, is an extremely metal contaminated, sandy area where vegetation has disappeared over ca. 130 hectares due to the activities of a former pyrometallurgical zinc smelter. To reduce the environmental impact of this area a rehabilitation strategy had to be developed. Therefore, in the centre of this area, an experimental phytostabilization (grass) field of three hectares had been installed in 1990. After a grass cover had been established, the development of the nematode fauna in the phyto-stabilized soil was studied. Nematodes act at various levels in soil ecosystems: herbivorous species extract their food from plant roots, bacterivorous and fungivorous species feed on microbes, predatory species consume other nematodes, and omnivorous species have mixed diets. In a mature soil ecosystem that normally exercises its manifold functions, a diverse nematode fauna occurs, reflecting the intactness of the ecosystem. As such, this fauna is indicative of crop growth, vegetative diversity, organic matter decomposition, microbial activity and diversity, and the maturity of the soil ecosystem. Methods  A metal immobilizing soil amendment (beringite) and municipal waste compost (to improve the nutrient status and water-retaining capacity) were incorporated in the soil and metal tolerant ecotypes of grasses were sown. Soil samples for nematode analyses were taken four times. Results  As a result of the treatment, pH of the soil increased and the water extractable amount of Zn was strongly reduced. Grass growth revitalized the impoverished soil ecosystem, organisms as well as metabolic processes. The nematode fauna of the experimental field in the Maatheide has been studied since 1997 and the recovery of the various feeding guilds and taxa was checked again in 2002. Nematode densities and feeding guilds have normalized, with omnivores and predators as the last guilds to reappear. Up to 27 species with a current diversity were observed in the grass-covered experimental plot, but a number of ubiquitous species, present at a comparable site at some distance, remained absent. Conclusion  It can thus be concluded that rehabilitation of an impoverished soil ecosystem is possible in heavily contaminated soils by means of phytostabilization, but there are some limitations on rehabilitation, since a number of common nematode species remained absent. Further research should indicate if this absence is indicative of a loss of essential processes in the soil. Recommendation and Perspective. Phytostabilization of heavily zinc-contaminated, sandy soil also remediates impoverished soil ecosystems. In particular, the recovery of nematode feeding categories is indicative for the normalization of soil life. The absence/presence of a number of ubiquitous taxa should be checked again after some time to verify if recovery is completed.  相似文献   

6.
《Applied soil ecology》2006,32(3):228-238
Pseudomonas bacteria isolated during 52 days on Gould's S1 agar from soil spiked with 0, 3.5 and 15 mg Hg(II) kg soil−1 were characterised to reveal whether mercury affected them differently. Isolates from the treatments with 0 and 15 mg Hg kg−1 were characterised using FT-IR characterisation and subsequent 16S rDNA partial sequencing of representative isolates. To verify the selectivity of Gould's S1 agar and the FT-IR characterisation, all 450 isolates were subjected to the following tests: Gram-determination, catalase and oxidase activity, pigment production on PDA and growth at different temperatures. Furthermore, the isolates were tested for their ability to grow on agar amended with 10 mg Hg kg−1 as an indication of mercury resistance. We found that up to 80% of the isolates in soil amended with 15 mg Hg kg−1 were mercury-resistant, whereas only up to 20% were resistant in the treatments with 0 and 3.5 mg Hg kg−1. We found two groups of Pseudomonas, which probably represent non-described species since they did not group closely with any known species of Pseudomonas in the dendrogram. Hg-enhanced isolates were closely related to P. frederiksbergensis. Furthermore, Hg resistance was almost exclusively restricted to P. frederiksbergensis and P. migulae groups. We conclude that Hg caused a shift in the dominating species of culturable Pseudomonas.  相似文献   

7.
Human activities are causing climatic changes and alter the composition and biodiversity of ecosystems. Climate change has been and will be increasing the frequency and severity of extreme climate events and natural disasters like floods in many ecosystems. Therefore, it is important to investigate the effects of disturbances on ecosystems and identify potential stabilizing features of ecological communities. In this study, soil microbial and nematode communities were investigated in a grassland biodiversity experiment after a natural flood to investigate if plant diversity is able to attenuate or reinforce the magnitude of effects of the disturbance on soil food webs. In addition to community analyses of soil microorganisms and nematodes, the stability indices proportional resilience, proportional recovery, and proportional resistance were calculated. Generally, soil microbial biomass decreased significantly due to the flood with the strongest reduction in gram-negative bacteria, while gram-positive bacteria were less affected by flooding. Fungal biomass increased significantly three months after the flood compared to few days before the flood, reflecting elevated availability of dead plant biomass in response to the flood. Similar to the soil microbial community, nematode community structure changed considerably due to the flood by favoring colonizers (in the broadest sense r-strategists; c–p 1, 2 nematodes), particularly so at high plant diversity. None of the soil microbial community stability indices and few of the nematode stability indices were significantly affected by plant diversity, indicating limited potential of plant diversity to buffer soil food webs against flooding disturbance. However, plant diversity destabilized colonizer populations, while persister populations (in the broadest sense K-strategists; c–p 4 nematodes) were stabilized, suggesting that plant diversity can stabilize and destabilize populations depending on the ecology of the focal taxa. The present study shows that changes in plant diversity and subsequent alterations in resource availability may significantly modify the compositional shifts of soil food webs in response to disturbances.  相似文献   

8.
Legislation regarding the labeling of processed products is an important issue in the protection of consumer rights. This labeling is especially important in products that cannot be identified on the basis of their morphological characters, because these are removed from the animal in the transformation process. The goal of this study was the identification of mussel species using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and Forensically Informative Nucleotide Sequencing (FINS) methodologies. The molecular marker selected was 18S rDNA (nuclear small-subunit rDNA gene), which allows identification at the genus level and at the species level in some cases. The genera included in this study were Mytilus, Perna, Aulacomya, Semimytilus, Brachidontes, Choromytilus, and Perumytilus. Different markers were used for genetic identification at the species level. To identify the species included in the genus Perna and Choromytilus, a fragment of ITS 1 (Internal Transcribed Spacer 1) was amplified by multiplex PCR and digested with restrictases. The species of Mytilus were identified by length polymorphism and RFLP of the polyphenolic adhesive protein gene. This methodology was validated with products manufactured in the authors' pilot plant and applied to commercial samples. Therefore, this sequential method can be completely or partially used to determine the mussel genus or species present in any food product.  相似文献   

9.
Vegetable cultivation favored the inclusion of pleasant aromas in the produce, whereas unpleasant aromas were selected against. Introgression lines, generated by hybridization of a cultivated tomato (Lycopersicon esculentum) to its wild relative L. pennellii, were used to map quantitative trait loci (QTL) that influence tomato aroma. A marked undesirable flavor was detected by taste panelists in L. pennellii fruits and was related to an introgressed segment from the short arm of chromosome 8. Analysis of the ripe fruits' volatiles of chromosome 8 introgressed lines revealed an up to 60-fold increase in the levels of 2-phenylethanol and phenylacetaldehyde, as compared to the cultivated tomato. This effect was associated with a 10 cM segment originating from the wild species. Although 2-phenylethanol and phenylacetaldehyde have favorable contribution to tomato aroma when present at low levels, phenylacetaldehyde has a nauseating objectionable aroma when present in levels >0.005 ppm. The loss of the ability to produce high levels of phenylacetaldehyde contributed to the development of desirable aroma of the cultivated tomato. The findings provide a genetic explanation for one of the aroma changes that occurred during the domestication of the tomato.  相似文献   

10.
The aim of this study was to compare the potential activity of enzymes involved in N, C, P and S cycling in the humus layer under three tree species: silver birch, Norway spruce and Scots pine. For arylsulphatase and protease the highest activities were found under birch, whereas beta-glucosidase activity was highest under pine. Beta-glucosaminidase and acid phosphatase showed similar activities regardless of tree species. Our studies show that soils under these species may differ enzymatically from each other. Enzyme activity studies under different tree species need more attention as the activity of different enzymes influences on soil nutrient availability in boreal forest soil.  相似文献   

11.
The classification of nematodes in the family Tylenchidae into plant parasites, plant associates or fungal-feeders for community analyses, have been much discussed by nematode ecologists. For an appropriate classification, fungal-feeding habits in the family need to be studied. To evaluate the host status of 10 fungal isolates for Filenchus misellus (Tylenchidae) and Aphelenchus avenae (Aphelenchida, Aphelenchidae), population growth rates, body length and width and sex ratios of the nematodes were measured after 40-day culture on fungal colonies at 25 °C. For F. misellus, the fungi determined as good hosts were two Basidiomycota fungi (Agaricus bisporus, Coprinus cinereus), three Ascomycota fungi (Chaetomium cochlioides, Chaetomium funicola, Chaetomium globosum) and a plant-pathogenic fungus (Rhizoctonia solani) on the basis of nematode population growth rate and female body length. Interestingly Pleurotus ostreatus, known as a predaceous fungus for the other nematodes, was also a good host for F. misellus. While, for A. avenae, good hosts were four plant-pathogenic fungi (Fusarium oxysporum f. sp. conglutinans, F. oxysporum f. sp. cucumerinum, Pythium ultimum, R. solani) and A. bisporus. A. avenae was trapped and preyed upon by Pleurotus hyphae. In F. misellus, males were 7-21% of adults, but the ratio did not correlate significantly with the population growth rate. In A. avenae, no male occurred. Differences in habitat preference between Filenchus and Aphelenchus were explained on the basis of the host status and habitat preferences of the tested fungi.  相似文献   

12.
从大棚蔬菜根际土中分离到一株嗜铁素高产菌株A3,铬天青(CAS)法定量检测其嗜铁素相对含量达93.40%,Shenkers实验确定为羧酸型嗜铁素。在不同底物诱导下,该菌株可不同程度地产生吲哚乙酸(IAA)及1-氨基环丙烷-1-羧酸(ACC)脱氨酶,并具有一定的溶磷能力。根据形态特征、生理生化、API系统及16S rRNA基因序列分析,将菌株A3鉴定为恶臭假单胞菌(Pseudomonas putida)。在缺铁Hoagland营养液中添加难溶性铁及菌株A3嗜铁素发酵滤液的处理组,能够显著提高黄瓜幼苗的株高、根长、叶长、鲜重及叶绿素含量,表明菌株A3产生的嗜铁素在低铁条件下对黄瓜幼苗具有促生作用。  相似文献   

13.
Selected primitive and modern wheat species were evaluated on the basis of their carotenoid composition and effects of the genotype and environment on lutein using spectrometry and liquid chromatography. Carotenoids in the wheat extracts were identified and confirmed on the basis of their UV/vis and mass spectra compared with those of authentic standards. The protonated molecule (M + 1)+ at m/z 569 was the predominant ion for zeaxanthin compared to the fragment ion at m/z 551 for lutein. A similar carotenoid profile was obtained for the wheat species investigated, but significant differences were observed in the concentration of carotenoids. Einkorn (Triticum monococcum) exhibited the highest level of all-trans-lutein, averaging 7.41 microg/g with small amounts of all-trans-zeaxanthin, cis-lutein isomers, and beta-carotene. Durum, Kamut, and Khorasan (Triticum turgidum) had intermediate levels of lutein (5.41-5.77 microg/g), while common bread or pastry wheat (Triticum aestivum) had the lowest content (2.01-2.11 microg/g). Lutein in einkorn appeared to be influenced significantly by environmental growing conditions.  相似文献   

14.
Summary Leaf miner (Liriomyza cicerina Rond.) causes considerable damage to chickpea (Cicer arietinum L.) in West Asia, North Africa and Southern Europe. Use of resistant cultivar is the economical method of control. Screening of over 7000 germplasm accessions did not result in identification of highly resistant accessions to this insect. Therefore, 200 accessions of eight wild Cicer species were evaluated in search of resistance to leaf miner between 1988 and 1991 at ICARDA, Syria. Accessions of Cicer species were screened under natural insect infestation in the field during spring (March–June), along with a susceptible-cum-indicator line. Two accessions of C. cuneatum (ILWC-40 and -187) and 10 accessions of C. judaicum (ILWC-44, -46, -56, -57, -58, -95, -103, -196, -206, and -207) were rated 2 on a 1–9 scale, where 1 = free from any damage and 9 = maximum damage. Another 18 lines of C. judaicum, four lines of C. pinnatidum and one line of C. reticulatum were rated 3 (resistant). Currently three species are incompatible in crossing with chickpea, but C. reticulatum is being used in breeding programme.Joint contribution from ICARDA and ICRISAT (Inter-national Crops Research Institute for the Semi-Arid Tropics), Patancheru P.O., AP 502 324, India.  相似文献   

15.
Flavonoids represent a large and important group of plant natural products that are ubiquitous in the plant kingdom. Epidemiological studies have shown the health benefits of a diet high in flavonoids. However, the dietary intake of flavonoids in most western populations is limited, creating a need to find alternative food sources for these polyphenolic secondary metabolites. The domestication of many of our cultivated food crops has resulted in alterations in the biosynthetic pathways of many essential micronutrients and vitamins through inadvertent counterselection against nutritional traits in favor of agronomic ones. Flavonoids are nearly absent from fruits of cultivated tomato (Lycopersicon esculentum Mill.), a major vegetable in human diets. Previous attempts to restore the flavonoid pathway in tomato fruits have been limited to transgenic strategies, suggesting that the problem was intractable through traditional methods. Here, we describe for the first time a nontransgenic metabolic engineering approach to developing a high flavonoid tomato using a wild tomato species (Lycopersicon pennelliiv. puberulum) and demonstrate the opportunities for restoring functional pathways using the genetic resources of wild species, resulting in production of healthier foods.  相似文献   

16.
By using a model reaction system representing blue-green discoloration that occurs when purees of onion (Allium cepa L.) and garlic (Allium sativum L.) are mixed, we isolated two pigment precursors (PPs) and a reddish-purple pigment (PUR-1) and determined their chemical structures. PPs were isolated from a heat-treated solution containing color developer (CD) and either l-valine or l-alanine, and their structures were determined as 2-(3,4-dimethylpyrrolyl)-3-methylbutanoic acid (PP-Val), and 2-(3,4-dimethyl-1H-pyrrolyl) propanoic acid (PP-Ala), respectively. Next, PUR-1 was isolated from a heat-treated solution containing PP-Val and allicin, and its structure was determined as (1E)-1-(1-((1S)-1-carboxy-2-methylpropyl)-3,4-dimethyl-1H-pyrrol-2-yl)-prop-1-enylene-3-(1-((1S)-1-carboxy-2-methylpropyl)-3,4-dimethyl-1H-pyrrol-2-ylidenium). The structure of PUR-1 suggested that PP molecules containing a 3,4-dimethyl pyrrole ring had been cross-linked by an allyl group of allicin to form conjugated pigments. While PUR-1 is a dipyrrole compound exhibiting a reddish-purple color, a color shift toward blue to green can be expected as the cross-linking reaction continues to form, for example, tri- or tetrapyrrole compounds.  相似文献   

17.
The Capsicum genus is native to tropical America and consists of 27 species, five of which are used as fresh vegetables and spices: Capsicum annuum L., Capsicum chinense Jacq., Capsicum frutescens L., Capsicum baccatum L. and Capsicum pubescens R. et P. The study of the relationships among species of cultivate Capsicum species will be useful for breeding new cultivars or hybrids. This study is focused on the genetic diversity and relationships of these species that were collected in the Andean region. Ten microsatellites and four AFLP combinations were used to characterize 260 Capsicum accessions. The AFLP tree turned out to be informative regarding relationships among species. The data clearly showed the close relationships between C. chinense and C. frutescens. Moreover, C. cardenasii and C. eximium were indistinguishable as a single, morphologically variable species. Our data showed C. baccatum and C. praetermissum to be distinct species that form a compact group. In the present work, AFLP fingerprinting indicated that C. chacoense was placed in the C. baccatum complex and showed C. tovarii as a separate species. In addition, SSR data indicated that there is intraspecific differentiation in the species C. chinense, C. baccatum and C. pubescens, as the PCoA-based clustering showed a clear geographic division related to country. Even though Bolivia is considered to be the nuclear area for these species, we have found similar variability in Ecuador and Peru for several Capsicum species.  相似文献   

18.
A variety of soil properties can directly or indirectly affect nematode community structure. The effects of subsurface clay content (at 20–40 cm depth) on nematodes in the surface layer (0–20 cm depth) of a sandy soil were examined in field experiments in Florida, USA. Plots were established in a site with a relatively uniform sandy upper soil layer (88–91% sand and 5–7% clay at 0–20 cm depth) but with varying levels of clay in the subsurface layer (3–35% clay at 20–40 cm depth). Nematode numbers in the surface soil layer were affected by the amount of clay in the subsurface layer. Population densities of a number of different nematode genera were greater in the surface layer of plots with 35% subsurface clay than in plots with 3% subsurface clay. Indices of nematode community structure were largely unaffected, since effects of subsurface clay were observed across all nematode groups. Most nematodes (70–80% of total numbers) occurred at 0–20 cm depth, although Teratocephalus was more common at 20–40 than at 0–20 cm. Subsurface clay content indirectly affected soil moisture and other environmental factors in the upper soil layer in which most nematodes reside.  相似文献   

19.
The population abundance of free-living and plant-parasitic nematodes was investigated in a long-term rotation/tillage/stubble management experiment at Wagga Wagga Agricultural Institute, New South Wales (NSW), Australia. The treatments were a combination of two crop rotations: wheat (Triticum aestivum)–wheat and wheat–lupin (Lupinus angustifolius); two tillage systems: conventional cultivation (CC) and direct drill (DD); and two stubble management practices: stubble retention (SR) and stubble burnt (SB). Plots of one of the wheat–wheat treatments received urea at 100 kg N ha−1 during the cropping season. Soil samples from 0–5 and 5–10 cm depths were collected in September (maximum tillering), October (flowering) and December (after harvest), 2001, to analyse nematode abundance. Soil collected in September was also analysed for concentrations of total and labile C, and pH levels.Three nematode trophic groups, namely bacteria-feeders (primarily Rhabditidae), omnivores (primarily Dorylaimidae excluding plant-parasites and predators) and plant-parasites (Pratylenchus spp. and Paratylenchus spp.) were recorded in each soil sample. Of them, bacteria-feeders (53–99%, population range 933–2750 kg−1 soil) dominated in all soil samples. There was no difference in nematode abundance and community composition between the 0–5 cm and 5–10 cm layers of soil. The mean population of free-living and plant-parasitic nematodes varied significantly between the treatments in all sampling months. In most cases, total free-living nematode densities (Rhabditidae and Dorylaimidae) were significantly (P < 0.001) greater in wheat–lupin rotation than the wheat–wheat rotation irrespective of tillage and stubble management practices. In contrast, a greater population of plant-parasitic nematodes was recorded from plots with wheat–wheat than the wheat–lupin rotation. For treatments with wheat–wheat, total plant-parasitic nematode (Pratylenchus spp. and Paratylenchus spp.) densities were greater in plots without N-fertiliser (295–741 kg−1 soil) than the plots with N-fertiliser (14–158 kg−1 soil).Tillage practices had significant (P < 0.05) effects mostly on the population densities of plant-parasitic nematodes while stubble management had significant effects (P < 0.05) on free-living nematodes. However, interaction effects of tillage and stubble were significant (P < 0.01) for the population densities of free-living nematodes only. Population of Rhabditidae was significantly higher in conventional cultivated plots (7244 kg−1 soil) than the direct drilled (3981 kg−1 soil) plots under stubble retention. In contrast, plots with direct drill and stubble burnt had significantly higher populations of Dorylaimidae than the conventional cultivation with similar stubble management practice. No correlations between abundance of free-living nematodes, and concentration of total C and labile C in soil were observed in this study. These results showed that stubble retention contributed for enormous population density of free-living (beneficial) nematodes while conventional cultivation, irrespective of stubble management, contributed for suppressing plant-parasitic nematodes.  相似文献   

20.
A collaborative study, to validate the use of SDS-PAGE and urea IEF, for the identification of fish species after cooking has been performed by nine laboratories. By following optimized standard operation procedures, 10 commercially important species (Atlantic salmon, sea trout, rainbow trout, turbot, Alaska pollock, pollack, pink salmon, Arctic char, chum salmon, and New Zealand hake) had to be identified by comparison with 22 reference samples. Some differences in the recoveries of proteins from cooked fish flesh were noted between the urea and the SDS extraction procedures used. Generally, the urea extraction procedure appears to be less efficient than the SDS extraction for protein solubilization. Except for some species belonging to the Salmonidae family (Salmo, Oncorhynchus), both of the analytical techniques tested (urea IEF, SDS-PAGE) enabled identification of the species of the samples to be established. With urea IEF, two laboratories could not differentiate Salmo salar from Salmo trutta. The same difficulties were noted for differentiation between Oncorhynchus gorbuscha and Oncorhynchus keta samples. With SDS-PAGE, three laboratories had some difficulties in identifying the S. trutta samples. However, in the contrast with the previous technique, SDS-PAGE allows the characterization of most of the Oncorhynchus species tested. Only Oncorhynchus mykiss was not clearly recognized by one laboratory. Therefore, SDS-PAGE (Excel gel homogeneous 15%) appears to be better for the identification, after cooking, of fish such as the tuna and salmon species which are characterized by neutral and basic protein bands, and urea IEF (CleanGel) is better for the gadoid species, which are characterized by acid protein bands (parvalbumins). Nevertheless, in contentious cases it is preferable to use both analytical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号