首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
Harding AK 《Science (New York, N.Y.)》1991,251(4997):1033-1038
Electromagnetic phenomena occurring in the strong magnetic fields of neutron stars are currently of great interest in high-energy astrophysics. Observations of rotation rate changes and cyclotron lines in pulsars and gamma-ray bursts indicate that surface magnetic fields of neutron stars often exceed 10(12) gauss. In fields this strong, where electrons behave much as if they were in bound atomic states, familiar processes undergo profound changes, and exotic processes become important. Strong magnetic fields affect the physics in several fundamental ways: Energies perpendicular to the field are quantized, transverse momentum is not conserved, and electron-positron spin is important. Neutron stars therefore provide a unique laboratory for the study of physics in extremely high fields that cannot be generated on Earth.  相似文献   

2.
We review the potential to develop sources for neutron scattering science and propose that a merger with the rapidly developing field of inertial fusion energy could provide a major step-change in performance. In stark contrast to developments in synchrotron and laser science, the past 40 years have seen only a factor of 10 increase in neutron source brightness. With the advent of thermonuclear ignition in the laboratory, coupled to innovative approaches in how this may be achieved, we calculate that a neutron source three orders of magnitude more powerful than any existing facility can be envisaged on a 20- to 30-year time scale. Such a leap in source power would transform neutron scattering science.  相似文献   

3.
Soft gamma repeaters (SGRs) and anomalous x-ray pulsars form a rapidly increasing group of x-ray sources exhibiting sporadic emission of short bursts. They are believed to be magnetars, that is, neutron stars powered by extreme magnetic fields, B ~ 10(14) to 10(15) gauss. We report on a soft gamma repeater with low magnetic field, SGR 0418+5729, recently detected after it emitted bursts similar to those of magnetars. X-ray observations show that its dipolar magnetic field cannot be greater than 7.5 × 10(12) gauss, well in the range of ordinary radio pulsars, implying that a high surface dipolar magnetic field is not necessarily required for magnetar-like activity. The magnetar population may thus include objects with a wider range of B-field strengths, ages, and evolutionary stages than observed so far.  相似文献   

4.
Pines D 《Science (New York, N.Y.)》1980,207(4431):597-606
During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.  相似文献   

5.
Calculations with a two-dimensional hydrodynamic simulation show that a generic Raleigh-Taylor-like instability occurs in the mantles of nascent neutron stars, that it is possibly violent, and that the standard spherically symmetric models of neutron star birth and supemova explosion may be inadequate. Whether this "convective" instability is pivotal to the supemova mechanism, pulsar magnetic fields, or a host of other important issues that attend stellar collapse remains to be seen, but its existence promises to modify all questions concerning this most energetic of astronomical phenomena.  相似文献   

6.
The ocean is an electrically conducting fluid that generates secondary magnetic fields as it flows through Earth's main magnetic field. Extracting ocean flow signals from remote observations has become possible with the current generation of satellites measuring Earth's magnetic field. Here, we consider the magnetic fields generated by the ocean lunar semidiurnal (M2) tide and demonstrate that magnetic fields of oceanic origin can be clearly identified in satellite observations.  相似文献   

7.
The oppositely directed magnetic field in the jovian magnetic tail is expected eventually to reconnect across the current sheet, allowing plasma produced deep inside the magnetosphere near Io's orbit to escape in the antisolar direction down the tail. The Galileo spacecraft found localized regions of strong northward and southward field components beyond about 50 jovian radii in the postmidnight, predawn sector of the jovian magnetosphere. These pockets of vertical magnetic fields can be stronger than the surrounding magnetotail and magnetodisk fields. They may result from episodic reconnection of patches of the near jovian magnetotail.  相似文献   

8.
Understanding how cool stars produce magnetic fields within their interiors is crucial for predicting the impact of such fields, such as the activity cycle of the Sun. In this respect, studying fully convective stars enables us to investigate the role of convective zones in magnetic field generation. We produced a magnetic map of a rapidly rotating, very-low-mass, fully convective dwarf through tomographic imaging from time series of spectropolarimetric data. Our results, which demonstrate that fully convective stars are able to trigger axisymmetric large-scale poloidal fields without differential rotation, challenge existing theoretical models of field generation in cool stars.  相似文献   

9.
Many of the observed properties of Jupiter's decametric radiation may be explained by postulation that the inner Galilean satellites of Jupiter have magnetic properties that strongly distort Jupiter's magnetic field in the region of each satellite. Charged particles from Jupiter's radiation belts are trapped by these distorted fields and emit synchrotron radiation.  相似文献   

10.
Galaxy clusters form through a sequence of mergers of smaller galaxy clusters and groups. Models of diffusive shock acceleration suggest that in shocks that occur during cluster mergers, particles are accelerated to relativistic energies, similar to conditions within supernova remnants. In the presence of magnetic fields, these particles emit synchrotron radiation and may form so-called radio relics. We detected a radio relic that displays highly aligned magnetic fields, a strong spectral index gradient, and a narrow relic width, giving a measure of the magnetic field in an unexplored site of the universe. Our observations show that diffusive shock acceleration also operates on scales much larger than in supernova remnants and that shocks in galaxy clusters are capable of producing extremely energetic cosmic rays.  相似文献   

11.
After 3 years and 31 close flybys of Titan by the Cassini Orbiter, Titan was finally observed in the shocked solar wind, outside of Saturn's magnetosphere. These observations revealed that Titan's flow-induced magnetosphere was populated by "fossil" fields originating from Saturn, to which the satellite was exposed before its excursion through the magnetopause. In addition, strong magnetic shear observed at the edge of Titan's induced magnetosphere suggests that reconnection may have been involved in the replacement of the fossil fields by the interplanetary magnetic field.  相似文献   

12.
We present data from an induced gallium arsenide (GaAs) quantum wire that exhibits an additional conductance plateau at 0.5(2e2/h), where e is the charge of an electron and h is Planck's constant, in zero magnetic field. The plateau was most pronounced when the potential landscape was tuned to be symmetric by using low-temperature scanning-probe techniques. Source-drain energy spectroscopy and temperature response support the hypothesis that the origin of the plateau is the spontaneous spin-polarization of the transport electrons: a ferromagnetic phase. Such devices may have applications in the field of spintronics to either generate or detect a spin-polarized current without the complications associated with external magnetic fields or magnetic materials.  相似文献   

13.
We report the detection of magnetar-like x-ray bursts from the young pulsar PSR J1846-0258, at the center of the supernova remnant Kes 75. This pulsar, long thought to be exclusively rotation-powered, has an inferred surface dipolar magnetic field of 4.9 x 10(13) gauss, which is higher than those of the vast majority of rotation-powered pulsars, but lower than those of the approximately 12 previously identified magnetars. The bursts were accompanied by a sudden flux increase and an unprecedented change in timing behavior. These phenomena lower the magnetic and rotational thresholds associated with magnetar-like behavior and suggest that in neutron stars there exists a continuum of magnetic activity that increases with inferred magnetic field strength.  相似文献   

14.
为了提高食用菌的产量和质量,探求电场和磁场对食用菌生长效应的影响,以凤尾菇(Pleurotus Sajor-Caju(Fr.)Sing)为研究对象,用不同的电场强度和磁感应强度分别处理凤尾菇菌丝体,测定菌丝体的生长速率和产量。试验结果表明:不同的电场和磁场处理对凤尾菇菌丝体生长和产量影响不同。经电场处理后,无论在菌丝体生长速率还是菇的产量上都明显地优于对照。经磁场处理后,在磁感应强度为500~6500 Gs时,对菌丝体生长均具有明显的促进作用,而磁感应强度为8000 Gs时,对菌丝体生长有抑制作用。电场强度在200~800 V.cm-1;磁场处理的磁感应强度在2000~5000 Gs作用效果最为明显。  相似文献   

15.
Dai ZG  Wang XY  Wu XF  Zhang B 《Science (New York, N.Y.)》2006,311(5764):1127-1129
Recent observations support the suggestion that short-duration gamma-ray bursts are produced by compact star mergers. The x-ray flares discovered in two short gamma-ray bursts last much longer than the previously proposed postmerger energy-release time scales. Here, we show that they can be produced by differentially rotating, millisecond pulsars after the mergers of binary neutron stars. The differential rotation leads to windup of interior poloidal magnetic fields and the resulting toroidal fields are strong enough to float up and break through the stellar surface. Magnetic reconnection-driven explosive events then occur, leading to multiple x-ray flares minutes after the original gamma-ray burst.  相似文献   

16.
The excitation spectrum of a model magnetic system, LiHoF4, was studied with the use of neutron spectroscopy as the system was tuned to its quantum critical point by an applied magnetic field. The electronic mode softening expected for a quantum phase transition was forestalled by hyperfine coupling to the nuclear spins. We found that interactions with the nuclear spin bath controlled the length scale over which the excitations could be entangled. This generic result places a limit on our ability to observe intrinsic electronic quantum criticality.  相似文献   

17.
Mars' crustal magnetic field was most likely generated by dynamo action in the planet's early history. Unexplained characteristics of the field include its strength, concentration in the southern hemisphere, and lack of correlation with any surface features except for the hemispheric crustal dichotomy. We used numerical dynamo modeling to demonstrate that the mechanisms proposed to explain crustal dichotomy formation can result in a single-hemisphere dynamo. This dynamo produces strong magnetic fields in only the southern hemisphere. This magnetic field morphology can explain why Mars' crustal magnetic field intensities are substantially stronger in the southern hemisphere without relying on any postdynamo mechanisms.  相似文献   

18.
Buffett BA 《Science (New York, N.Y.)》2000,288(5473):2007-2012
Earth's magnetic field is generated by fluid motion in the liquid iron core. Details of how this occurs are now emerging from numerical simulations that achieve a self-sustaining magnetic field. Early results predict a dominant dipole field outside the core, and some models even reproduce magnetic reversals. The simulations also show how different patterns of flow can produce similar external fields. Efforts to distinguish between the various possibilities appeal to observations of the time-dependent behavior of the field. Important constraints will come from geological records of the magnetic field in the past.  相似文献   

19.
Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF(4), establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H(c|| = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h(4) universality class; in accord with this, the quantum phase transition at H(c) exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.  相似文献   

20.
The measurement of magnetic fields in the femtotesla (fT, 10(-15) tesla) range is important for applications such as magnetometry, quantum computing, solid-state nuclear magnetic resonance, and magnetoencephalography. The only sensors capable of detecting these very small fields have been based on low-temperature superconducting quantum interference devices operating at 4.2 kelvin. We present a magnetic field sensor that combines a superconducting flux-to-field transformer with a low-noise giant magnetoresistive sensor. The sensor can be operated up to 77 kelvin. Our small-size prototype provides the capability of measuring 32 fT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号